
3
y

n

y � 2n

1

2

4

8

16

32

64

128

256

1 2 3 4 5 6 7 8 9 10 11 12 13

y � n2

y � n

y � lg n

y � 1

y � n lg n

Algorithms
3.1 Introduction
3.2 Notation for Algorithms
3.3 The Euclidean Algorithm
3.4 Recursive Algorithms
3.5 Complexity of Algorithms

Problem-Solving Corner:
Design and Analysis of an Algorithm

3.6 Analysis of the Euclidean Algorithm
†3.7 The RSA Public-Key Cryptosystem

Notes
Chapter Review
Chapter Self–Test
Computer Exercises

It’s so simple.

Step 1: We find the worst play
in the world—a sure fire flop.

Step 2: I raise a million
bucks—there are a lot of little
old ladies in the world.

Step 3: You go back to work
on the books. Phony lists of
backers—one for the
government, one for us. You
can do it, Bloom, you’re a
wizard.

Step 4: We open on Broadway
and before you can say

Step 5: We close on Broadway.

Step 6: We take our million
bucks and we fly to Rio de
Janeiro.

FROM The Producers

An algorithm is a step-by-step method of solving some problem. Adlai Steven-
son’s recipe for carp furnishes us an example of an algorithm:

1. Take a 1- to 2-pound carp and allow it to swim in clear water for 24 hours.

2. Scale and fillet the carp.

3. Rub fillets with butter and season with salt and pepper.

4. Place on board and bake in moderate oven for 20 minutes.

5. Throw away carp and eat board.

Examples of algorithms can be found throughout history, going back at least
as far as ancient Babylonia. Indeed, the word “algorithm” derives from the name
of the ninth-century Persian mathematician al-Khowārizmı̄. Algorithms based on
sound mathematical principles play a central role in mathematics and computer
science. In order for a computer to execute a solution to a problem, the solution
must be described as a sequence of precise steps.

After introducing algorithms and our notation for them, we discuss the great-
est common divisor algorithm, an ancient Greek algorithm that is still much used.
We then turn to complexity of algorithms, which refers to the time and space re-
quired to execute algorithms, and the analysis of the resources required for partic-
ular algorithms. We conclude by discussing the RSA public-key cryptosystem—a
method of encoding and decoding messages whose security relies primarily on the
lack of an efficient algorithm for finding the prime divisors of an arbitrary integer.

† This section can be omitted without loss of continuity.

120

3.1 / Introduction 121

3.1 INTRODUCTION

An algorithm is a finite set of instructions having the following characteristics:

Precision. The steps are precisely stated.

Uniqueness. The intermediate results of each step of execution are uniquely
defined and depend only on the inputs and the results of the preceding steps.

Finiteness. The algorithm stops after finitely many instructions have been
executed.

Input. The algorithm receives input.

Output. The algorithm produces output.

Generality. The algorithm applies to a set of inputs.

As an example, consider the following algorithm that finds the maximum of three
numbers a, b, and c:

1. x := a.
2. If b > x, then x := b.
3. If c > x, then x := c.

The idea of the algorithm is to inspect the numbers one by one and copy the largest
value seen into a variable x . At the conclusion of the algorithm, x will then be
equal to the largest of the three numbers.

The notation y := z means “copy the value of z into y” or, equivalently,
“replace the current value of y by the value of z.” When y := z is executed, the
value of z is unchanged. We call := the assignment operator.

We show how the preceding algorithm executes for some specific values of
a, b, and c. Such a simulation is called a trace. First suppose that

a = 1, b = 5, c = 3.

At line 1, we set x to a (1). At line 2, b > x (5 > 1) is true, so we set x to b (5).
At line 3, c > x (3 > 5) is false, so we do nothing. At this point x is 5, the largest
of a, b, and c.

Suppose that
a = 6, b = 1, c = 9.

At line 1, we set x to a (6). At line 2, b > x (1 > 6) is false, so we do nothing.
At line 3, c > x (9 > 6) is true, so we set x to 9. At this point x is 9, the largest
of a, b, and c.

We note that our example algorithm has the properties set forth at the be-
ginning of this section.

The steps of an algorithm must be stated precisely. The steps of the example
algorithm are stated sufficiently precisely so that the algorithm could be written
in a programming language and executed by a computer.

Given values of the input, each intermediate step of an algorithm produces
a unique result. For example, given the values

a = 1, b = 5, c = 3,

at line 2 of the example algorithm, x will be set to 5 regardless of what person or
machine executes the algorithm.

An algorithm stops after finitely many steps answering the given question.
For example, the example algorithm stops after three steps and produces the
largest of the three given values.

An algorithm receives input and produces output. The example algorithm
receives, as input, the values a, b, and c and produces, as output, the value x .

An algorithm must be general. The example algorithm can find the largest
value of any three numbers.

122 Chapter 3 / Algorithms

Our description of what an algorithm is will suffice for our needs in this book.
However, it should be noted that it is possible to give a precise, mathematical
definition of “algorithm” (see the Notes for Chapter 10).

In Section 3.2 we introduce a more formal way to specify algorithms and we
give several additional examples of algorithms.

Section Review Exercises

1. What is an algorithm?
2. Describe the following properties an algorithm must have:

precision, uniqueness, finiteness, input, output, and gener-
ality.

3. What is a trace of an algorithm?

Exercises

1. Write an algorithm that finds the smallest element among
a, b, and c.

2. Write an algorithm that finds the second-smallest element
among a, b, and c. Assume that the values of a, b, and c
are distinct.

3. Write the standard method of adding two positive decimal
integers, taught in elementary schools, as an algorithm.

4. Consult the telephone book for the instructions for making
a long-distance call. Which properties of an algorithm—
precision, uniqueness, finiteness, input, output, generality—
are present? Which properties are lacking?

3.2 NOTATION FOR ALGORITHMS

Although ordinary language is sometimes adequate to specify an algorithm, many
mathematicians and computer scientists prefer pseudocode because of its preci-
sion, structure, and universality. Pseudocode is so named because it resembles
the actual code (programs) of languages such as Pascal and C++. There are many
versions of pseudocode. Unlike actual computer languages, which fuss over semi-
colons, uppercase and lowercase letters, special words, and so on, any version
of pseudocode is acceptable as long as its instructions are unambiguous and it
resembles in form, if not in exact syntax, the pseudocode described in this section.

As our first example of pseudocode, we rewrite the algorithm of Section 3.1,
which finds the maximum of three numbers.

ALGORITHM 3.2.1 FINDING THE MAXIMUM OF THREE NUMBERS
This algorithm finds the largest of the numbers a, b, and c.

Input: Three numbers a, b, and c
Output: x, the largest of a, b, and c

1. proceduremax(a, b, c)
2. x := a
3. if b > x then // if b is larger than x, update x
4. x := b
5. if c > x then // if c is larger than x, update x
6. x := c
7. return(x)
8. endmax

Our algorithms consist of a title, a brief description of the algorithm, the input
to and output of the algorithm, and the procedures containing the instructions
of the algorithm. Algorithm 3.2.1 consists of a single procedure. To make it

3.2 / Notation for Algorithms 123

convenient to refer to individual lines within a procedure, we will sometimes
number some of the lines. The procedure in Algorithm 3.2.1 has eight numbered
lines. The first line of a procedure will consist of the word procedure, then the
name of the procedure, and then, in parentheses, the parameters supplied to the
procedure. The parameters describe the data, variables, arrays, and so on, that
are available to the procedure. In Algorithm 3.2.1, the parameters supplied to
the procedure are the three numbers a, b, and c. The last line of a procedure
consists of the word end followed by the name of the procedure. Between the
procedure and end lines are the executable lines of the procedure. Lines 2–7 are
the executable lines of the procedure in Algorithm 3.2.1.

When the procedure in Algorithm 3.2.1 executes, at line 2 we set x to a. At
line 3, b and x are compared. If b is greater than x, we execute line 4

x := b
but if b is not greater than x, we skip to line 5. At line 5, c and x are compared.
If c is greater than x, we execute line 6

x := c
but if c is not greater than x, we skip to line 7. Thus when we arrive at line 7, x
will correctly hold the largest of a, b, and c.

At line 7 we return the value of x, which is equal to the largest of the
numbers a, b, and c, to the invoker of the procedure and terminate the procedure.
Algorithm 3.2.1 has correctly found the largest of three numbers.

In general, in the if–then structure

if p then
action

if condition p is true, action is executed and control passes to the statement fol-
lowing action. If condition p is false, control immediately passes to the statement
following action.

An alternative form is the if–then–else structure. In the if–then–else struc-
ture

if p then
action 1

else
action 2

if condition p is true, action 1 (but not action 2) is executed and control passes to
the statement following action 2. If condition p is false, action 2 (but not action
1) is executed and control passes to the statement following action 2.

As shown, we use indentation to identify the statements that make up action.
In addition, if action consists of multiple statements, we delimit those statements
with the words begin and end. An example of a multiple-statement action in an
if statement is

if x ≥ 0 then
begin
x := x − 1
a := b + c
end

Two slash marks // signal the beginning of a comment, which then extends
to the end of the line. An example of a comment in Algorithm 3.2.1 is

// if b is larger than x, update x

Comments help the reader understand the algorithm but are not executed.

124 Chapter 3 / Algorithms

The return(x) statement terminates a procedure and returns the value of x
to the invoker of the procedure. The statement return [without the (x)] simply
terminates a procedure. If there is no return statement, the procedure terminates
just before the end line.

A procedure that contains a return(x) statement is a function. The domain
consists of all valid values for the parameters, and the range is the set of all values
that may be returned by the procedure.

When using pseudocode, we will use the usual arithmetic operators +,−, ∗
(for multiplication), and / as well as the relational operators =, �=, <,>,≤, and
≥ and the logical operators and, or, and not. We will use = to denote the equal-
ity operator and := to denote the assignment operator. We will sometimes use
less formal statements (example: Choose an element x in S .) when to do other-
wise would obscure the meaning. In general, solutions to exercises that request
algorithms should be written in the form illustrated by Algorithm 3.2.1.

The lines of a procedure, which are executed sequentially, are typically as-
signment statements, conditional statements (if statements), loops, return state-
ments, and combinations of these statements. One useful loop structure is the
while loop

while p do
action

in which action is repeatedly executed as long as p is true. We call action the body
of the loop. As in the if statement, if action consists of multiple statements, we
delimit those statements with the words begin and end. We illustrate the while
loop in Algorithm 3.2.2 that finds the largest value in a sequence. As in Algorithm
3.2.1, we step through the numbers one by one and update the variable that holds
the largest. We use a while loop to step through the numbers.

ALGORITHM 3.2.2 FINDING THE LARGEST ELEMENT IN A FINITE SEQUENCE
This algorithm finds the largest number in the sequence s1, s2, . . . , sn.This version
uses a while loop.

Input: The sequence s1, s2, . . . , sn and the length n of the sequence

Output: large, the largest element in this sequence

1. procedure find large(s, n)
2. large := s1
3. i := 2
4. while i ≤ n do
5. begin
6. if si > large then // a larger value was found
7. large := si
8. i := i + 1
9. end

10. return(large)
11. end find large

We trace Algorithm 3.2.2 when n = 4 and s is the sequence

s1 = −2, s2 = 6, s3 = 5, s4 = 6.

At line 2 we set large to s1; in this case we set large to −2. Next, at line 3, i is set
to 2. At line 4 we test whether i ≤ n; in this case we test whether 2 ≤ 4. Since
this condition is true, we execute the body of the while loop (lines 5–9). At line
6 we test whether si > large; in this case we test whether s2 > large (6 > −2).
Since the condition is true, we execute line 7; large is set to 6. At line 8, i is set to
3. We then return to line 4.

3.2 / Notation for Algorithms 125

We again test whether i ≤ n; in this case we test whether 3 ≤ 4. Since this
condition is true, we execute the body of the while loop. At line 6 we test whether
si > large; in this case we test whether s3 > large (5 > 6). Since the condition is
false, we skip line 7. At line 8, i is set to 4. We then return to line 4.

We again test whether i ≤ n; in this case we test whether 4 ≤ 4. Since this
condition is true, we execute the body of the while loop. At line 6 we test whether
si > large; in this case we test whether s4 > large (6 > 6). Since the condition is
false, we skip line 7. At line 8, i is set to 5. We then return to line 4.

We again test whether i ≤ n; in this case we test whether 5 ≤ 4. Since
the condition is false, we terminate the while loop and arrive at line 10, where we
return large (6).We have found the largest element in the sequence.

In Algorithm 3.2.2 we stepped through a sequence by using the variable i
that took on the integer values 1 through n. This kind of loop is so common that a
special loop, called the for loop, is often used instead of the while loop. The form
of the for loop is

for var := init to limit do
action

As in the previous if statement and while loop, if action consists of multiple state-
ments, we delimit the statements with the words begin and end. When the for loop
is executed, action is executed for values of var from init to limit. More precisely,
init and limit are expressions that have integer values. The variable var is first set
to the value init. If var ≤ limit, we execute action and then add 1 to var. The
process is then repeated. Repetition continues until var> limit. Notice that if init
> limit, action will not be executed at all.

Algorithm 3.2.2 may be rewritten in the following way using a for loop.

ALGORITHM 3.2.3 FINDING THE LARGEST ELEMENT IN A FINITE SEQUENCE
This algorithm finds the largest number in the sequence s1, s2, . . . , sn.This version
uses a for loop.

Input: The sequence s1, s2, . . . , sn and the length n of the sequence
Output: large, the largest element in this sequence

1. procedure find large(s, n)
2. large := s1
3. for i := 2 to n do
4. if si > large then // a larger value was found
5. large := si
6. return(large)
7. end find large

When we develop an algorithm, it is often a good idea to break the original
problem into two or more subproblems. A procedure can be developed to solve
each subproblem, after which these procedures can be combined to provide a
solution to the original problem. Our final algorithms illustrate these ideas.

Suppose that we want an algorithm to find the least prime number that
exceeds a given positive integer. More precisely, the problem is: Given a positive
integer n, find the least primep satisfyingp > n. We might break this problem up
into two subproblems. We could first develop an algorithm to determine whether
a positive integer is prime. We could then use this algorithm to find the least prime
greater than a given positive integer.

Algorithm 3.2.4 tests whether a positive integer m is prime. We simply test
whether any integer between 2 andm−1 dividesm. If we find an integer between
2 andm− 1 that dividesm,m is not prime. If we fail to find an integer between 2
andm− 1 that divides m,m is prime. (Exercise 34 shows that it suffices to check
integers between 2 and

√
m as possible divisors.) Algorithm 3.2.4 shows that we

allow procedures to return true or false.

126 Chapter 3 / Algorithms

ALGORITHM 3.2.4 TESTING WHETHER A POSITIVE INTEGER IS PRIME
This algorithm tests whether the positive integer m is prime. The output is true if
m is prime and false if m is not prime.

Input: m, a positive integer

Output: true, if m is prime; false, if m is not prime

procedure is prime(m)
for i := 2 to m− 1 do
if m mod i = 0 then // i divides m
return(false)

return(true)
end is prime

Algorithm 3.2.5, which finds the least prime exceeding the positive integer n,
uses Algorithm 3.2.4. To invoke a procedure that returns a value as in Algorithm
3.2.4, we name it. To invoke a procedure named, say, proc, that does not return a
value, we write

call proc(p1, p2, . . . , pk),

where p1, p2, . . . , pk are the arguments passed to proc.

ALGORITHM 3.2.5 FINDING A PRIME LARGER THAN A GIVEN INTEGER
This algorithm finds the smallest prime that exceeds the positive integer n.

Input: n, a positive integer

Output: m, the smallest prime greater than n

procedure large prime(n)
m := n+ 1
while not is prime(m) do
m := m+ 1
return(m)
end large prime

Since the number of primes is infinite (see Exercise 35), the procedure in
Algorithm 3.2.5 will eventually terminate.

Section Review Exercises

1. What is pseudocode?

2. What is a procedure?

3. What is an if–then structure and how does it operate?

4. What is an if–then–else structure and how does it operate?

5. What is a comment?

6. What is a return statement and how does it operate?

7. What is a while loop and how does it operate?

8. What is a for loop and how does it operate?

9. What is a call statement and how does it operate?

3.2 / Notation for Algorithms 127

Exercises

Write all algorithms in the style of Algorithms 3.2.1–3.2.5.

1. Show how Algorithm 3.2.1 finds the largest of the numbers
a = 4, b = −3, and c = 5.

2. Show how Algorithm 3.2.1 finds the largest of the numbers
a = b = 4 and c = 2.

3. Show how Algorithm 3.2.1 finds the largest of the numbers
a = b = c = 8.

4. Show how Algorithm 3.2.2 finds the largest element in the
sequence

s1 = 2, s2 = 3, s3 = 8, s4 = 6.

5. Show how Algorithm 3.2.2 finds the largest element in the
sequence

s1 = 8, s2 = 8, s3 = 4, s4 = 1.

6. Show how Algorithm 3.2.2 finds the largest element in the
sequence

s1 = 1, s2 = 1, s3 = 1, s4 = 1.

7. Show how Algorithm 3.2.4 tests whether 3 is prime.

8. Show how Algorithm 3.2.4 tests whether 4 is prime.

9. Show how Algorithm 3.2.4 tests whether 9 is prime.

10. Show how Algorithm 3.2.5 finds a prime that exceeds 1.

11. Show how Algorithm 3.2.5 finds a prime that exceeds 10.

12. Show how Algorithm 3.2.5 finds a prime that exceeds 1000.

13. Write an algorithm that outputs the smallest element in
the sequence s1, . . . , sn .

14. Write an algorithm that outputs the largest and second-
largest elements in the sequence s1, . . . , sn .

15. Write an algorithm that outputs the smallest and second-
smallest elements in the sequence s1, . . . , sn .

16. Write an algorithm that outputs the largest and smallest
elements in the sequence s1, . . . , sn .

17. Write an algorithm that outputs the index of the first oc-
currence of the largest element in the sequence s1, . . . , sn .
Example: If the sequence were

6.2 8.9 4.2 8.9,

the algorithm would output the value 2.

18. Write an algorithm that outputs the index of the last oc-
currence of the largest element in the sequence s1, . . . , sn .
Example: If the sequence were

6.2 8.9 4.2 8.9,

the algorithm would output the value 4.

19. Write an algorithm that outputs the index of the first
occurrence of the value key in the sequence s1, . . . , sn .
If key is not in the sequence, the algorithm outputs the
value 0. Example: If the sequence were

‘MARY’ ‘JOE’ ‘MARK’ ‘RUDY’,

and key were ‘MARK’, the algorithm would output the
value 3.

20. Write an algorithm that outputs the index of the last oc-
currence of the value key in the sequence s1, . . . , sn . If
key is not in the sequence, the algorithm outputs the
value 0.

21. Write an algorithm that outputs the index of the first item
that is less than its predecessor in the sequence s1, . . . , sn .
If the items are in increasing order, the algorithm outputs
the value 0. Example: If the sequence were

‘AMY’ ‘BRUNO’ ‘ELIE’ ‘DAN’ ‘ZEKE’,

the algorithm would output the value 4.

22. Write an algorithm that outputs the index of the first
item that is greater than its predecessor in the sequence
s1, . . . , sn . If the items are in decreasing order, the algo-
rithm outputs the value 0.

23. Write an algorithm that reverses the sequence s1, . . . , sn .
Example: If the sequence were

‘AMY’ ‘BRUNO’ ‘ELIE’,

the reversed sequence would be

‘ELIE’ ‘BRUNO’ ‘AMY’.

24. Write the standard method of multiplying two positive
decimal integers, taught in elementary schools, as an al-
gorithm.

25. Write an algorithm that receives as input the matrix of a
relation R and tests whether R is reflexive.

26. Write an algorithm that receives as input the matrix of a
relation R and tests whether R is antisymmetric.

27. Write an algorithm that receives as input the matrix of a
relation R and tests whether R is a function.

28. Write an algorithm that receives as input the matrix of a
relationR and produces as output the matrix of the inverse
relation R−1.

29. Write an algorithm that receives as input the matrices of
relations R1 and R2 and produces as output the matrix of
the composition R2 ◦ R1.

30. Write an algorithm that sums the sequence of numbers
s1, s2, . . . , sn .

31. Write an algorithm whose input is a sequence of numbers
s1, s2, . . . , sn , sorted in increasing order, and another num-
ber x . The algorithm inserts x into the sequence so that
the resulting sequence is sorted. Example: If the input
sequence is

2, 6, 12, 14

128 Chapter 3 / Algorithms

and x = 5, the resulting sequence is

2, 5, 6, 12, 14.

32. Write an algorithm whose input is a sequence s1, s2, . . . , sn
of numbers and another number x . The algorithm returns
true if si + sj = x , for some i �= j , and false otherwise.
Example: If the input sequence is

2, 12, 6, 14

and x = 26, the algorithm returns true because 12 + 14 =
26. If the input sequence is

2, 12, 6, 14

and x = 4, the algorithm returns false because no distinct
pair in the sequence sums to 4.

33. Write an algorithm that receives a bit string b1 . . . bn (bi
is the ith bit). The algorithm rearranges the bit string so
that all of the zeros precede all of the ones. Example: If
the input is 01011, the rearranged bit string is 00111.

34. Show that the positive integer m ≥ 2 is prime if and only
if no integer between 2 and

√
m divides m.

35. Show that the number of primes is infinite by completing
the following argument.

It suffices to show that if p is prime, there is a prime
larger than p. Let p1 < p2 < · · · < pk = p denote the
primes less than or equal top, and let n = p1p2 · · ·pk+1.
Show that any prime that divides n is larger than p.

3.3 THE EUCLIDEAN ALGORITHM

An old and famous algorithm is the Euclidean algorithm for finding the greatest
common divisor of two integers. The greatest common divisor of two integers m
and n (not both zero) is the largest positive integer that divides bothm and n. For
example, the greatest common divisor of 4 and 6 is 2, and the greatest common
divisor of 3 and 8 is 1. We use the notion of greatest common divisor when we
check to see if a fraction m/n, where m and n are integers, is in lowest terms. If
the greatest common divisor of m and n is 1, m/n is in lowest terms; otherwise,
we can reduce m/n. For example, 4/6 is not in lowest terms because the greatest
common divisor of 4 and 6 is 2, not 1. (We can divide both 4 and 6 by 2.) The
fraction 3/8 is in lowest terms because the greatest common divisor of 3 and 8 is
1. After discussing the divisibility of integers, we examine the greatest common
divisor in detail and present the Euclidean algorithm.

If a, b, and q are integers, b �= 0, satisfying a = bq, we say that b divides
a and we write b | a. In this case, we call q the quotient and call b a divisor of a.
If b does not divide a, we write b |� a.

EXAMPLE 3.3.1 Since 21 = 3 · 7, 3 divides 21 and we write 3 | 21. The quotient is 7.

Let m and n be integers that are not both zero. Among all the integers that
divide both m and n, there is a largest divisor known as the greatest common
divisor of m and n.

DEFINITION 3.3.2 Letm and n be integers with not bothm and n zero. A common divisor ofm and
n is an integer that divides both m and n. The greatest common divisor, written

gcd(m, n),

is the largest common divisor of m and n. �

EXAMPLE 3.3.3 The positive divisors of 30 are

1, 2, 3, 5, 6, 10, 15, 30

and the positive divisors of 105 are

1, 3, 5, 7, 15, 21, 35, 105;
thus the positive common divisors of 30 and 105 are

1, 3, 5, 15.

It follows that the greatest common divisor of 30 and 105, gcd(30, 105), is 15.

3.3 / The Euclidean Algorithm 129

The properties of divisors given in the following theorem will be useful in
our subsequent work in this section.

THEOREM 3.3.4 Let m, n, and c be integers.

(a) If c is a common divisor of m and n, then

c | (m+ n).
(b) If c is a common divisor of m and n, then

c | (m− n).
(c) If c | m, then c | mn.

Proof. (a) Let c be a common divisor of m and n. Since c | m,
m = cq1 (3.3.1)

for some integer q1. Similarly, since c | n,
n = cq2 (3.3.2)

for some integer q2. If we add equations (3.3.1) and (3.3.2), we obtain

m+ n = cq1 + cq2 = c(q1 + q2).

Therefore, c divides m+ n (with quotient q1 + q2). We have proved part (a).
The proofs of parts (b) and (c) are left to the reader (see Exercises 11

and 12).

Recall that if a is a nonnegative integer and b is a positive integer, a mod b
is the remainder when a is divided by b. For example, 105 mod 30 = 15. The
Euclidean algorithm is based on the fact that if r = a mod b, then

gcd(a, b) = gcd(b, r). (3.3.3)

Before proving (3.3.3), we illustrate how the Euclidean algorithm uses it to find
the greatest common divisor.

EXAMPLE 3.3.5 Since 105 mod 30 = 15, by (3.3.3)

gcd(105, 30) = gcd(30, 15).

Since 30 mod 15 = 0, by (3.3.3)

gcd(30, 15) = gcd(15, 0).

By inspection, gcd(15, 0) = 15. Therefore,

gcd(105, 30) = gcd(30, 15) = gcd(15, 0) = 15.

In Example 3.3.3, we obtained the greatest common divisor of 105 and 30 by
listing all of the divisors of 105 and 30. By our using (3.3.3), two simple modulus
operations produce the greatest common divisor. We next prove (3.3.3).

THEOREM 3.3.6 If a is a nonnegative integer, b is a positive integer, and r = a mod b, then

gcd(a, b) = gcd(b, r).

130 Chapter 3 / Algorithms

Proof. If we divide a by b, we obtain a quotient q and modulus (remainder) r
satisfying

a = bq + r, 0 ≤ r < b.
We show that the set of common divisors of a and b is equal to the set of common
divisors of b and r , thus proving the theorem.

Let c be a common divisor of a and b. By Theorem 3.3.4(c), c | bq . Since
c | a and c | bq , by Theorem 3.3.4(b), c | a − bq (= r). Thus c is a common
divisor of b and r . Conversely, if c is a common divisor of b and r , then c | bq and
c | bq + r (= a) and c is a common divisor of a and b. Thus the set of common
divisors of a and b is equal to the set of common divisors of b and r . Therefore,

gcd(a, b) = gcd(b, r).

We next formally state the Euclidean algorithm as Algorithm 3.3.7.

ALGORITHM 3.3.7 EUCLIDEAN ALGORITHM
This algorithm finds the greatest common divisor of the nonnegative integers a
and b, where not both a and b are zero.

Input: a and b (nonnegative integers, not both zero)

Output: Greatest common divisor of a and b

1. procedure gcd(a, b)
2. // make a largest
3. if a < b then
4. swap(a, b)

// that is, execute
// temp := a
// a := b
// b := temp

5. while b �= 0 do
6. begin
7. r := a mod b
8. a := b
9. b := r

10. end
11. return(a)
12. end gcd

EXAMPLE 3.3.8 We show how Algorithm 3.3.7 finds gcd(504,396).
Let a = 504 and b = 396. Since a > b, we move to line 5. Since b �= 0, we

proceed to line 7, where we set r to

a mod b = 504 mod 396 = 108.

We then move to lines 8 and 9, where we set a to 396 and b to 108. We then return
to line 5.

Since b �= 0, we proceed to line 7, where we set r to

a mod b = 396 mod 108 = 72.

We then move to lines 8 and 9, where we set a to 108 and b to 72. We then return
to line 5.

Since b �= 0, we proceed to line 7, where we set r to

a mod b = 108 mod 72 = 36.

We then move to lines 8 and 9, where we set a to 72 and b to 36. We then return
to line 5.

3.3 / The Euclidean Algorithm 131

Since b �= 0, we proceed to line 7, where we set r to

a mod b = 72 mod 36 = 0.

We then move to lines 8 and 9, where we set a to 36 and b to 0. We then return
to line 5.

This time b = 0, so we skip to line 11, where we return a (36), the greatest
common divisor of 396 and 504.

We note that the while loop in the Euclidean algorithm (lines 5–10) always
terminates since at the bottom of the loop (lines 8 and 9), the values of a and
b are updated to smaller values. Since nonnegative integers cannot decrease
indefinitely, eventually b becomes zero and the loop terminates. By Theorem
3.3.6, the value returned at line 11 is gcd(a, b).

Section Review Exercises

1. Define b divides a.

2. Define b is a divisor of a.

3. Define quotient.

4. What is a common divisor?

5. What is the greatest common divisor?

6. State the Euclidean algorithm.

7. What key fact is the basis for the Euclidean algorithm?

Exercises

Use the Euclidean algorithm to find the greatest common di-
visor of each pair of integers in Exercises 1–10.

1. 60, 90

2. 110, 273

3. 220, 1400

4. 315, 825

5. 20, 40

6. 331, 993

7. 2091, 4807

8. 2475, 32670

9. 67942, 4209

10. 490256, 337

11. Let m, n, and c be integers. Show that if c is a common
divisor of m and n, then c | (m− n).

12. Letm, n, and c be integers. Show that if c |m, then c |mn.

13. Suppose that a, b, and c are positive integers. Show that
if a | b and b | c, then a | c.

14. Find two numbers a and b, each less than 100, that max-
imize the number of iterations of the while loop of Algo-
rithm 3.3.7.

15. Show that Algorithm 3.3.7 correctly finds gcd(a, b) even
if lines 3 and 4 are deleted.

16. If a and b are positive integers, show that gcd(a, b) =
gcd(a, a + b).

� 17. Given a > b ≥ 0, let r0 = a, r1 = b, and ri equal the
value of r after the (i−1)st time the while loop is executed
in Algorithm 3.3.7 (e.g., r2 = a mod b). Suppose that rn

is the first r -value that is zero so that gcd(a, b) = rn−1.
Show that we may successively write

gcd(a, b) = sn−3rn−2 + tn−3rn−3

gcd(a, b) = sn−4rn−3 + tn−4rn−4

...

gcd(a, b) = s0r1 + t0r0
for some integers si and ti .

� 18. Use the method of Exercise 17 to write the greatest com-
mon divisor of each pair of integers a and b in Exercises
1–10 in the form ta + sb.

� 19. Show that if p is a prime number, a and b are positive
integers, and p | ab, then p | a or p | b.

20. Give an example of positive integers p, a, and b where
p | ab, p � | a, and p � | b.

21. Show that if a > b ≥ 0, then

gcd(a, b) = gcd(a − b, b).
22. Using Exercise 21, write an algorithm to compute the

greatest common divisor of two nonnegative integers a
and b, not both zero, that uses subtraction but not the
modulus operation.

� 23. Show that for some n, postage of n cents or more can be
achieved by using only p-cent and q-cent stamps provided
that gcd(p, q) = 1. Hint: Use Exercise 17 and the method
of Example 1.6.7.

24. Show that if gcd(p, q) > 1, the statement in Exercise 23
is false.

132 Chapter 3 / Algorithms

3.4 RECURSIVE ALGORITHMS

A recursive procedure is a procedure that invokes itself. A recursive algorithm is
an algorithm that contains a recursive procedure. Recursion is a powerful, elegant,
and natural way to solve a large class of problems. A problem in this class can be
solved using a divide-and-conquer technique in which the problem is decomposed
into problems of the same type as the original problem. Each subproblem, in turn,
is decomposed further until the process yields subproblems that can be solved in a
straightforward way. Finally, solutions to the subproblems are combined to obtain
a solution to the original problem.

EXAMPLE 3.4.1 Recall that if n ≥ 1, n! = n(n − 1) · · · 2 · 1, and 0! = 1. Notice that if n ≥ 2, n
factorial can be written “in terms of itself” since, if we “peel off” n, the remaining
product is simply (n− 1)!; that is,

n! = n(n− 1)(n− 2) · · · 2 · 1 = n · (n− 1)!.

For example,
5! = 5 · 4 · 3 · 2 · 1 = 5 · 4!.

The equation
n! = n · (n− 1)!,

which happens to be true even when n = 1, shows how to decompose the original
problem (compute n!) into increasingly simpler subproblems [compute (n− 1)!,
compute (n − 2)!, . . .] until the process reaches the straightforward problem of
computing 0!. The solutions to these subproblems can then be combined, by
multiplying, to solve the original problem.

For example, the problem of computing 5! is reduced to computing 4!; the
problem of computing 4! is reduced to computing 3!; and so on. Table 3.4.1
summarizes this process.

Table 3.4.1
Decomposing the factorial problem

Problem Simplified Problem

5! 5 · 4!
4! 4 · 3!
3! 3 · 2!
2! 2 · 1!
1! 1 · 0!
0! None

Once the problem of computing 5! has been reduced to solving subproblems,
the solution to the simplest subproblem can be used to solve the next simplest
subproblem, and so on, until the original problem has been solved. Table 3.4.2
shows how the subproblems are combined to compute 5!.

Table 3.4.2
Combining subproblems of the factorial problem

Problem Solution

0! 1
1! 1 · 0! = 1
2! 2 · 1! = 2
3! 3 · 2! = 3 · 2 = 6
4! 4 · 3! = 4 · 6 = 24
5! 5 · 4! = 5 · 24 = 120

3.4 / Recursive Algorithms 133

Next, we write a recursive algorithm that computes factorials. The algorithm
is a direct translation of the equation

n! = n · (n− 1)!.

ALGORITHM 3.4.2 COMPUTING n FACTORIAL
This recursive algorithm computes n!.

Input: n, an integer greater than or equal to 0

Output: n!

1. procedure factorial(n)
2. if n = 0 then
3. return(1)
4. return(n ∗ factorial(n− 1))
5. end factorial

We show how Algorithm 3.4.2 computes n! for several values of n. If n = 0,
at line 3 the procedure correctly returns the value 1.

If n = 1, we proceed to line 4 since n �= 0. We use this procedure to compute
0!. We have just observed that the procedure computes 1 as the value of 0!. At
line 4, the procedure correctly computes the value of 1!:

(n− 1)! · n = 0! · 1 = 1 · 1 = 1.

If n = 2, we proceed to line 4 since n �= 0. We use this procedure to compute
1!. We have just observed that the procedure computes 1 as the value of 1!. At
line 4, the procedure correctly computes the value of 2!:

(n− 1)! · n = 1! · 2 = 1 · 2 = 2.

If n = 3 we proceed to line 4 since n �= 0. We use this procedure to compute
2!. We have just observed that the procedure computes 2 as the value of 2!. At
line 4, the procedure correctly computes the value of 3!:

(n− 1)! · n = 2! · 3 = 2 · 3 = 6.

The preceding arguments may be generalized using mathematical induction
to prove that Algorithm 3.4.2 correctly outputs the value of n! for any nonnegative
integer n.

THEOREM 3.4.3 Algorithm 3.4.2 outputs the value of n!, n ≥ 0.

Proof.

Basis Step (n = 0). We have already observed that if n = 0, Algo-
rithm 3.4.2 correctly outputs the value of 0! (1).

Inductive Step. Assume that Algorithm 3.4.2 correctly outputs the value
of (n− 1)!, n > 0. Now suppose that n is input to Algorithm 3.4.2. Since n �= 0,
when we execute the procedure in Algorithm 3.4.2 we proceed to line 4. By the
inductive assumption, the procedure correctly computes the value of (n− 1)!. At
line 4, the procedure correctly computes the value (n− 1)! · n = n!.

Therefore, Algorithm 3.4.2 correctly outputs the value of n! for every integer
n ≥ 0.

There must be some situations in which a recursive procedure does not in-
voke itself; otherwise, it would invoke itself forever. In Algorithm 3.4.2, if n = 0,
the procedure does not invoke itself. We call the values for which a recursive
procedure does not invoke itself the base cases. To summarize, every recursive
procedure must have base cases.

134 Chapter 3 / Algorithms

We have shown how mathematical induction may be used to prove that a
recursive algorithm computes the value it claims to compute. The link between
mathematical induction and recursive algorithms runs deep. Often a proof by
mathematical induction can be considered to be an algorithm to compute a value
or to carry out a particular construction. The Basis Step of a proof by mathematical
induction corresponds to the base cases of a recursive procedure, and the Inductive
Step of a proof by mathematical induction corresponds to the part of a recursive
procedure where the procedure calls itself.

In Example 1.6.6, we gave a proof using mathematical induction that given
a deficient n×n board (a board with one square removed), where n is a power of
2, we can tile the board with right trominoes (three squares that form an “el”; see
Figure 1.6.3). We now translate the inductive proof into a recursive algorithm to
construct a tiling by right trominoes of a deficient n×n board where n is a power
of 2.

ALGORITHM 3.4.4 TILING A DEFICIENT BOARD WITH TROMINOES
This algorithm constructs a tiling by right trominoes of a deficient n × n board
where n is a power of 2.

Input: n, a power of 2 (the board size); and the locationL of the missing square

Output: A tiling of a deficient n× n board

procedure tile(n, L)
1. if n = 2 then
2. begin

// the board is a right tromino T
3. tile with T
4. return
5. end
6. divide the board into four (n/2)× (n/2) boards
7. rotate the board so that the missing square is in the upper-left quadrant
8. place one right tromino in the center // as in Figure 1.6.5

// consider each of the squares covered by the center tromino as
// missing and denote the missing squares as m1,m2,m3,m4

9. call tile(n/2,m1)

10. call tile(n/2,m2)

11. call tile(n/2,m3)

12. call tile(n/2,m4)

end tile
We next give a recursive algorithm to compute the greatest common divisor

of two nonnegative integers, not both zero.
Theorem 3.3.6 states that if a is a nonnegative integer, b is a positive integer,

and r = a mod b, then
gcd(a, b) = gcd(b, r). (3.4.1)

[gcd(x, y) denotes the greatest common divisor of x and y .] Equation (3.4.1) is
inherently recursive; it reduces the problem of computing the greatest common
divisor of a and b to a smaller problem—that of computing the greatest com-
mon divisor of b and r . Recursive Algorithm 3.4.5, which computes the greatest
common divisor, is based on equation (3.4.1).

ALGORITHM 3.4.5 RECURSIVELY COMPUTING THE GREATEST COMMON
DIVISOR
This algorithm recursively finds the greatest common divisor of the nonnegative
integers a and b, where not both a and b are zero. (Algorithm 3.3.7 gives a
nonrecursive algorithm for computing the greatest common divisor.)

3.4 / Recursive Algorithms 135

Input: a and b (nonnegative integers, not both zero)

Output: Greatest common divisor of a and b

procedure gcd recurs(a, b)
// make a largest

1. if a < b then
2. swap(a, b)
3. if b = 0 then
4. return(a)
5. r := a mod b
6. return(gcd recurs(b, r))

end gcd recurs

We present one final example of a recursive algorithm.

EXAMPLE 3.4.6 A robot can take steps of 1 meter or 2 meters. We write an algorithm to calculate
the number of ways the robot can walk n meters. As examples:

Distance Sequence of Steps Number of Ways to Walk

1 1 1

2 1, 1 or 2 2

3 1, 1, 1 or 1, 2 or 2, 1 3

4 1, 1, 1, 1 or 1, 1, 2 5

or 1, 2, 1 or 2, 1, 1 or 2, 2

Let walk(n) denote the number of ways the robot can walk n meters. We
have observed that

walk(1) = 1, walk(2) = 2.

Now suppose that n > 2. The robot can begin by taking a step of 1 meter or a
step of 2 meters. If the robot begins by taking a 1-meter step, a distance of n− 1
meters remains; but, by definition, the remainder of the walk can be completed
in walk(n − 1) ways. Similarly, if the robot begins by taking a 2-meter step, a
distance of n− 2 meters remains and, in this case, the remainder of the walk can
be completed in walk(n−2)ways. Since the walk must begin with either a 1-meter
or a 2-meter step, all of the ways to walk n meters are accounted for. We obtain
the formula

walk(n) = walk(n− 1)+ walk(n− 2).

For example,
walk(4) = walk(3)+ walk(2) = 3 + 2 = 5.

We can write a recursive algorithm to compute walk(n) by translating the
equation

walk(n) = walk(n− 1)+ walk(n− 2)

directly into an algorithm. The base cases are n = 1 and n = 2.

ALGORITHM 3.4.7 ROBOT WALKING
This algorithm computes the function defined by

walk(n) =
{

1, n = 1
2, n = 2
walk(n− 1)+ walk(n− 2), n > 2

136 Chapter 3 / Algorithms

Input: n

Output: walk(n)

procedure robot walk(n)
if n = 1 or n = 2 then
return(n)
return(robot walk(n− 1)+ robot walk(n− 2))
end robot walk

The sequence

walk(1), walk(2), walk(3), . . . ,

whose values begin

1, 2, 3, 5, 8, 13, . . . ,

is called the Fibonacci sequence in honor of Leonardo Fibonacci (ca. 1170–1250),
an Italian merchant and mathematician. Subsequently, we denote the Fibonacci
sequence as

f1, f2,

This sequence is defined by the equations

f1 = 1

f2 = 2

fn = fn−1 + fn−2, n ≥ 3.

The Fibonacci sequence originally arose in a puzzle about rabbits (see Ex-
ercises 20 and 21). After returning from the Orient in 1202, Fibonacci wrote his
most famous work, Liber Abaci, which in addition to containing what we now
call the Fibonacci sequence advocated the use of Hindu-Arabic numerals. This
book was one of the main influences in bringing the decimal number system to
Western Europe. Fibonacci signed much of his work “Leonardo Bigollo.” Bigollo
translates as “traveler” or “blockhead.” There is some evidence that Fibonacci
enjoyed having his contemporaries consider him a blockhead for advocating the
new number system.

FIGURE 3.4.1
A pine cone. There are 13 clock-
wise spirals (marked with white
thread) and 8 counterclockwise spi-
rals (marked with dark thread).
[Photo by the author; pine cone
courtesy of André Berthiaume and
Sigrid (Anne) Settle.] The Fibonacci sequence pops up in unexpected places. For example, the

number of clockwise spirals and the number of counterclockwise spirals in pine
cones are found in the Fibonacci sequence. Figure 3.4.1 shows a pine cone with
13 clockwise spirals and 8 counterclockwise spirals. In Section 3.6, the Fibonacci
sequence appears in the analysis of the Euclidean algorithm.

Section Review Exercises

1. What is a recursive algorithm?

2. What is a recursive procedure?

3. Give an example of a recursive procedure.

4. Explain how the divide-and-conquer technique works.

5. What is a base case in a recursive procedure?

6. Why must every recursive procedure have a base case?

7. How is the Fibonacci sequence defined?

8. Give the first four values of the Fibonacci sequence.

3.4 / Recursive Algorithms 137

Exercises

1. Trace Algorithm 3.4.2 for n = 4.

2. Trace Algorithm 3.4.4 when n = 4 and the missing square
is the upper-left corner square.

3. Trace Algorithm 3.4.4 when n = 8 and the missing square
is four from the left and six from the top.

4. Trace Algorithm 3.4.5 for a = 5 and b = 0.

5. Trace Algorithm 3.4.5 for a = 55 and b = 20.

6. Trace Algorithm 3.4.7 for n = 4.

7. Trace Algorithm 3.4.7 for n = 5.

8. (a) Use the formulas

s1 = 1, sn = sn−1 + n, n ≥ 2,

to write a recursive algorithm that computes

sn = 1 + 2 + 3 + · · · + n.
(b) Give a proof using mathematical induction that your

algorithm for part (a) is correct.

9. (a) Use the formulas

s1 = 2, sn = sn−1 + 2n, n ≥ 2,

to write a recursive algorithm that computes

sn = 2 + 4 + 6 + · · · + 2n.

(b) Give a proof using mathematical induction that your
algorithm for part (a) is correct.

10. (a) A robot can take steps of 1 meter, 2 meters, or 3
meters. Write a recursive algorithm to calculate the
number of ways the robot can walk n meters.

(b) Give a proof using mathematical induction that your
algorithm for part (a) is correct.

11. Write a recursive algorithm that computes the greatest
common divisor of two nonnegative integers, not both
zero, that uses subtractions but no modulus operations (see
Exercise 22, Section 3.3).

12. Write a recursive algorithm to find the minimum of a finite
sequence of numbers. Give a proof using mathematical
induction that your algorithm is correct.

13. Write a recursive algorithm to find the maximum of a finite
sequence of numbers. Give a proof using mathematical
induction that your algorithm is correct.

14. Write a recursive algorithm that reverses a finite sequence.
Give a proof using mathematical induction that your algo-
rithm is correct.

15. Write a recursive algorithm to sort a finite sequence of
numbers. Give a proof using mathematical induction that
your algorithm is correct.

16. Write a recursive algorithm whose input is a bit string and
whose output is a rearranged bit string in which all of the
zeros precede all of the ones. Give a proof using mathe-
matical induction that your algorithm is correct.

17. Write a nonrecursive algorithm to compute n!.

� 18. A robot can take steps of 1 meter or 2 meters. Write an
algorithm to list all of the ways the robot can walknmeters.

� 19. A robot can take steps of 1 meter, 2 meters, or 3 meters.
Write an algorithm to list all of the ways the robot can walk
n meters.

Exercises 20–32 concern the Fibonacci sequence {fn}.
20. Suppose that at the beginning of the year, there is one pair

of rabbits and that every month each pair produces a new
pair that becomes productive after one month. Suppose
further that no deaths occur. Let an denote the number
of pairs of rabbits at the end of the nth month. Show that
a1 = 1, a2 = 2, and an − an−1 = an−2. Explain why
an = fn, n ≥ 1.

21. Fibonacci’s original question was: Under the conditions
of Exercise 20, how many pairs of rabbits are there after
one year? Answer Fibonacci’s question.

22. Use mathematical induction to show that

n∑
k=1

fk = fn+2 − 2, n ≥ 1.

23. Use mathematical induction to show that

f 2
n = fn−1fn+1 + (−1)n, n ≥ 2.

24. Show that

f 2
n+2 − f 2

n+1 = fnfn+3, n ≥ 1.

25. Use mathematical induction to show that

n∑
k=1

f 2
k = fnfn+1 − 1, n ≥ 1.

26. Use mathematical induction to show that fn is even if and
only if n+ 1 is divisible by 3, n ≥ 1.

27. Use mathematical induction to show that for n ≥ 5,

fn >

(
3

2

)n
.

28. Use mathematical induction to show that for n ≥ 1,

fn < 2n.

29. Use mathematical induction to show that for n ≥ 1,

n∑
k=1

f2k−1 = f2n − 1,
n∑
k=1

f2k = f2n+1 − 1.

� 30. Use mathematical induction to show that every integer
n ≥ 1 can be expressed as the sum of distinct Fibonacci
numbers, no two of which are consecutive.

138 Chapter 3 / Algorithms

� 31. Show that the representation in Exercise 30 is unique.

32. Show that for n ≥ 2,

fn =
fn−1 +

√
5f 2
n−1 + 4(−1)n

2
.

Notice that this formula gives fn in terms of one predeces-
sor rather than two predecessors as in the original defini-
tion.

33. [Requires calculus] Assume the formula for differentiating
products:

d(fg)

dx
= f dg

dx
+ g df

dx
.

Use mathematical induction to prove that

dxn

dx
= nxn−1 for n = 1, 2,

34. [Requires calculus] Explain how the formula gives a re-
cursive algorithm for integrating logn |x| :

∫
logn |x| dx = x logn |x| − n

∫
logn−1 |x| dx.

Give other examples of recursive integration formulas.

3.5 COMPLEXITY OF ALGORITHMS

A computer program, even though derived from a correct algorithm, might be
useless for certain types of input because the time needed to run the program or
the storage needed to hold the data, program variables, and so on, is too great.
Analysis of an algorithm refers to the process of deriving estimates for the time
and space needed to execute the algorithm. Complexity of an algorithm refers to
the amount of time and space required to execute the algorithm. In this section
we deal with the problem of estimating the time required to execute algorithms.

Suppose that we are given a set X of n elements, some labeled “red” and
some labeled “black,” and we want to find the number of subsets ofX that contain
at least one red item. Suppose we construct an algorithm that examines all subsets
of X and counts those that contain at least one red item and then implement this
algorithm as a computer program. Since a set that has n elements has 2n subsets
(Theorem 2.1.4), the program would require at least 2n units of time to execute.
It does not matter what the units of time are—2n grows so fast as n increases (see
Table 3.5.1) that, except for small values of n, it would be infeasible to run the
program.

Determining the performance parameters of a computer program is a diffi-
cult task and depends on a number of factors such as the computer that is being
used, the way the data are represented, and how the program is translated into
machine instructions. Although precise estimates of the execution time of a pro-
gram must take such factors into account, useful information can be obtained by
analyzing the time complexity of the underlying algorithm.

The time needed to execute an algorithm is a function of the input. Usually,
it is difficult to obtain an explicit formula for this function and we settle for less.
Instead of dealing directly with the input, we use parameters that characterize
the size of the input. We can ask for the minimum time needed to execute the
algorithm among all inputs of size n. This time is called the best-case time for
inputs of size n. We can also ask for the maximum time needed to execute the
algorithm among all inputs of size n. This time is called the worst-case time for
inputs of size n. Another important case is average-case time—the average time
needed to execute the algorithm over some finite set of inputs all of size n.

We could measure the time required by an algorithm by counting the number
of instructions executed. Alternatively, we could use a cruder time estimate such as
the number of times each loop is executed. If the principal activity of an algorithm
is making comparisons, as might happen in a sorting routine, we might count the
number of comparisons. Usually, we are interested in general estimates since, as
we have already observed, the actual performance of a program implementation
of an algorithm depends on many factors.

3.5 / Complexity of Algorithms 139

Table 3.5.1
Time to execute an algorithm if one step takes 1 microsecond to execute†

Number of Steps Time to Execute if n =
to Termination

for Input of Size n 3 6 9 12

1 10−6 sec 10−6 sec 10−6 sec 10−6 sec

lg lg n 10−6 sec 10−6 sec 2 × 10−6 sec 2 × 10−6 sec

lg n 2 × 10−6 sec 3 × 10−6 sec 3 × 10−6 sec 4 × 10−6 sec

n 3 × 10−6 sec 6 × 10−6 sec 9 × 10−6 sec 10−5 sec

n lg n 5 × 10−6 sec 2 × 10−5 sec 3 × 10−5 sec 4 × 10−5 sec

n2 9 × 10−6 sec 4 × 10−5 sec 8 × 10−5 sec 10−4 sec

n3 3 × 10−5 sec 2 × 10−4 sec 7 × 10−4 sec 2 × 10−3 sec

2n 8 × 10−6 sec 6 × 10−5 sec 5 × 10−4 sec 4 × 10−3sec

50 100 1000 10 5 10 6

1 10−6 sec 10−6 sec 10−6 sec 10−6 sec 10−6sec

lg lg n 2 × 10−6 sec 3 × 10−6 sec 3 × 10−6 sec 4 × 10−6 sec 4 × 10−6 sec

lg n 6 × 10−6 sec 7 × 10−6 sec 10−5 sec 2 × 10−5 sec 2 × 10−5 sec

n 5 × 10−5 sec 10−4 sec 10−3 sec 0.1 sec 1 sec

n lg n 3 × 10−4 sec 7 × 10−4 sec 10−2 sec 2 sec 20 sec

n2 3 × 10−3 sec 0.01 sec 1 sec 3 hr 12 days

n3 0.13 sec 1 sec 16.7 min 32 yr 31,710 yr

2n 36 yr 4 × 1016 yr 3 × 10287 yr 3 × 1030089 yr 3 × 10301016 yr

† lg n denotes log2 n (the logarithm of n to base 2).

EXAMPLE 3.5.1 A reasonable definition of the size of input for Algorithm 3.2.2 that finds the
largest value in a finite sequence is the number of elements in the input sequence.
A reasonable definition of the execution time is the number of iterations of the
while loop. With these definitions, the worst-case, best-case, and average-case
times for Algorithm 3.2.2 for input of size n are each n−1 since the loop is always
executed n− 1 times.

Often we are less interested in the exact best-case or worst-case time required
for an algorithm to execute than we are in how the best-case or worst-case time
grows as the size of the input increases. For example, suppose that the worst-case
time of an algorithm is

t (n) = 60n2 + 5n+ 1 (3.5.1)

for input of size n. For large n, the term 60n2 is approximately equal to t (n) (see
Table 3.5.2). In this sense, t (n) grows like 60n2.

Table 3.5.2
Comparing growth of t (n) with 60n2

n t(n) = 60n2 + 5n + 1 60n2

10 6051 6000

100 600,501 600,000

1000 60,005,001 60,000,000

10,000 6,000,050,001 6,000,000,000

140 Chapter 3 / Algorithms

If (3.5.1) measures the worst-case time for input of size n in seconds, then

T (n) = n2 + 5

60
n+ 1

60

measures the worst-case time for input of size n in minutes. Now this change
of units does not affect how the worst-case time grows as the size of the input
increases but only the units in which we measure the worst-case time for input
of size n. Thus when we describe how the best-case or worst-case time grows as
the size of the input increases, we not only seek the dominant term [e.g., 60n2 in
(3.5.1)], but we also may ignore constant coefficients. Under these assumptions,
t (n) grows like n2 as n increases. We say that t (n) is of order n2 and write

t (n) = (n2),

which is read “t (n) is theta of n2.” The basic idea is to replace an expression such
as t (n) = 60n2 + 5n+ 1 with a simpler expression, such as n2, that grows at the
same rate as t (n). The formal definitions follow.

DEFINITION 3.5.2 Let f and g be functions with domain {1, 2, 3, . . .}.
We write

f (n) = O(g(n))
and say that f (n) is of order at most g(n) if there exists a positive constant C1

such that
|f (n)| ≤ C1|g(n)|

for all but finitely many positive integers n.
We write

f (n) = #(g(n))
and say that f (n) is of order at least g(n) if there exists a positive constant C2

such that
|f (n)| ≥ C2 |g(n)|

for all but finitely many positive integers n.
We write

f (n) = (g(n))
and say that f (n) is of order g(n) if f (n) = O(g(n)) and f (n) = #(g(n)). �

Definition 3.5.2 can be loosely paraphrased as follows. f (n) = O(g(n)) if,
except for constants and a finite number of exceptions, f is bounded above by
g. f (n) = #(g(n)) if, except for constants and a finite number of exceptions,
f is bounded below by g. f (n) = (g(n)) if, except for constants and a finite
number of exceptions, f is bounded above and below by g.

An expression of the form f (n) = O(g(n)) is sometimes referred to as a
big oh notation for f . Similarly, f (n) = #(g(n)) is sometimes referred to as an
omega notation for f , and f (n) = (g(n)) is sometimes referred to as a theta
notation for f .

According to the definition, if f (n) = O(g(n)), all that one can conclude is
that, except for constants and a finite number of exceptions, f is bounded above
by g, so g grows at least as fast as f. For example, if f (n) = n and g(n) = 2n,
then f (n) = O(g(n)), but g grows considerably faster than f . The statement
f (n) = O(g(n)) says nothing about a lower bound for f . On the other hand,
if f (n) = (g(n)), one can draw the conclusion that, except for constants and
a finite number of exceptions, f is bounded above and below by g, so f and g
grow at the same rate. Notice that n = O(2n), but n �= (2n). Unfortunately, it
is not uncommon in the literature to find big oh notation used as if it were theta
notation.

3.5 / Complexity of Algorithms 141

EXAMPLE 3.5.3 Since
60n2 + 5n+ 1 ≤ 60n2 + 5n2 + n2 = 66n2 for n ≥ 1,

we may take C1 = 66 in Definition 3.5.2 to obtain

60n2 + 5n+ 1 = O(n2).

Since
60n2 + 5n+ 1 ≥ 60n2 for n ≥ 1,

we may take C2 = 60 in Definition 3.5.2 to obtain

60n2 + 5n+ 1 = #(n2).

Since 60n2 + 5n+ 1 = O(n2) and 60n2 + 5n+ 1 = #(n2),

60n2 + 5n+ 1 = (n2).

The method of Example 3.5.3 can be used to show that a polynomial in n
of degree k with nonnegative coefficients is (nk). [In fact, any polynomial in n
of degree k is (nk), even if some of its coefficients are negative. To prove this
more general result, the method of Example 3.5.3 has to be modified.]

THEOREM 3.5.4 Let
akn

k + ak−1n
k−1 + · · · + a1n+ a0

be a polynomial in n of degree k, where each ai is nonnegative. Then

akn
k + ak−1n

k−1 + · · · + a1n+ a0 = (nk).
Proof. Let

C = ak + ak−1 + · · · + a1 + a0.

Then
akn

k + ak−1n
k−1 + · · · + a1n+ a0

≤ aknk + ak−1n
k + · · · + a1n

k + a0n
k

= (ak + ak−1 + · · · + a1 + a0)n
k = Cnk.

Therefore,
akn

k + ak−1n
k−1 + · · · + a1n+ a0 = O(nk).

Since
akn

k + ak−1n
k−1 + · · · + a1n+ a0 ≥ aknk,

akn
k + ak−1n

k−1 + · · · + a1n+ a0 = #(nk).
Thus

akn
k + ak−1n

k−1 + · · · + a1n+ a0 = (nk).
EXAMPLE 3.5.5 In this book we let lg n denote log2n (the logarithm of n to the base 2). Since

lg n < n for n ≥ 1 (see Figure 3.5.1),

2n+ 3 lg n < 2n+ 3n = 5n for n ≥ 1;

thus
2n+ 3 lg n = O(n).

Also,
2n+ 3 lg n ≥ 2n for n ≥ 1,

so
2n+ 3 lg n = #(n).

Therefore,
2n+ 3 lg n = (n).

142 Chapter 3 / Algorithms

y

n

y � 2n

1

2

4

8

16

32

64

128

256

1 2 3 4 5 6 7 8 9 10 11 12 13

y � n2

y � n

y � lg n

y � 1

y � n lg n

FIGURE 3.5.1
Growth of some common functions.

EXAMPLE 3.5.6 If we replace each integer 1, 2, . . . , n by n in the sum 1 + 2 + · · · + n, the sum
does not decrease and we have

1 + 2 + · · · + n ≤ n+ n+ · · · + n = n · n = n2 (3.5.2)

for n ≥ 1. It follows that

1 + 2 + · · · + n = O(n2).

To obtain a lower bound, we might imitate the preceding argument and
replace each integer 1, 2, . . . , n by 1 in the sum 1 + 2 + · · · + n to obtain

1 + 2 + · · · + n ≥ 1 + 1 + · · · + 1 = n.

In this case we conclude that

1 + 2 + · · · + n = #(n),

and while the preceding expression is true, we cannot deduce a -estimate for
1 + 2 + · · · + n, since the upper bound n2 and lower bound n are not equal. We
must be craftier in deriving a lower bound.

One way to get a sharper lower bound is to argue as before, but first throw
away the first half of the terms, to obtain

1 + 2 + · · · + n ≥ �n/2� + · · · + (n− 1)+ n
≥ �n/2� + · · · + �n/2� + �n/2�
= �(n+ 1)/2��n/2� ≥ (n/2)(n/2) = n2/4. (3.5.3)

We can now conclude that

1 + 2 + · · · + n = #(n2).

Therefore,
1 + 2 + · · · + n = (n2).

3.5 / Complexity of Algorithms 143

EXAMPLE 3.5.7 If k is a positive integer and, as in Example 3.5.6, we replace each integer 1, 2, . . . , n
by n, we have

1k + 2k + · · · + nk ≤ nk + nk + · · · + nk = n · nk = nk+1

for n ≥ 1; hence
1k + 2k + · · · + nk = O(nk+1).

We can also obtain a lower bound as in Example 3.5.6:

1k + 2k + · · · + nk ≥ �n/2�k + · · · + (n− 1)k + nk
≥ �n/2�k + · · · + �n/2�k + �n/2�k
= �(n+ 1)/2��n/2�k ≥ (n/2)(n/2)k = nk+1/2k+1.

We conclude that
1k + 2k + · · · + nk = #(nk+1),

and hence
1k + 2k + · · · + nk = (nk+1).

Notice the difference between the polynomial

akn
k + ak−1n

k−1 + · · · + a1n+ a0

in Theorem 3.5.4 and the expression

1k + 2k + · · · + nk
in Example 3.5.7. A polynomial has a fixed number of terms, whereas the num-
ber of terms in the expression in Example 3.5.7 is dependent on the value of n.
Furthermore, the polynomial in Theorem 3.5.4 is (nk), but the expression in
Example 3.5.7 is (nk+1).

Our next example gives a theta notation for lg n!.

EXAMPLE 3.5.8 Using an argument similar to that in Example 3.5.6, we show that

lg n! = (n lg n).

By properties of logarithms, we have

lg n! = lg n+ lg(n− 1)+ · · · + lg 2 + lg 1.

Since lg is an increasing function,

lg n+ lg(n− 1)+ · · · + lg 2 + lg 1 ≤ lg n+ lg n+ · · · + lg n+ lg n = n lg n.

We conclude that
lg n! = O(n lg n).

Now
lg n+ lg(n− 1)+ · · · + lg 2 + lg 1

≥ lg n+ lg(n− 1)+ · · · + lg�n/2�
≥ lg�n/2� + · · · + lg�n/2�
= �(n+ 1)/2� lg�n/2� ≥ (n/2) lg(n/2).

A proof by mathematical induction (see Exercise 52) shows that if n ≥ 4,

(n/2) lg(n/2) ≥ (n lg n)/4.

The last inequalities combine to give

lg n+ lg(n− 1)+ · · · + lg 2 + lg 1 ≥ (n lg n)/4

for n ≥ 4. Therefore,
lg n! = #(n lg n).

It follows that
lg n! = (n lg n).

144 Chapter 3 / Algorithms

EXAMPLE 3.5.9 Show that if f (n) = (g(n)) and g(n) = (h(n)), then f (n) = (h(n)).
Because f (n) = (g(n)), there are constants C1 and C2 such that

C1|g(n)| ≤ |f (n)| ≤ C2|g(n)|

for all but finitely many positive integers n. Because g(n) = (h(n)), there are
constants C3 and C4 such that

C3|h(n)| ≤ |g(n)| ≤ C4|h(n)|

for all but finitely many positive integers n. Therefore,

C1C3|h(n)| ≤ C1|g(n)| ≤ |f (n)| ≤ C2|g(n)| ≤ C2C4|h(n)|

for all but finitely many positive integers n. It follows that f (n) = (h(n)).
We next define what it means for the best-case, worst-case, or average-case

time of an algorithm to be of order at most g(n).

DEFINITION 3.5.10 If an algorithm requires t (n) units of time to terminate in the best case for an
input of size n and

t (n) = O(g(n)),
we say that the best-case time required by the algorithm is of order at most g(n)
or that the best-case time required by the algorithm is O(g(n)).

If an algorithm requires t (n) units of time to terminate in the worst case for
an input of size n and

t (n) = O(g(n)),
we say that the worst-case time required by the algorithm is of order at most g(n)
or that the worst-case time required by the algorithm is O(g(n)).

If an algorithm requires t (n) units of time to terminate in the average case
for an input of size n and

t (n) = O(g(n)),
we say that the average-case time required by the algorithm is of order at most
g(n) or that the average-case time required by the algorithm is O(g(n)). �

By replacing O by # and “at most” by “at least” in Definition 3.5.10, we
obtain the definition of what it means for the best-case, worst-case, or average-case
time of an algorithm to be of order at least g(n). If the best-case time required by
an algorithm isO(g(n)) and#(g(n)), we say that the best-case time required by
the algorithm is (g(n)). An analogous definition applies to the worst-case and
average-case times of an algorithm.

EXAMPLE 3.5.11 Suppose that an algorithm is known to take

60n2 + 5n+ 1

units of time to terminate in the worst case for inputs of size n. We showed in
Example 3.5.3 that

60n2 + 5n+ 1 = (n2).

Thus the worst-case time required by this algorithm is (n2).

3.5 / Complexity of Algorithms 145

EXAMPLE 3.5.12 Find a theta notation in terms ofn for the number of times the statement x := x+1
is executed.

1. for i := 1 to n do
2. for j := 1 to i do
3. x := x + 1

First, i is set to 1 and, as j runs from 1 to 1, line 3 is executed one time. Next,
i is set to 2 and, as j runs from 1 to 2, line 3 is executed two times, and so on. Thus
the total number of times line 3 is executed is (see Example 3.5.6)

1 + 2 + · · · + n = (n2).

Thus a theta notation for the number of times the statement x := x+1 is executed
is (n2).

EXAMPLE 3.5.13 Find a theta notation in terms ofn for the number of times the statement x := x+1
is executed:

1. i := n
2. while i ≥ 1 do
3. begin
4. x := x + 1
5. i := �i/2�
6. end

First, we examine some specific cases. Because of the floor function, the
computations are simplified if n is a power of 2. Consider, for example, the case
n = 8. At line 1, i is set to 8. At line 2, the condition i ≥ 1 is true. At line 4, we
execute the statement x := x + 1 the first time. At line 5, i is reset to 4 and we
return to line 2.

At line 2, the condition i ≥ 1 is again true. At line 4, we execute the
statement x := x + 1 the second time. At line 5, i is reset to 2 and we return to
line 2.

At line 2, the condition i ≥ 1 is again true. At line 4, we execute the
statement x := x + 1 the third time. At line 5, i is reset to 1 and we return to
line 2.

At line 2, the condition i ≥ 1 is again true. At line 4, we execute the
statement x := x + 1 the fourth time. At line 5, i is reset to 0 and we return to
line 2.

This time at line 2, the condition i ≥ 1 is false. The statement x := x + 1
was executed four times.

Now suppose that n is 16. At line 1, i is set to 16. At line 2, the condition
i ≥ 1 is true. At line 4, we execute the statement x := x + 1 the first time. At
line 5, i is reset to 8 and we return to line 2. Now execution proceeds as before;
the statement x := x + 1 is executed four more times, for a total of five times.

Similarly, if n is 32, the statement x := x + 1 is executed a total of six times.
A pattern is emerging. Each time the initial value of n is doubled, the

statement x := x + 1 is executed one more time. More precisely, if n = 2k , the
statement x := x + 1 is executed k + 1 times. Since k is the exponent for 2,
k = lg n. Thus if n = 2k , the statement x := x + 1 is executed 1 + lg n times.

If n is an arbitrary positive integer (not necessarily a power of 2), it lies
between two powers of 2; that is, for some k ≥ 1,

2k−1 ≤ n < 2k.

We use induction on k to show that in this case the statement x := x + 1 is
executed k times.

146 Chapter 3 / Algorithms

If k = 1, we have
1 = 21−1 ≤ n < 21 = 2.

Therefore, n is 1. In this case, the statement x := x + 1 is executed once. Thus
the Basis Step is proved.

Now suppose that if n satisfies

2k−1 ≤ n < 2k,

the statement x := x + 1 is executed k times. We must show that if n satisfies

2k ≤ n < 2k+1,

the statement x := x + 1 is executed k + 1 times.
Suppose that n satisfies

2k ≤ n < 2k+1.

At line 1, i is set to n. At line 2, the condition i ≥ 1 is true. At line 4, we execute
the statement x := x+ 1 the first time. At line 5, i is reset to �n/2� and we return
to line 2. Notice that

2k−1 ≤ n/2 < 2k.

Because 2k−1 is an integer, we must also have

2k−1 ≤ �n/2� < 2k.

By the inductive assumption, the statement x := x + 1 is executed k more times,
for a total of k+ 1 times. The Inductive Step is complete. Therefore, if n satisfies

2k−1 ≤ n < 2k,

the statement x := x + 1 is executed k times.
Suppose that n satisfies

2k−1 ≤ n < 2k.

Taking logarithms to the base 2, we have

k − 1 ≤ lg n < k.

Therefore, k, the number of times the statement x := x + 1 is executed, satisfies

lg n < k ≤ 1 + lg n.

Because k is an integer, we must have

k ≤ 1 + �lg n�.
Furthermore,

�lg n� < k.
It follows from the last two inequalities that

k = 1 + �lg n�.
Since

1 + �lg n� = (lg n),
a theta notation for the number of times the statement x := x + 1 is executed is
 (lg n).

Many algorithms are based on the idea of repeated halving (for example,
tromino tiling, Algorithm 3.4.4, is based on this idea). Example 3.5.13 shows that
for size n, repeated halving takes time (lg n). (Of course, the algorithm may do
work in addition to the halving that will increase the overall time.)

3.5 / Complexity of Algorithms 147

EXAMPLE 3.5.14 Find a theta notation in terms ofn for the number of times the statement x := x+1
is executed.

1. j := n
2. while j ≥ 1 do
3. begin
4. for i := 1 to j do
5. x := x + 1
6. j := �j/2�
7. end

Let t (n) denote the number of times we execute the statement x := x + 1.
The first time we arrive at the body of the while loop, the statement x := x + 1 is
executed n times. Therefore t (n) ≥ n and t (n) = #(n).

Next we derive a big oh notation for t (n). After j is set to n, we arrive at
the while loop for the first time. The statement x := x+1 is executed n times. At
line 6, j is replaced by �n/2�; hence j ≤ n/2. If j ≥ 1,we will execute x := x+1
at most n/2 additional times in the next iteration of the while loop, and so on. If
we let k denote the number of times we execute the body of the while loop, the
number of times we execute x := x + 1 is at most

n+ n

2
+ n

4
+ · · · + n

2k−1
.

This geometric sum (see Example 1.6.4) is equal to

n
(

1 − 1
2k

)
1 − 1

2

.

Now

t (n) ≤
n

(
1 − 1

2k

)
1 − 1

2

= 2n

(
1 − 1

2k

)
≤ 2n,

so t (n) = O(n). Thus a theta notation for the number of times we execute
x := x + 1 is (n).

EXAMPLE 3.5.15 Determine, in theta notation, the best-case, worst-case, and average-case times
required to execute Algorithm 3.5.16, which follows. Assume that the input size
is n and that the run time of the algorithm is the number of comparisons made
at line 3. Also, assume that the n + 1 possibilities of key being at any particular
position in the sequence or not being in the sequence are equally likely.

The best-case time can be analyzed as follows. If s1 = key, line 3 is executed
once. Thus the best-case time of Algorithm 3.5.16 is

 (1).

The worst-case time of Algorithm 3.5.16 is analyzed as follows. If key is
not in the sequence, line 3 will be executed n times, so the worst-case time of
Algorithm 3.5.16 is

 (n).

Finally, consider the average-case time of Algorithm 3.5.16. If key is found
at the ith position, line 3 is executed i times; if key is not in the sequence, line 3
is executed n times. Thus the average number of times line 3 is executed is

(1 + 2 + · · · + n)+ n
n+ 1

.

148 Chapter 3 / Algorithms

Now
(1 + 2 + · · · + n)+ n

n+ 1
≤ n2 + n
n+ 1

by (3.5.2)

= n(n+ 1)

n+ 1
= n.

Therefore, the average-case time of Algorithm 3.5.16 is

O(n).

Also,
(1 + 2 + · · · + n)+ n

n+ 1
≥ n2/4 + n

n+ 1
by (3.5.3)

≥ n2/4 + n/4
n+ 1

= n

4
.

Therefore the average-case time of Algorithm 3.5.16 is

#(n).

Thus the average-case time of Algorithm 3.5.16 is

 (n).

For this algorithm, the worst-case and average-case times are both (n).

ALGORITHM 3.5.16 SEARCHING AN UNORDERED SEQUENCE
Given the sequence

s1, s2, · · · , sn

and a value key, this algorithm finds the location of key. If key is not found, the
algorithm outputs 0.

Table 3.5.3
Common growth functions

Theta Form† Name

 (1) Constant

 (lg lg n) Log log

 (lg n) Logarithmic

 (n) Linear

 (n lg n) n log n

 (n2) Quadratic

 (n3) Cubic

 (nm) Polynomial

 (mn),m ≥ 2 Exponential

 (n!) Factorial

† lg = log to the base 2; m is a

fixed, nonnegative integer.

Input: s1, s2, . . . , sn, n, and key (the value to search for)

Output: The location of key, or if key is not found, 0

1. procedure linear search(s, n, key)
2. for i := 1 to n do
3. if key = si then
4. return(i) // successful search
5. return(0) // unsuccessful search
6. end linear search

In Section 3.6 we consider a more involved example, the worst-case time of
the Euclidean algorithm (Algorithm 3.3.7).

The constants that are suppressed in the theta notation may be important.
Even if for any input of size n, algorithm A requires exactly C1n time units and
algorithm B requires exactly C2n

2 time units, for certain sizes of inputs algorithm
B may be superior. For example, suppose that for any input of size n, algorithm
A requires 300n units of time and algorithm B requires 5n2 units of time. For
an input size of n = 5, algorithm A requires 1500 units of time and algorithm B
requires 125 units of time, and thus algorithmB is faster. Of course, for sufficiently
large inputs, algorithm A is considerably faster than algorithm B .

Certain forms occur so often that they are given special names, as shown in
Table 3.5.3. The forms in Table 3.5.3, with the exception of (nm), are arranged
so that if (f (n)) is above (g(n)), then f (n) ≤ g(n) for all but finitely many
positive integers n. Thus, if algorithms A and B have run times that are (f (n))
and (g(n)), respectively, and (f (n)) is above (g(n)) in Table 3.5.3, then
algorithm A is more time-efficient than algorithm B for sufficiently large inputs.

It is important to develop some feeling for the relative sizes of the functions
in Table 3.5.3. In Figure 3.5.1 we have graphed some of these functions. Another
way to develop some appreciation for the relative sizes of the functions f (n)

3.5 / Complexity of Algorithms 149

in Table 3.5.3 is to determine how long it would take an algorithm to terminate
whose run time is exactly f (n). For this purpose, let us assume that we have
a computer that can execute one step in 1 microsecond (10−6 sec). Table 3.5.1
shows the execution times, under this assumption, for various input sizes. Notice
that it is feasible to implement an algorithm that requires 2n steps for an input
of size n only for very small input sizes. Algorithms requiring n2 or n3 steps also
become infeasible, but for relatively larger input sizes. Also, notice the dramatic
improvement that results when we move from n2 steps to n lg n steps.

A problem that has a worst-case polynomial-time algorithm is considered to
have a “good” algorithm; the interpretation is that such a problem has an efficient
solution. Of course, if the worst-case time to solve the problem is proportional to
a high-degree polynomial, the problem can still take a long time to solve. Fortu-
nately, in many important cases, the polynomial bound has small degree.

A problem that does not have a worst-case polynomial-time algorithm is
said to be intractable. Any algorithm, if there is one, that solves an intractable
problem is guaranteed to take a long time to execute in the worst case, even for
modest sizes of the input.

Certain problems are so hard that they have no algorithms at all. A problem
for which there is no algorithm is said to be unsolvable. A large number of
problems are known to be unsolvable, some of considerable practical importance.
One of the earliest problems to be proved unsolvable is the halting problem:
Given an arbitrary program and a set of inputs, will the program eventually halt?

A large number of solvable problems have an as yet undetermined status;
they are thought to be intractable, but none of them has been proved intractable.
(These problems belong to the class NP; see [Hopcroft] for details.) An example
of a solvable problem thought to be intractable, but not known to be intractable,
is:

Given a collection C of finite sets and a positive integer k ≤ |C| , does C
contain at least k mutually disjoint sets?

Other solvable problems thought to be intractable, but not known to be in-
tractable, include the traveling salesperson problem and the Hamiltonian cycle
problem (see Section 6.3).

Section Review Exercises

1. To what does “analysis of algorithms” refer?

2. To what does “complexity of algorithms” refer?

3. What is the worst-case time of an algorithm?

4. What is the best-case time of an algorithm?

5. What is the average-case time of an algorithm?

6. Define f (n) = O(g(n)). What is this notation called?

7. Give an intuitive interpretation of how f and g are related
if f (n) = O(g(n)).

8. Define f (n) = #(g(n)). What is this notation called?

9. Give an intuitive interpretation of how f and g are related
if f (n) = #(g(n)).

10. Define f (n) = (g(n)). What is this notation called?

11. Give an intuitive interpretation of how f and g are related
if f (n) = (g(n)).

Exercises

Select a theta notation from Table 3.5.3 for each expression in
Exercises 1–12.

1. 6n + 1 2. 2n2 + 1
3. 6n3 + 12n2 + 1 4. 3n2 + 2n lg n
5. 2 lg n+ 4n+ 3n lg n 6. 6n6 + n+ 4
7. 2 + 4 + 6 + · · · + 2n 8. (6n+ 1)2

9. (6n+ 4)(1 + lg n)

10. (n+ 1)(n+ 3)
n+ 2

11.

(
n2 + lg n

)
(n+ 1)

n+ n2

12. 2 + 4 + 8 + 16 + · · · + 2n

150 Chapter 3 / Algorithms

In Exercises 13–15, select a theta notation for f (n)+ g(n).
13. f (n) = (1), g(n) = (n2)

14. f (n) = 6n3 + 2n2 + 4, g(n) = (n lg n)
15. f (n) = (n3/2), g(n) = (n5/2)

In Exercises 16–26, select a theta notation from among

 (1), (lg n), (n), (n lg n),

 (n2), (n3), (2n), or (n!)

for the number of times the statement x := x + 1 is executed.

16. for i := 1 to 2n do
x := x + 1

17. i := 1
while i ≤ 2n do
begin
x := x + 1
i := i + 2
end

18. for i := 1 to n do
for j := 1 to n do
x := x + 1

19. for i := 1 to 2n do
for j := 1 to n do
x := x + 1

20. for i := 1 to n do
for j := 1 to �i/2� do
x := x + 1

21. for i := 1 to n do
for j := 1 to n do
for k := 1 to n do
x := x + 1

22. for i := 1 to n do
for j := 1 to n do
for k := 1 to i do
x := x + 1

23. for i := 1 to n do
for j := 1 to i do
for k := 1 to j do
x := x + 1

24. j := n
while j ≥ 1 do
begin
for i := 1 to j do
x := x + 1
j := �j/3�
end

25. i := n
while i ≥ 1 do
begin
for j := 1 to n do
x := x + 1
i := �i/2�
end

26. Find a theta notation for the number of times the statement
x := x + 1 is executed.

i := 2
while i < n do
begin
i := i2
x := x + 1
end

27. Let t (n) be the total number of times that i is incre-
mented and j is decremented in the following pseudocode.
a1, a2, . . . is a sequence of real numbers.

i := 1
j := n
while i < j do
begin
while i < j and ai < 0 do
i := i + 1
while i < j and aj ≥ 0 do
j := j − 1
if i < j then

swap(ai, aj)
end

Find a theta notation for t (n).

28. Find a theta notation for the worst-case time required by
the following algorithm:

procedure iskey(s, n, key)
for i := 1 to n− 1 do
for j := i + 1 to n do
if si + sj = key then
return(1)
else
return(0)

end iskey

29. In addition to finding a theta notation in Exercises 1–28,
prove that it is correct.

30. Find the exact number of comparisons (lines 12, 18, 20,
28, and 30) required by the following algorithm when n
is even and when n is odd. Find a theta notation for this
algorithm.

Input: s1, s2, . . . , sn, n

Output: large (the largest item in s1, s2, . . . , sn)
small (the smallest item in s1, s2, . . . , sn)

1. procedure large small(s, n, large, small)
2. if n = 1 then
3. begin
4. large := s1
5. small := s1
6. return
7. end
8. m := 2�n/2�
9. i := 1

10. while i ≤ m− 1 do
11. begin
12. if si > si+1 then
13. swap(si, si+1)

14. i := i + 2
15. end
16. if n > m then
17. begin
18. if sm−1 > sn then
19. swap(sm−1, sn)

20. if sn > sm then
21. swap(sm, sn)
22. end
23. small := s1
24. large := s2
25. i := 3
26. while i ≤ m− 1 do
27. begin
28. if si < small then
29. small := si
30. if si+1 > large then
31. large := si+1

32. i := i + 2
33. end
34. end large small

31. Suppose that a > 1 and that f (n) = (loga n). Show
that f (n) = (lg n).

32. Show that n! = O(nn).
33. Show that 2n = O(n!).

3.5 / Complexity of Algorithms 151

34. By using an argument like that in Examples 3.5.6–3.5.8 or
otherwise, prove that

∑n
i=1 i lg i = (n2 lg n).

35. Suppose that f (n) = O(g(n)), and f (n) ≥ 0 and g(n) >
0 for all n ≥ 1. Show that for some constant C , f (n) ≤
Cg(n) for all n ≥ 1.

36. State and prove a result for # similar to that for Exer-
cise 35.

37. State and prove a result for similar to that for Exercises
35 and 36.

Determinewhether each statement inExercises 38–46 is true or
false. If the statement is false, give a counterexample. Assume
that the functions f, g, and h take on only positive values.

38. If f (n) = (h(n)) and g(n) = (h(n)), then f (n) +
g(n) = (h(n)).

39. If f (n) = (g(n)), then cf (n) = (g(n)) for any c �= 0.

40. If f (n) = (g(n)), then 2f (n) = (2g(n)).
41. If f (n) = (g(n)), then lg f (n) = (lg g(n)). Assume

that f (n) ≥ 1 and g(n) ≥ 1 for all n = 1, 2,

42. If f (n) = O(g(n)), then g(n) = O(f (n)).
43. If f (n) = O(g(n)), then g(n) = #(f (n)).
44. If f (n) = (g(n)), then g(n) = (f (n)).
45. f (n)+g(n) = (h(n)),where h(n) = max{f (n), g(n)}
46. f (n)+g(n) = (h(n)), where h(n) = min{f (n), g(n)}

� 47. Find functions f and g satisfying

f (n) �= O(g(n)) and g(n) �= O(f (n)).
� 48. Give an example of strictly increasing positive functions

f and g defined on the positive integers [i.e., 0 < f (n) <
f (n+ 1) and 0 < g(n) < g(n+ 1) for n = 1, 2, . . .] for
which

f (n) �= O(g(n)) and g(n) �= O(f (n)).
� 49. Prove that nk = O(dn) for all k = 1, 2, . . . and d > 1.

50. Find functions f, g, h, and t satisfying

f (n) = (g(n)), h(n) = (t(n)),
f (n)− h(n) �= (g(n)− t (n)).

51. Where is the error in the following reasoning? Suppose
that the worst-case time of an algorithm is (n). Since
2n = (n), the worst-case time to run the algorithm with
input of size 2n will be approximately the same as the
worst-case time to run the algorithm with input of size n.

52. Show that if n ≥ 4,

n

2
lg
n

2
≥ n lg n

4
.

53. Does
f (n) = O(g(n))

define an equivalence relation on the set of real-valued
functions on {1, 2, . . .}?

54. Does
f (n) = (g(n))

define an equivalence relation on the set of real-valued
functions on {1, 2, . . .}?

55. [Requires the integral]

(a) Show, by consulting the figure, that

1

2
+ 1

3
+ · · · + 1

n
< loge n.

(b) Show, by consulting the figure, that

loge n < 1 + 1

2
+ · · · + 1

n− 1
.

(c) Use parts (a) and (b) to show that

1 + 1

2
+ · · · + 1

n
= (lg n).

1 2 3 n−1 n... x

y

1

x
y =

56. [Requires the integral] Use an argument like that in Exer-
cise 55 to show that

nm+1

m+ 1
< 1m + 2m + · · · + nm < (n+ 1)m+1

m+ 1
,

where m is a positive integer.

57. What is wrong with the following “proof” that any algo-
rithm has a run time that is O(n)?

We must show that the time required for an input of
size n is at most a constant times n.

Basis Step. Suppose that n = 1. If the algorithm
takes C units of time for an input of size 1, the algorithm
takes at most C . 1 units of time. Thus the assertion is true
for n = 1.

Inductive Step. Assume that the time required
for an input of size n is at most C ′n and that the time
for processing an additional item is C ′′ . Let C be the
maximum of C ′ and C ′′ . Then the total time required for
an input of size n+ 1 is at most

C ′n+ C ′′ ≤ Cn+ C = C(n+ 1).

The Inductive Step has been verified.
By induction, for input of size n, the time required

is at most Cn. Therefore, the run time is O(n).

58. [Requires calculus] Determine whether each statement is
true or false. If the statement is false, give a counterexam-
ple. It is assumed that f and g are real-valued functions
defined on the set of positive integers and that g(n) �= 0
for n ≥ 1.

152 Chapter 3 / Algorithms

(a) If

lim
n→∞

f (n)

g(n)

exists and is equal to some real number, thenf (n) =
O(g(n)).

(b) If f (n) = O(g(n)), then

lim
n→∞

f (n)

g(n)

exists and is equal to some real number.
(c) If

lim
n→∞

f (n)

g(n)

exists and is equal to some real number, thenf (n) =
 (g(n)).

(d) If

lim
n→∞

f (n)

g(n)
= 1,

then f (n) = (g(n)).
(e) If f (n) = (g(n)), then

lim
n→∞

f (n)

g(n)

exists and is equal to some real number.

� 59. Use induction to prove that

lg n! ≥ n

2
lg
n

2
.

60. [Requires calculus] Let ln x denote the natural logarithm
(loge x) of x . Use the integral to obtain the estimate

n ln n− n ≤
n∑
k=1

ln k = ln n!, n ≥ 1.

61. Use the result of Exercise 60 and the change-of-base for-
mula for logarithms to obtain the formula

n lg n− n lg e ≤ lg n!, n ≥ 1.

62. Deduce

lg n! ≥ n

2
lg
n

2

from the inequality of Exercise 61.

PROBLEM-SOLVING CORNER
DESIGN AND ANALYSIS OF AN ALGORITHM

Problem

Develop and analyze an algorithm that outputs the
maximum sum of consecutive values in the numerical
sequence

s1, . . . , sn.

In mathematical notation, the problem is to find the
maximum sum of the form sj + sj+1 + · · · + si . Ex-
ample: If the sequence were

27 6 − 50 21 − 3 14 16 − 8

42 33 − 21 9,

the algorithm outputs 115—the sum of

21 − 3 14 16 − 8 42 33.

If all the numbers in a sequence are negative, the maxi-
mum sum of consecutive values is defined to be 0. (The
idea is that the maximum of 0 is achieved by taking an
“empty” sum.)

Attacking the Problem

In developing an algorithm, a good way to start is to
ask the question, “How would I solve this problem
by hand?” At least initially, take a straightforward
approach. Here we might just list the sums of all con-
secutive values and pick the largest. For the example
sequence, the sums are as follows:

j

i 1 2 3 4 5 6 7 8 9 10 11 12

1 27

2 33 6

3 −17 −44 −50

4 4 −23 −29 21

5 1 −26 −32 18 −3

6 15 −12 −18 32 11 14

7 31 4 −2 48 27 30 16

8 23 −4 −10 40 19 22 8 −8

9 65 38 32 82 61 64 50 34 42

10 98 71 65 115 94 97 83 67 75 33

11 77 50 44 94 73 76 62 46 54 12 −21

12 86 59 53 103 82 85 71 55 63 21 −12 9

The entry in column j, row i, is the sum

sj + · · · + si .
For example, the entry in column 4, row 7, is 48—the
sum

s4 + s5 + s6 + s7 = 21 + −3 + 14 + 16 = 48.

By inspection, we find that 115 is the largest sum.

Problem-Solving Corner: Design and Analysis of an Algorithm 153

Finding a Solution

We began by writing pseudocode for the straightfor-
ward algorithm that computes all consecutive sums
and finds the largest:

Input: s1, . . . , sn

Output: max

proceduremax sum1(s, n)
// sumji is the sum sj + · · · + si .
for i := 1 to n do
begin
for j := 1 to i − 1 do
sumji := sumj,i−1 + si

sumii := si
end

// step through sumji and find the maximum
max := 0
for i := 1 to n do
for j := 1 to i do
if sumji > max then
max := sumji

return(max)
endmax sum1

The first nested for loops compute the sums

sumji = sj + · · · + si .
The computation relies on the fact that

sumji = sj + · · · + si = sj + · · · + si−1 + si
= sumj,i−1 + si .

The second nested for loops step through sumji and
find the largest value.

Since each of the nested for loops takes time
 (n2), max sum1’s time is (n2).

We can improve the actual time, but not the com-
plexity of the algorithm, by computing the maximum
within the same nested for loops in which we compute
sumji :

Input: s1, . . . , sn

Output: max

proceduremax sum2(s, n)
// sumji is the sum sj + · · · + si
max := 0
for i := 1 to n do
begin
for j := 1 to i − 1 do
begin
sumji := sumj,i−1 + si

if sumji > max then
max := sumji
end

sumii := si
if sumii > max then
max := sumii
end
return(max)
endmax sum2

Since the nested for loops take time (n2),
max sum2’s time is (n2). To reduce the time com-
plexity, we need to take a hard look at the pseudocode
to see where it can be improved.

Two key observations lead to improved time.
First, since we are looking only for the maximum sum,
there is no need to record all of the sums; we will store
only the maximum sum that ends at index i . Second,
the line

sumji := sumj,i−1 + si
shows how a consecutive sum that ends at index i−1 is
related to a consecutive sum that ends at index i . The
maximum can be computed by using a similar formula.
If sum is the maximum consecutive sum that ends at
index i − 1, the maximum consecutive sum that ends
at index i is obtained by adding si to sum provided
that sum + si is positive. (If some sum of consecutive
terms that ends at index i exceeds sum + si, we could
remove the ith term and obtain a sum of consecutive
terms ending at index i − 1 that exceeds sum, which
is impossible.) If sum + si ≤ 0, the maximum con-
secutive sum that ends at index i is obtained by taking
no terms and has value 0. Thus we may compute the
maximum consecutive sum that ends at index i by ex-
ecuting

if sum +si > 0 then
sum := sum +si

else
sum := 0

Formal Solution

Input: s1, . . . , sn

Output: max

proceduremax sum3(s, n)
// max is the maximum sum seen so far.
// After the ith iteration of the for
// loop, sum is the largest consecutive
// sum that ends at position i .
max := 0
sum := 0

154 Chapter 3 / Algorithms

for i := 1 to n do
begin
if sum +si > 0 then
sum := sum +si
else
sum := 0
if sum > max then
max := sum
end
return(max)

endmax sum3

Since this algorithm has a single for loop that runs
from 1 to n,max sum3’s time is (n). The time com-
plexity of this algorithm cannot be further improved.
To solve this problem, we must at least look at each
element in the sequence s, which takes time (n).

Summary of Problem-Solving Techniques

In developing an algorithm, a good way to start
is to ask the question, “How would I solve this
problem by hand?”

In developing an algorithm, initially take a
straightforward approach.

After developing an algorithm, take a close look
at the pseudocode to see where it can be im-
proved. Look at the parts that perform key com-
putations to gain insight into how to enhance the
algorithm’s efficiency.

As in mathematical induction, extend a solution
of a smaller problem to a larger problem. (In this
problem, we extended a sum that ends at index
i − 1 to a sum that ends at index i .)

Don’t repeat computations. (In this problem, we
extended a sum that ends at index i− 1 to a sum
that ends at index i by adding an additional term
rather than by computing the sum that ends at
index i from scratch. This latter method would
have meant recomputing the sum that ends at
index i − 1.)

Comments

According to [Bentley], the problem discussed in this
section is the one-dimensional version of the origi-
nal two-dimensional problem that dealt with pattern
matching in digital images. The original problem was
to find the maximum sum in a rectangular submatrix
of an n× n matrix of real numbers.

Exercise
1. Modify max sum3 so that it computes not only

the maximum sum of consecutive values but
also the indexes of the first and last terms of
a maximum-sum subsequence. If there is no
maximum-sum subsequence (which would hap-
pen, for example, if all of the values of the se-
quence were negative), the algorithm should set
the first and last indexes to zero.

3.6 ANALYSIS OF THE EUCLIDEAN ALGORITHM

In this section we analyze the worst-case performance of the Euclidean algorithm
for finding the greatest common divisor of two nonnegative integers, not both zero
(Algorithm 3.3.7). For reference, we summarize the algorithm:

Input: a and b (nonnegative integers, not both zero)

Output: Greatest common divisor of a and b

1. procedure gcd(a, b)
2. // make a largest
3. if a < b then
4. swap(a, b)
5. while b �= 0 do
6. begin
7. r := a mod b
8. a := b
9. b := r

10. end
11. return(a)
12. end gcd

3.6 / Analysis of the Euclidean Algorithm 155

We define the time required by the Euclidean algorithm as the number of
modulus operations executed at line 7. Table 3.6.1 lists the number of modulus
operations required for some small input values.

The worst case for the Euclidean algorithm occurs when the number of
modulus operations is as large as possible. By referring to Table 3.6.1, we can
determine the input pair a, b, a > b, with a as small as possible, that requires n
modulus operations for n = 0, . . . , 5. The results are given in Table 3.6.2.

Table 3.6.2
Smallest input pair that requires n
modulus operations in the Euclidean
algorithm

n

a b (= number of

modulus operations)

1 0 0

2 1 1

3 2 2

5 3 3

8 5 4

13 8 5

Recall that the Fibonacci sequence {fn} (see Example 3.4.6) is defined by
the equations

f1 = 1, f2 = 2, fn = fn−1 + fn−2, n ≥ 3.

table 3.6.1
Number of modulus operations required by the Euclidean algorithm for various
values of the input

b

a 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 — 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

2 0 1 1 2 1 2 1 2 1 2 1 2 1 2

3 0 1 2 1 2 3 1 2 3 1 2 3 1 2

4 0 1 1 2 1 2 2 3 1 2 2 3 1 2

5 0 1 2 3 2 1 2 3 4 3 1 2 3 4

6 0 1 1 1 2 2 1 2 2 2 3 3 1 2

7 0 1 2 2 3 3 2 1 2 3 3 4 4 3

8 0 1 1 3 1 4 2 2 1 2 2 4 2 5

9 0 1 2 1 2 3 2 3 2 1 2 3 2 3

10 0 1 1 2 2 1 3 3 2 2 1 2 2 3

11 0 1 2 3 3 2 3 4 4 3 2 1 2 3

12 0 1 1 1 1 3 1 4 2 2 2 2 1 2

13 0 1 2 2 2 4 2 3 5 3 3 3 2 1

The Fibonacci sequence begins

1, 2, 3, 5, 8, 13,

A surprising pattern develops in Table 3.6.2: The a column is the beginning of the
Fibonacci sequence and, except for the first value, the b column is the beginning
of the Fibonacci sequence! We are led to conjecture that if the pair a, b, a > b,
when input to the Euclidean algorithm requires n ≥ 1 modulus operations, then
a ≥ fn+1 and b ≥ fn. As further evidence of our conjecture, if we compute the
smallest input pair that requires six modulus operations, we obtain a = 21 and
b = 13. Our next theorem confirms that our conjecture is correct. The proof of
this theorem is illustrated in Figure 3.6.1.

34 = 91 mod 57

34, 57 requires 4 modulus operations

57 � f5 and 34 � f4
91 � 57 . 1 + 34 � 57 + 34 � f5 + f4 � f6

(1 modulus operation)

(to make a total of 5)

(by inductive assumption)

FIGURE 3.6.1
The proof of Theorem 3.6.1. The pair 57, 91, which requires n + 1 = 5
modulus operations, is input to the Euclidean algorithm.

156 Chapter 3 / Algorithms

THEOREM 3.6.1 Suppose that the pair a, b, a > b, requires n ≥ 1 modulus operations when input
to the Euclidean algorithm. Then a ≥ fn+1 and b ≥ fn, where {fn} denotes the
Fibonacci sequence.

Proof. The proof is by induction on n.

Basis Step (n = 1). We have already observed that the theorem is true if
n = 1.

Inductive Step. Assume that the theorem is true for n ≥ 1.We must show
that the theorem is true for n+ 1.

Suppose that the pair a, b, a > b, requires n+ 1 modulus operations when
input to the Euclidean algorithm. At line 7, we compute r = a mod b. Thus

a = bq + r, 0 ≤ r < b. (3.6.1)

The algorithm then repeats using the values b and r, b > r . These values require
n additional modulus operations. By the inductive assumption,

b ≥ fn+1 and r ≥ fn. (3.6.2)

Combining (3.6.1) and (3.6.2), we obtain

a = bq + r ≥ b + r ≥ fn+1 + fn = fn+2. (3.6.3)

[The first inequality in (3.6.3) holds because q > 0; q cannot equal 0, because
a > b.] Inequalities (3.6.2) and (3.6.3) give

a ≥ fn+2 and b ≥ fn+1.

The Inductive Step is finished and the proof is complete.

We may use Theorem 3.6.1 to analyze the worst-case performance of the
Euclidean algorithm.

THEOREM 3.6.2 If integers in the range 0 to m,m ≥ 8, not both zero, are input to the Euclidean
algorithm, then at most

log3/2
2m

3
modulus operations are required.

Proof. Let n be the maximum number of modulus operations required by the
Euclidean algorithm for integers in the range 0 tom,m ≥ 8. Let a, b be an input
pair in the range 0 tom that requires nmodulus operations. Table 3.6.1 shows that
n ≥ 4 and that a �= b. We may assume that a > b. (Interchanging the values of
a and b does not alter the number of modulus operations required.) By Theorem
3.6.1, a ≥ fn+1. Thus

fn+1 ≤ m.
By Exercise 27, Section 3.4, since n+ 1 ≥ 5,(

3

2

)n+1

< fn+1.

Combining these last inequalities, we obtain(
3

2

)n+1

< m.

Taking the logarithm to the base 3
2 , we obtain

n+ 1 < log3/2m.

3.7 / The RSA Public-Key Cryptosystem 157

Therefore,

n < log3/2m− 1 = log3/2m− log3/2
3

2
= log3/2

2m

3
.

Because the logarithm function grows so slowly, Theorem 3.6.2 tells us that
the Euclidean algorithm is quite efficient, even for large values of the input. For
example, since

log3/2
2(1,000,000)

3
= 33.07 . . . ,

the Euclidean algorithm requires at most 33 modulus operations to compute the
greatest common divisor of any pair of integers, not both zero, in the range 0 to
1,000,000.

Section Review Exercises

1. If the pair a, b, a > b, requires n ≥ 1 modulus operations
when input to the Euclidean algorithm, how are a and b
related to the Fibonacci sequence?

2. Integers in the range 0 to m, m ≥ 8, not both zero, are
input to the Euclidean algorithm. Give an upper bound
for the number of modulus operations required.

Exercises

1. Extend Tables 3.6.1 and 3.6.2 to the range 0 to 21.

2. Exactly how many modulus operations are required by the
Euclidean algorithm in the worst case for numbers in the
range 0 to 1,000,000?

3. How many subtractions are required by the algorithm of
Exercise 22, Section 3.3, in the worst case for numbers in
the range 0 to m? (This algorithm finds the greatest com-
mon divisor by using subtraction instead of the modulus
operation.)

4. Prove that when the pair fn+1, fn is input to the Euclidean
algorithm, n ≥ 1, exactly n modulus operations are re-
quired.

5. Show that for any integer k > 1, the number of mod-
ulus operations required by the Euclidean algorithm to
compute gcd(a, b) is the same as the number of modulus
operations required to compute gcd(ka, kb).

6. Show that gcd (fn, fn+1) = 1, n ≥ 1.

†3.7 THE RSA PUBLIC-KEY CRYPTOSYSTEM

Cryptology is the study of systems, called cryptosystems, for secure communica-
tions. In a cryptosystem, the sender transforms the message before transmitting it
so that, hopefully, only authorized recipients can reconstruct the original message
(i.e., the message before it was transformed). The sender is said to encrypt the
message, and the recipient is said to decrypt the message. If the cryptosystem
is secure, unauthorized persons will be unable to discover the decryption tech-
nique, so even if they read the encrypted message, they will be unable to decrypt
it. Cryptosystems are important for large organizations (e.g., government and
military), all Internet-based businesses, and individuals. For example, if a credit
card number is sent over the Internet, it is important for the number to be read
only by the intended recipient. In this section, we look at some algorithms that
support secure communication.

In one of the oldest and simplest systems, the sender and receiver each have
a key that defines a substitute character for each potential character to be sent.
Moreover, the sender and receiver do not disclose the key. Such keys are said to
be private.

† This section can be omitted without loss of continuity.

158 Chapter 3 / Algorithms

EXAMPLE 3.7.1 If a key is defined as

character: ABCDEFGHIJKLMNOPQRSTUVWXYZ
replaced by: EIJFUAXVHWP GSRKOBTQYDMLZNC

the message SEND MONEY would be encrypted as QARUESKRAN. The encrypted
message SKRANEKRELIN would be decrypted as MONEY ON WAY.

Simple systems such as that in Example 3.7.1 are easily broken since certain
letters (e.g., E in English) and letter combinations (e.g., ER in English) appear
more frequently than others. Also, a problem with private keys in general is that
the keys have to be securely sent to the sender and recipient before messages can
be sent. We devote the remainder of this section to the RSA public-key cryp-
tosystem, named after its inventors, Ronald L. Rivest, Adi Shamir, and Leonard
M. Adleman, that is believed to be secure. In the RSA system, each participant
makes public an encryption key and hides a decryption key. To send a message, all
one needs to do is look up the recipient’s encryption key in a publicly distributed
table. The recipient then decrypts the message using the hidden decryption key.

In the RSA system, messages are represented as numbers. For example,
each character might be represented as a number. If a blank space is represented
as 1, A as 2, B as 3, and so on, the message SEND MONEY would be represented as
20, 6, 15, 5, 1, 14, 16, 15, 6, 26. If desired, the integers could be combined into the
single integer

20061505011416150626

(note that leading zeros have been added to all single-digit numbers).
We next describe how the RSA system works, present a concrete example,

and then discuss why it works. Each prospective recipient chooses two primes p
and q and computes z = pq . Since the security of the RSA system rests primarily
on the inability of anyone knowing the value of z to discover the numbers p and
q, p and q are typically chosen so that each has 100 or more digits. Next, the
prospective recipient computes φ = (p−1)(q−1) and chooses an integer n such
that gcd(n, φ) = 1. In practice, n is often chosen to be a prime. The pair z, n is
then made public. Finally, the prospective recipient computes the unique number
s , 0 < s < φ, satisfying ns mod φ = 1. The number s is kept secret and used to
decrypt messages.

To send the integer a, 0 ≤ a ≤ z − 1, to the holder of public key z, n,
the sender computes c = an mod z and sends c. To decrypt the message, the
recipient computes cs mod z, which can be shown to be equal to a.

EXAMPLE 3.7.2 Suppose that we choose p = 23, q = 31, and n = 29. Then z = pq = 713 and
φ = (p− 1)(q − 1) = 660. Now s = 569 since ns mod φ = 29 · 569 mod 660 =
16501 mod 660 = 1. The pair z, n = 713, 29 is made publicly available.

To transmit a = 572 to the holder of public key 713, 29, the sender computes
c = an mod z = 57229 mod 713 = 113 and sends 113. The receiver computes
cs mod z = 113569 mod 713 = 572 in order to decrypt the message.

It may appear that huge numbers must be computed in order to encrypt
and decrypt messages using the RSA system. For example, the number 57229 in
Example 3.7.2 has 80 digits, and if p and q have 100 or more digits, the numbers
would be far larger. The key to simplifying the computation is to note that the
arithmetic is done mod z. It can be shown that

ab mod z = [(a mod z)(b mod z)] mod z (3.7.1)

(see Exercise 10). We show how to use (3.7.1) to compute 57229 mod 713.

3.7 / The RSA Public-Key Cryptosystem 159

EXAMPLE 3.7.3 We use (3.7.1) to compute 57229 mod 713. We note that

29 = 16 + 8 + 4 + 1

(which is just the base 2 representation of 29), so we compute 572 to each of the
powers 16, 8, 4, and 1, mod 713, by repeated squaring and then multiply them,
mod 713:

5722 mod 713 = 327184 mod 713 = 630

5724 mod 713 = 6302 mod 713 = 396900 mod 713 = 472

5728 mod 713 = 4722 mod 713 = 222784 mod 713 = 328

57216 mod 713 = 3282 mod 713 = 107584 mod 713 = 634

57224 mod 713 = 57216 · 5728 mod 713 = 634 · 328 mod 713

= 207952 mod 713 = 469

57228 mod 713 = 57224 · 5724 mod 713 = 469 · 472 mod 713

= 221368 mod 713 = 338

57229 mod 713 = 57228 · 5721 mod 713 = 338 · 572 mod 713

= 193336 mod 713 = 113.

The method is readily converted to an algorithm (see Exercise 11).

The Euclidean algorithm may be used by a prospective recipient to compute
efficiently the unique number s, 0 < s < φ, satisfying ns mod φ = 1 (see
Exercise 12). The main result that makes encryption and decryption work is that

au mod z = a for all 0 ≤ a < z and u mod φ = 1

(for a proof, see [Cormen: Theorem 33.36, page 834]). Using this result and (3.7.1),
we may show that decryption produces the correct result. Since ns mod φ = 1,

cs mod z = (an mod z)s mod z = (an)s mod z = ans mod z = a.
The security of the RSA encryption system relies mainly on the fact that

at present there is no efficient algorithm known for factoring integers; that is,
currently no algorithm is known for factoring d -digit integers in polynomial time,
O(dk). Thus if the primes p and q are chosen large enough, it is impractical to
compute the factorization z = pq . If the factorization could be found by a person
who intercepts a message, the message could be decrypted just as the authorized
recipient does. At this time, no practical method is known for factoring integers
with 200 or more digits, so if p and q are chosen so that each has 100 or more
digits, pq would then have about 200 or more digits, which seems to make RSA
secure.

The first description of the RSA encryption system was in Martin Gardner’s
February 1977 Scientific American column (see [Gardner, 1977]). Included in this
column were an encoded message using the key z, n, where z was the product of
64- and 65-digit primes, and n = 9007, and an offer of $100 to the first person to
crack the code. At the time the article was written, it was estimated that it would
take 40 quadrillion years to factor z. In fact, in April 1994, Arjen Lenstra, Paul
Leyland, Michael Graff, and Derek Atkins, with the assistance of 600 volunteers
from 25 countries using over 1600 computers, factored z (see [Taubes]). The work
was coordinated on the Internet.

Another possible way a message could be intercepted and decrypted would
be to take the nth root of c mod z, where c is the encrypted value sent. Since c =
an mod z, the nth root of c mod z would give a, the decrypted value. Again, at

160 Chapter 3 / Algorithms

present there is no polynomial-time algorithm known for computingnth roots mod
z. It is also conceivable that a message could be decrypted by some means other
than factoring integers or taking nth roots mod z. For example, in the mid–1990s
Paul Kocher proposed a way to break RSA based on the time it takes to decrypt
messages (see [English]). The idea is that different secret keys require different
amounts of time to decrypt messages and, by using this timing information, an
unauthorized person might be able to unveil the secret key and thus decrypt the
message. Implementors of RSA have taken steps to alter the observed time to
decrypt messages to thwart such attacks.

Section Review Exercises

1. To what does “cryptology” refer?

2. What is a cryptosystem?

3. What does it mean to “encrypt a message”?

4. What does it mean to “decrypt a message”?

5. In the RSA public-key cryptosystem, how does one en-
crypt a and send it to the holder of public key z, n?

6. In the RSA public-key cryptosystem, how does one de-
crypt c?

7. On what does the security of the RSA encryption system
rest?

Exercises

1. Encrypt the message COOL BEAVIS using the key of Ex-
ample 3.7.1.

2. Decrypt the message UTWR ENKDTEKMIGYWRA using the
key of Example 3.7.1.

3. Encrypt 333 using the public key 713, 29 of Example 3.7.2.

4. Decrypt 411 using s = 569 as in Example 3.7.2.

In Exercises 5–9, assume that we choose primes p = 17,
q = 23, and n = 31.

5. Compute z.

6. Compute φ .

7. Verify that s = 159.

8. Encrypt 101 using the public key z, n.

9. Decrypt 250.

10. Prove equation (3.7.1).

11. Give an efficient algorithm to compute an mod z.

12. Show how to compute efficiently the value of s given n and
φ ; that is, given positive integersn andφ,with gcd(n, φ) =
1, give an efficient algorithm to compute positive integers
s and t, with 0 < s < φ , such that ns − tφ = 1 and,
in particular, ns mod φ = 1. Hint: Use the method of
Exercise 17, Section 3.3, to compute efficiently integers s ′
and t ′ such that s ′n + t ′φ = 1. If s ′ > 0, take s = s ′ . If
s ′ < 0, take

s = −s ′(φ − 1) mod φ.

13. Show that the number s of Exercise 12 is unique.

14. Show how to use the method of Exercise 12 to compute
the value s of Example 3.7.2.

15. Show how to use the method of Exercise 12 to compute
the value s of Exercise 7.

NOTES The first half of [Knuth, 1977] introduces the concept of an algorithm and various math-
ematical topics, including mathematical induction. The second half is devoted to data
structures.

Most general references on computer science contain some discussion of algorithms.
Books specifically on algorithms are [Aho; Baase; Brassard; Cormen; Knuth, 1997, 1998a,
1998b; Manber; Miller; Nievergelt; and Reingold]. [McNaughton] contains a very thorough
discussion on an introductory level of what an algorithm is. Knuth’s expository article about
algorithms ([Knuth, 1977]) and his article about the role of algorithms in the mathematical
sciences ([Knuth, 1985]) are also recommended. [Gardner, 1992] contains a chapter about
the Fibonacci sequence.

Full details of the RSA cryptosystem may be found in [Cormen]. [Pfleeger] is devoted
to computer security.

Chapter 3 / Algorithms 161

CHAPTER REVIEW Section 3.1
1. Algorithm

2. Properties of an algorithm: Precision, uniqueness, finiteness, input, output, generality

3. Assignment statement: x := y
4. Trace

Section 3.2
5. Pseudocode

6. Procedure

7. If-then structure:

if p then
action

8. If-then-else structure:

if p then
action 1

else
action 2

9. Comment: nonexecutable information. A comment starts with // and continues to the
end of the line.

10. Return statements: return or return(x)

11. While loop:

while p do
action

12. For loop:

for var := init to limit do
action

13. Call statement: call proc(p1, p2, . . . , pk)

Section 3.3
14. b divides a : b | a
15. b is a divisor of a

16. Common divisor

17. Greatest common divisor

18. Euclidean algorithm

Section 3.4
19. Recursive algorithm

20. Recursive procedure

21. Divide-and-conquer technique

22. Base cases: Situations where a recursive procedure does not invoke itself

23. Fibonacci sequence {fn} : f1 = 1, f2 = 2, fn = fn−1 + fn−2, n ≥ 3

Section 3.5
24. Analysis of algorithms

25. Complexity of algorithms

26. Worst-case time of an algorithm

27. Best-case time of an algorithm

28. Average-case time of an algorithm

29. Big oh notation: f (n) = O(g(n))
30. Omega notation: f (n) = #(g(n))
31. Theta notation: f (n) = (g(n))

162 Chapter 3 / Algorithms

Section 3.6
32. If the pair a, b, a > b, requires n ≥ 1 modulus operations when input to the Euclidean

algorithm, then a ≥ fn+1 and b ≥ fn , where {fn} denotes the Fibonacci sequence.

33. If integers in the range 0 to m,m ≥ 8, not both zero, are input to the Euclidean
algorithm, then at most

log3/2

2m

3

modulus operations are required.

Section 3.7
34. Cryptology

35. Cryptosystem

36. Encrypt a message

37. Decrypt a message

38. RSA public key cryptosystem: To encrypt a and send it to the holder of public key
z, n, compute c = an mod z, and send c. To decrypt the message, compute cs mod z,
which can be shown to be equal to a.

39. ab mod z = [(a mod z)(b mod z)] mod z

40. The security of the RSA encryption system relies mainly on the fact that at present
there is no efficient algorithm known for factoring integers.

CHAPTER SELF-TEST Section 3.1
1. Trace the “find max” algorithm in Section 3.1 for the values a = 12, b = 3, c = 0.

2. Write an algorithm that receives as input the distinct numbers a, b, and c, and assigns
the values a, b, and c to the variables x, y, and z so that

x < y < z.

3. Write an algorithm that outputs “Yes” if the values of a, b, and c are distinct, and “No”
otherwise.

4. Which of the algorithm properties—precision, uniqueness, finiteness, input, output,
and generality—if any, are lacking in the following? Explain.

Input: S, a set of integers; m, an integer

Output: All subsets of S that sum to m

1. List all subsets of S and their sums.
2. Step through the subsets listed in 1 and output each whose sum is m.

Section 3.2
5. Trace Algorithm 3.2.2 for the input

s1 = 7, s2 = 9, s3 = 17, s4 = 7.

6. Write an algorithm that receives as input the matrix of a relation R and tests whether
R is symmetric.

7. Write an algorithm that receives as input the n × n matrix A and outputs the trans-
pose AT .

8. Write an algorithm that receives as input the sequence

s1, . . . , sn

sorted in increasing order and prints all values that appear more than once. Example: If
the sequence were

1 1 1 5 8 8 9 12

the output would be
1 8.

Section 3.3
9. If a = 333 and b = 24, find integers q and r so that a = bq + r, with 0 ≤ r < b.

Chapter 3 / Algorithms 163

10. Using the Euclidean algorithm, find the greatest common divisor of the integers 396
and 480.

11. Using the Euclidean algorithm, find the greatest common divisor of the integers 2390
and 4326.

12. Fill in the blank to make a true statement: If a and b are integers satisfying a > b > 0
and r = a mod b, then gcd(a, b) = .

Section 3.4

13. Trace Algorithm 3.4.4 (the tromino tiling algorithm) when n = 8 and the missing square
is four from the left and two from the top.

Exercises 14–16 refer to the tribonacci sequence defined by the equations

t1 = t2 = t3 = 1; tn = tn−1 + tn−2 + tn−3, n ≥ 4.

14. Find t4 and t5.

15. Write a recursive algorithm to compute tn, n ≥ 1.

16. Give a proof using mathematical induction that your algorithm for Exercise 15 is cor-
rect.

Section 3.5

Select a theta notation from among (1), (n), (n2), (n3), (n4), (2n), or (n!)
for each of the expressions in Exercises 17 and 18.

17. 4n3 + 2n− 5 18. 13 + 23 + · · · + n3

19. Select a theta notation from among (1), (n), (n2), (n3), (2n), or (n!) for
the number of times the line x := x + 1 is executed.

for i := 1 to n do
for j := 1 to n do
x := x + 1

20. Write an algorithm that tests whether two n × n matrices are equal and find a theta
notation for its worst-case time.

Section 3.6

21. Exactly how many modulus operations are required by the Euclidean algorithm in the
worst case for numbers in the range 0 to 1000?

22. Exactly how many modulus operations are required by the Euclidean algorithm to
compute gcd(2, 76652913)?

23. Exactly how many modulus operations are required by the Euclidean algorithm to
compute gcd(f324, f323)? ({fn} denotes the Fibonacci sequence.)

24. Given that log3/2 100 = 11.357747, provide an upper bound for the number of mod-
ulus operations required by the Euclidean algorithm for integers in the range 0 to
100,000,000.

Section 3.7

In Exercises 25–28, assume that we choose primes p = 13, q = 17, and n = 19.

25. Compute z and φ .

26. Verify that s = 91.

27. Encrypt 144 using public key z, n.

28. Decrypt 28.

164 Chapter 3 / Algorithms

COMPUTER EXERCISES 1. Implement Algorithm 3.2.2, finding the largest element in a finite sequence, as a pro-
gram.

2. Implement Algorithm 3.2.4, testing whether a positive integer is prime, as a program.

3. Implement Algorithm 3.2.5, finding a prime larger than a given integer, as a program.

4. Write recursive and nonrecursive programs to compute the greatest common divisor.
Compare the times required by the programs.

5. Write recursive and nonrecursive programs to computen!. Compare the times required
by the programs.

6. Write a program whose input is a 2n × 2n board with one missing square and whose
output is a tiling of the board by trominoes.

7. Write a program that uses a graphics display to show a tiling with trominoes of a 2n×2n

board with one square missing.

8. Write a program that tiles with trominoes an n × n board with one square missing,
provided that n �= 5 and 3 does not divide n.

9. Write recursive and nonrecursive programs to compute the Fibonacci sequence. Com-
pare the times required by the programs.

10. A robot can take steps of 1 meter or 2 meters. Write a program to list all of the ways
the robot can walk n meters.

11. A robot can take steps of 1, 2, or 3 meters. Write a program to list all of the ways the
robot can walk n meters.

12. Implement the RSA public-key cryptosystem.

