
328 Chapter 8 / Dynamic Programming

8.2 Coin Changing Revisited

In Section 7.1, we developed a greedy algorithm for the coin-changing prob-
lem in which the goal was to make change for an amount A using the fewest
number of coins, where the available denominations were

denom[1] > denom[2] > · · · > denom[n] = 1.

We saw that whether the greedy algorithm produced the fewest number of
coins depended on which denominations of coins were available. In this sec-
tion, we develop a dynamic programming algorithm for the coin-changing
problem that produces the fewest number of coins no matter which denom-
inations are available.

To break the given problem into subproblems, we vary the amount and
restrict the denominations available. More precisely, we consider the prob-
lem of computing the minimum number of coins for an amount j, 0 ≤ j ≤ A,
where the available denominations are

denom[i] > denom[i+ 1] > · · · > denom[n] = 1,

1 ≤ i ≤ n. We call this the i, j-problem. The original problem is i = 1
and j = A. We let C[i][j] denote the solution to the i, j-problem; that is,
C[i][j] is the minimum number of coins to make change for the amount j,
using coins i through n (see Figure 8.2.1). (We later address the problem of
determining which coins achieve the minimum.)

j
0 1 2 3 4 5 6 7 8 9 10 11 12

1 0 1 2 3 4 5 1 2 3 4 1 2 2
i 2 0 1 2 3 4 5 1 2 3 4 5 6 2

3 0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 8.2.1 The array C for the denominations

denom[1] = 10, denom[2] = 6, denom[3] = 1,

and amounts up to 12. The index i specifies that coins i through 3 are
available, and j is the amount. When i = 3, only the coin of denomination
1 is available. Thus, in the last row, it takes j coins to make change for the
amount j. When i = 2, the coins 6 and 1 are available. For example, the
minimum number of coins to make change for the amount 8 is three—one
coin of denomination 6 and two coins of denomination 1. When i = 1, all of
the coins are available. For example, the minimum number of coins to make
change for the amount 11 is two—one coin of denomination 10 and one coin
of denomination 1.

To solve the i, j-problem, i < n, we must decide whether to use a coin of
denomination denom[i]. If we do not use a coin of denomination denom[i],

8.2 / Coin Changing Revisited 329

in order to achieve the amount j, we must solve the (i+1), j problem. Since
this is a subproblem (i.e., a smaller problem in the sense that fewer coins are
available), we can design our algorithm so that this subproblem is already
solved. Thus, given that we do not use coin i, the minimum number of coins
to make change for the amount j is C[i+ 1][j].

On the other hand, if we use a coin of denomination denom[i], we must
complete the solution by making change for the amount j−denom[i] using
coins of denominations

denom[i] > denom[i+ 1] > · · · > denom[n] = 1.

If we use, say, k coins for the amount j − denom[i], our solution to the
problem of making change for the amount j uses 1 + k coins (since we al-
ready used one coin of denomination denom[i]). To minimize 1 + k, we
must choose k as small as possible. In other words, we must use the min-
imum number of coins to solve the subproblem of making change for the
amount j − denom[i] using coins i through n. (This is an example of the
optimal substructure property , which we discuss thoroughly later in this sec-
tion.) Therefore, we must solve the i, (j − denom[i])-problem. Since this is
also a subproblem (i.e., a smaller problem in the sense the amount is smaller
than the original amount), we can also design our algorithm so that this sub-
problem is already solved. Thus, given that we do use coin i, the minimum
number of coins to make change for the amount j is 1+ C[i][j − denom[i]].

Now, either we use coin i or we don’t! Thus, the solution to the i, j prob-
lem is

C[i][j] =
{
C[i+ 1][j] if denom[i] > j
min{C[i+ 1][j],1+ C[i][j − denom[i]]} if denom[i] ≤ j.

(8.2.1)

Contrast the dynamic programming algorithm outlined in the preceding
paragraphs with the greedy algorithm in Section 7.1. When the greedy algo-
rithm considers using a denomination d for an amount j, if d ≤ j, it uses
it—without regard to the consequences of solving the smaller problem of
making change for the amount d − j. For example, if the available denomi-
nations are 10,6,1 and the amount is 12, the greedy algorithm chooses one
10—without regard to the fact that the resulting problem of making change
for the amount 2 requires two coins. The greedy algorithm thus chooses one
10 and two 1’s. On the other hand, the dynamic programming algorithm con-
siders using denomination d and not using it and picks the better alternative.
In this sense, dynamic programming can be considered an enhancement of
the greedy technique. Again, if the available denominations are 10,6,1 and
the amount is 12, the dynamic programming algorithm considers choosing
a 10. Since this leaves the problem of making change for the amount 2, if
the dynamic programming algorithm chooses a 10, three coins will be re-
quired to make change for the amount 12: one 10 and two 1’s. The dynamic
programming algorithm also considers not choosing a 10. In this case, the
algorithm will make change for the amount 12 using only the denominations

330 Chapter 8 / Dynamic Programming

1 and 6, and the optimal choice is to use two 6’s. Since choosing two 6’s re-
sults in fewer coins than using a 10, the dynamic programming algorithm
chooses two 6’s.

Our dynamic programming algorithm begins by computing C[n][j] for
j = 0 to the specified amount A. Since only the coin of denomination 1 is
available,

C[n][j] = j (8.2.2)

for j = 0 to A. After computing C[i+ 1][j] for all j, it computes C[i][j] in
the order j = 0 to A using equation (8.2.1).

Algorithm 8.2.1 Coin Changing Using Dynamic Programming, Version 1.
This dynamic programming algorithm computes the minimum number of
coins to make change for a given amount. The input is an array denom that
specifies the denominations of the coins,

denom[1] > denom[2] > · · · > denom[n] = 1,

and an amount A. The output is an array C whose value, C[i][j], is the
minimum number of coins to make change for the amount j, using coins i
through n, 1 ≤ i ≤ n, 0 ≤ j ≤ A.
Input Parameters: denom, A
Output Parameter: C

dynamic_coin_change1(denom, A,C) {
n = denom.last
for j = 0 to A
C[n][j] = j

for i = n− 1 downto 1
for j = 0 to A
if (denom[i] > j || C[i+ 1][j] < 1+ C[i][j − denom[i]])
C[i][j] = C[i+ 1][j]

else
C[i][j] = 1+ C[i][j − denom[i]]

}

In Algorithm 8.2.1, the first for loop runs in time Θ(A) and the nested
for loops run in time Θ(nA). Therefore, the run time of Algorithm 8.2.1 is
Θ(nA).

As written, Algorithm 8.2.1 determines the minimum number of coins
but does not tell us which coins to use to achieve the minimum. We can
determine which coins to use by adding a statement to Algorithm 8.2.1 that
records whether coin i is used to make change for the amount j. (We can
determine which coins to use without an auxiliary array by examining the
array C ; see Exercise 7. Here we prefer to show how to use an auxiliary array
since this method has wider applicability.)

Algorithm 8.2.2 Coin Changing Using Dynamic Programming, Version 2.
This dynamic programming algorithm computes the minimum number of

8.2 / Coin Changing Revisited 331

coins to make change for a given amount and tracks which coins are used.
The input is an array denom that specifies the denominations of the coins,

denom[1] > denom[2] > · · · > denom[n] = 1,

and an amount A. The output consists of arrays C and used . The value,
C[i][j], is the minimum number of coins to make change for the amount
j, using coins i through n. The value, used[i][j], is true or false to signify
whether coin i appears in the smallest set of coins computed by Algorithm
8.2.1 for the amount j using only coins i through n. The values of i and j
satisfy 1 ≤ i ≤ n and 0 ≤ j ≤ A.
Input Parameters: denom, A

Output Parameters: C,used

dynamic_coin_change2(denom, A,C,used) {
n = denom.last
for j = 0 to A {
C[n][j] = j
used[n][j] = true

}
for i = n− 1 downto 1
for j = 0 to A
if (denom[i] > j || C[i+ 1][j] < 1+ C[i][j − denom[i]]) {
C[i][j] = C[i+ 1][j]
used[i][j] = false

}
else {
C[i][j] = 1+ C[i][j − denom[i]]
used[i][j] = true

}
}

Example 8.2.3. The used array computed by Algorithm 8.2.2 for the denom-
inations 10,6,1 and amount A = 12 is shown in Figure 8.2.2. ✷

We can now write an algorithm to output a minimum size set of coins
chosen from among coins i throughn for an amount j. The algorithm inputs
the index i, the amount j, the array denom of Algorithm 8.2.2, and the array
used computed by Algorithm 8.2.2.

Algorithm 8.2.4 Computing a Minimum Size Set of Coins for a Given
Amount. This algorithmoutputs aminimum size set of coins tomake change
for an amount j using any of coins i through nwith denominations specified
by Algorithm 8.2.2. The algorithm inputs the index i, the amount j, the array
denom of Algorithm 8.2.2, and the array used computed by Algorithm 8.2.2.

Input Parameters: i, j,denom,used
Output Parameters: None

332 Chapter 8 / Dynamic Programming

j
0 1 2 3 4 5 6 7 8 9 10 11 12

1 F F F F F F F F F F T T F
i 2 F F F F F F T T T T T T T

3 T T T T T T T T T T T T T

Figure 8.2.2 The used array computed by Algorithm 8.2.2 for the denom-
inations 10,6,1 and amount A = 12. used[i][j] is true (T) or false (F) to
signify whether coin i appears in the smallest set of coins computed by Al-
gorithm 8.2.1 for the amount j using only coins i through n. For example,
used[1][11] is true because the minimum set of coins {10,1} for the amount
11 uses a coin of denomination 10. By contrast, used[1][12] is false because
the minimum set of coins {6,6} for the amount 12 does not use a coin of
denomination 10.

optimal_coins_set(i, j,denom,used) {
if (j == 0)
return

if (used[i][j]) {
println(“Use a coin of denomination ”+ denom[i])
optimal_coins_set(i, j − denom[i],denom,used)

}
else
optimal_coins_set(i+ 1, j,denom,used)

}
Algorithm 8.2.4 terminates correctly. Each time the algorithm is called

with j > 0, either i is incremented by 1 or j is decremented at least by 1. If
j becomes 0 before i = n, the algorithm terminates correctly. If i = n and
j > 0, used[i][j] is true so j continually decrements by 1 until it is 0, and
the algorithm also terminates correctly.

When Algorithm 8.2.4 is called as

optimal_coins_set(1, A,denom,used)
j can be decremented at most A times and i can be incremented at most
n − 1 times. Thus, the run time of Algorithm 8.2.4 with i = 1 and j = A,
which outputs a minimum size set of coins chosen from among all available
denominations to make change for the amount A, is O(n+A).

Constructing a Dynamic Programming Algorithm

To construct a dynamic programming algorithm, the first step is to break
the given problem into subproblems using parameters to characterize the
subproblems. The solution to the original problem will be built from these
subproblems. The parameters control the size of the subproblems, and small
problem sizes must be included. The dynamic programming algorithm will
begin by solving small subproblems and end with a solution to the original
problem. For example, to compute the nth Fibonacci number fn (see Section

8.2 / Coin Changing Revisited 333

8.1), fn is given in terms of smaller subproblems fn−1 and fn−2. The param-
eter is the subscript. In this section, to compute the minimum number of
coins, we broke the problem of making change for an amount A using the
fewest number of coins, where the available denominations are

denom[1] > denom[2] > · · · > denom[n] = 1

into subproblems ofmaking change for an amount j using the fewest number
of coins, where the available denominations are

denom[i] > denom[2] > · · · > denom[n] = 1.

The parameter i characterizes the number of coins available, and the param-
eter j varies the amount.

After defining the subproblems, we define the desired quantity to be com-
puted in terms of the parameters. To compute the Fibonacci sequence, the
quantity to compute was, in effect, already defined—namely fn. For the coin-
changing problem, we defined C[i][j] to be the minimum number of coins
for the i, j-problem.

The next step is to obtain initial conditions and a recurrence relation for
the desired quantity. To compute the nth Fibonacci number, we used the
recurrence relation

fn = fn−1 + fn−2
valid for n ≥ 3, and initial conditions

f1 = f2 = 1.

To compute the minimum number of coins, C[i][j], we used the recurrence
relation (8.2.1) and initial conditions (8.2.2).

A dynamic programming algorithm computes the values of the sequence
defined by the recurrence relation and initial conditions. It does so bottom
up; that is, it first uses the initial conditions to compute the trivial cases. It
then uses the recurrence relation to compute the next easiest cases, then the
next easiest cases, and so on, until it computes the solution to the original
problem.

To compute the nth Fibonacci number, the dynamic programming algo-
rithm first computed f1 and f2. The algorithm then computed f3, then f4,
and so on, until it computed the solution fn to the original problem.

To compute the minimum number of coins, the dynamic programming al-
gorithm first computed C[n][j] for all j using the initial conditions (one de-
nomination available). The algorithm then computed the next easiest cases
C[n−1][j] for all j using the recurrence relation (two denominations avail-
able). It then computed the next easiest cases C[n − 2][j] for all j (three
denominations available), and so on, until it computed the solution C[1][A]
to the original problem (all denominations available).

Dynamic programming is most often used to solve an optimization prob-
lem. An optimization problem is a problem that asks for the largest or small-
est value meeting some specified criteria. To compute the instance that gives

334 Chapter 8 / Dynamic Programming

an optimal solution, the algorithmmay track the indexes that lead to optimal
solutions of subproblems. For example, to compute the minimum number
of coins and to construct a set of coins that gives this minimum value, the
dynamic programming algorithm tracked the coins that gave the minimum
values (see Algorithm 8.2.2).

The Optimal Substructure Property

The optimal substructure property is

If S is an optimal solution to a problem, then the components of S are
optimal solutions to subproblems.

In order for a dynamic programming algorithm to solve an optimization
problem correctly, the optimal substructure property must hold.

Example 8.2.5. The optimal substructure property holds for the coin-chang-
ing problem. Given available denominations of coins, if S is a minimum size
set of coins for an amount A and we remove one coin of denomination d
from S, then S, with this coin removed, is a minimum size set of coins for
the amount A− d. ✷

The optimal substructure property does not say that if S1 and S2 are op-
timal solutions to subproblems, then combining S1 and S2 gives an optimal
solution to the original problem. This is the converse of the optimal sub-
structure property.

Example 8.2.6. Suppose that the available denominations are 10,6,1 for the
coin-changing problem. One coin of denomination 1 and one coin of denom-
ination 6 give an optimal solution for the amount 7. Five coins of denomina-
tion 1 give an optimal solution for the amount 5. Combining these solutions,
which results in six coins of denomination 1 and one coin of denomination
6, does not yield an optimal solution for the amount 12.

Thus, for the coin-changing problem, if S1 and S2 are optimal solutions
to subproblems, combining S1 and S2 does not necessarily give an optimal
solution to the original problem; the converse of the optimal substructure
property does not hold for the coin-changing problem. As we observed ear-
lier, the optimal substructure property does hold for this problem. ✷

We close with an example of a problem for which the optimal substructure
property does not hold.

Example 8.2.7. We show that the optimal substructure property does not
hold for the longest simple path problem: Given a connected, weighted graph
G and vertices v and w in G, find a longest simple path in G from v to w
(a simple path is a path with no repeated vertices). Assume that all of the
weights in G are positive.

By inspection, a longest simple path in the graph of Figure 8.2.3 from
vertex 1 to vertex 4 is 1,3,4. If the optimal substructure property holds for
the longest simple path problem, then 1,3 is a longest simple path from 1 to

8.2 / Coin Changing Revisited 335

3. But 1,3 is not a longest simple path from 1 to 4 because 1,2,4,3 is longer.
Therefore, the optimal substructure property does not hold for the longest
simple path problem.

� �

� �

1 2 2

8 3

3 10 4

Figure 8.2.3 A graph that shows that the optimal substructure property
does not hold for the longest simple path problem. A longest simple path
from vertex 1 to vertex 4 is 1,3,4, but 1,3 is not a longest simple path from
vertex 1 to vertex 3.

It can be shown that the longest simple path problem is NP-complete and
is, therefore, unlikely to have a polynomial-time algorithm. ✷

Exercises

In Exercises 1–3, show the array C computed by Algorithm 8.2.1 for the
given denominations and the amount A = 12.

1S. 10,5,1 2. 10,3,1 3. 10,7,1

In Exercises 4–6, show the array used computed by Algorithm 8.2.2 for the
given denominations and the amount A = 12.

4S. 10,5,1 5. 10,4,1 6. 10,3,1

7S. Write an algorithm whose input is an index i ≤ n, an amount j ≤ A,
the array denom, and the array C , and whose output is a minimal set of
coins to make change for the amount j. Algorithm 8.2.1 describes i, n,
A, denom, and C . What is the worst-case time of your algorithm?

8. Write a version of Algorithm8.2.1 inwhich the output is a one-dimensional
array C′ in which C′[j] is equal to the minimum number of coins for the
amount j using all available coins (i.e., C′[j] = C[1][j] for all j, where
C is the output of Algorithm 8.2.1). Your algorithm must use only O(n)
storage cells. What is the worst-case time of your algorithm?

9. Show that the optimal substructure problem holds for the shortest-path
problem: Given a connected, weighted graph G and vertices v and w in
G, find a shortest path in G from v to w. Assume that all of the weights
in G are positive.

10S. Show that the converse of the optimal substructure property does not
hold for the shortest-path problem.

336 Chapter 8 / Dynamic Programming

11. Does the converse of the optimal substructure property hold for the
longest simple path problem?

