
1

This help document accompanies Richard Johnsonbaugh: Discrete
Mathematics , 6th edition, Prentice Hall, Upper Saddle River, N.J.,
2005.

WebHelp: Growth of Functions
The theta notation characterizes exactly the rate of growth of a function
ignoring constant coefficients and a finite number of exceptions. Intuitively,
in an expression such as

t(n) = n2 + n lg n + 2,

the theta notation for t(n) is the dominant term; after all, the dominant
term is the term that dominates, and thus determines, the rate of growth.
In this case, the dominant term is n2 and so t(n) = Θ(n2).

By definition, f(n) = Θ(g(n)) if there exist positive constants C1, C2,
and N such that

C1|g(n)| ≤ |f(n)| ≤ C2|g(n)|
for all n ≥ N . (The inequality is allowed to fail for a finite number of n
preceding N .) If f and g are positive (e.g., f and g are measures of time),
the absolute value bars can be ignored.

Example. Let’s prove that if

t(n) = n2 + n lg n + 2,

then t(n) = Θ(n2).
Let’s first find a constant C2 satisfying

n2 + n lg n + 2 ≤ C2n
2.

To do so, we must bound n2 + n lg n + 2 from above. Here the idea is to
replace n2 +n lg n+2 by something larger. We do so by replacing each term

2

in the expression by a larger or equal term—namely n2. It’s in this sense
that n2 is the dominant term in the expression n2 + n lg n + 2.

Since
lg n ≤ n

for all n ≥ 1,
n lg n ≤ n2

for all n ≥ 1. For all n ≥ 2,
2 ≤ n2;

therefore
n2 + n lg n + 2 ≤ n2 + n2 + n2 = 3n2

for all n ≥ 2. Thus if we take C2 = 3, we have

n2 + n lg n + 2 ≤ C2n
2.

for all n ≥ 2.
We must also find a constant C1 satisfying

C1n
2 ≤ n2 + n lg n + 2.

This time we must bound n2 + n lg n + 2 from below. Here the idea is to
replace n2 + n lg n + 2 by something smaller. We do so by replacing each
term in the expression by a smaller or equal term. Notice that since n lg n
and 2 are nonnegative for all n ≥ 1, we may replace them by zero leaving
only n2; that is,

n2 ≤ n2 + n lg n + 2

for all n ≥ 1. Thus if we take C1 = 1,

C1n
2 ≤ n2 + n lg n + 2

for all n ≥ 1. Therefore

C1n
2 ≤ t(n) ≤ C2n

2

for all n ≥ 2. It follows from the definition that t(n) = Θ(n2). �

Among the various estimates for a function, theta notation is the most
desirable since it gives both an upper and a lower bound. Big oh notation
provides only an upper bound, and omega notation provides only a lower
bound.

Example. There are lots of big oh notations for

t(n) = n2 + n lg n + 2.

3

In the previous example, we showed that

t(n) ≤ 3n2

for all n ≥ 2. Thus t(n) = O(n2). Since n2 ≤ n3 for all n ≥ 2, it follows that

t(n) ≤ 3n3

for all n ≥ 2. Thus t(n) = O(n3). Similarly, t(n) is big oh of any function
“larger” than n2. We have

t(n) = O(n4), t(n) = O(2n), t(n) = O(n!).

�

Example. There are lots of omega notations for

t(n) = n2 + n lg n + 2.

In the previous example, we showed that

t(n) ≥ n2

for all n ≥ 1. Thus t(n) = Ω(n2). Since n2 ≥ n lg n for all n ≥ 1, it follows
that

t(n) ≥ n lg n

for all n ≥ 1. Thus t(n) = Ω(n lg n). Similarly, t(n) is omega of any function
“smaller” than n2. We have

t(n) = Ω(n), t(n) = Ω(
√

n), t(n) = Ω(1).

�

