
Preface

This book can be used for a one-term or two-term course in Java and for

self-study. Chapters 9 and 10 have su�cient material for an introductory

course in network programming and distributed systems. The book assumes

no prior knowledge of Java or object-oriented programming, but the book

does assume programming experience. The reader should be familiar with

general programming concepts such as variable, data type, and statement;

programming constructs such as statement sequencing, function calls, tests,

and loops; and programming practices such as design, coding, and testing.

The book makes extensive use of examples, tables, �gures, self-study ex-

ercises, sample applications, lists of common programming errors and safe

practices, and programming exercises. Throughout the book, my goal is to

write clear code and to illustrate sound programming practices. All of the

code in the book has been compiled and run under Java 2. The book also

draws many of its examples from Java's own standard classes so that the

Java packages are introduced in a natural, gradual way.

The Special Challenges of Java

This book is based on courses that I have been teaching regularly and on

my experience in writing textbooks, with Richard Johnsonbaugh, on C and

C++. The Java courses serve three di�erent audiences, which has been

helpful in developing pedagogical techniques for presenting the language.

One audience consists of undergraduate majors in computer science and

information systems with prior coursework in another language, typically

C++ or Visual Basic. The second audience consists of graduate students

with strong programming skills and 
uency in C/C++ or ML. The third

audience consists of professional programmers with experience in various

languages such as assembler, C, Perl, and COBOL. Despite di�erences in

background, programmers intent on learning Java face challenges that re
ect

the language's most attractive features:

i



ii Preface

� Java is a general-purpose language with the rich assortment of data

types, operators, control structures, and standard packages that be�ts

this status. Although the book o�ers full coverage of Java, it does so

without overwhelming the reader. I focus �rst on the relatively simple

cases before moving to the more complicated ones. To take a basic

example, Java has three loop constructs: the for loop, the while loop,

and the do while loop. Of the three, the while loop has the simplest

syntax and semantics. The while loop is thus presented �rst and the

other loop structures are then clari�ed with reference to it. To take

a more advanced example, Java supports graphics through both the

Abstract Window Toolkit (AWT) and the Swing set. Although the

Swing set is more 
exible and powerful, the Abstract Window Toolkit

is simpler; hence, the graphics coverage starts with basic AWT examples

then moves to Swing set examples.

� Java is an object-oriented programming language. Although Java has

primitive types such as int and double, every program requires at least

one class. All functions are encapsulated in classes as either construc-

tors or methods, and variables are either encapsulated �elds or local

variables in constructors and methods. Java has only single inheritance

for classes but a class may implement arbitrarily many interfaces; and

Java supports multiple inheritance for interfaces. Java also has abstract

as well as concrete classes. Further, methods and �elds can be associ-

ated either with a class itself (static methods and �elds) or with class

instances or objects (nonstatic methods and �elds). Object-oriented

constructs such as polymorphism are widely used within Java's own

standard classes. Although Java is an elegant object-oriented language,

special attention still must be given to the reader who comes to Java

from an exclusively or even primarily procedural background. This

book addresses object orientation in two ways:

{ The �rst chapter clari�es the basic concepts, constructs, and ben-

e�ts of object-oriented design and programming. The chapter ex-

plains key terms such as class, object, information hiding, encap-

sulation, inheritance, and message passing. The chapter also has a

section on UML to introduce modern approaches to object-oriented

design.

{ The book's short programs and longer sample applications present

object-oriented programming as a natural and intuitive approach

to programming. The goal is to illustrate the bene�ts to the pro-

grammer that object orientation brings.

� Java is a modern programming language with standard packages to sup-

port graphics, networking, security, persistence, database, re
ection,

components|and more. Java is large and growing. The standard java

packages have been augmented by the javax packages (the x stands



Preface iii

for extension) and by many excellent commercial packages. The �rst

seven chapters focus on core language features and the last three chap-

ters then illustrate how these core features support networking in many

forms (e.g., sockets, applets, servlets, remote method invocation, and

object request brokers), database, security, and component-based pro-

gramming. All ten chapters draw frequent examples from Java's own

standard classes to give the reader an on-going introduction to Java's

rich class libraries.

Chapter Overviews

The book has ten chapters, all of which include self-study exercises at the

end of sections. Solutions to odd-numbered section exercises are included in

the book, and the instructor CD-ROM has solutions to the even-numbered

section exercises. All of the chapters except for the �rst have programming

exercises and a list of common programming errors and safe practices. The

book has

� Over 600 end-of-section exercises with answers to odd-numbered exer-

cises.

� Over 140 programming exercises.

� 13 major sample applications and over 150 additional full programs.

Many chapters have a Java Postscript to handle special topics such as

the 2's complement representation of integers, the volatile modi�er, and

deprecated Thread methods. The chapters include short programs as well as

longer sample applications. All of the source code for programs and sample

applications is available on the book's CD-ROM and at the Web site. The

chapters can described as follows:

� Chapter 1: Object-Oriented Programming. This chapter ex-

plains the basic concepts and advantages of object-oriented design and

programming, which are contrasted with top-down design and proce-

dural programming. Central concepts such as class, object, inheritance,

polymorphism, abstract data type, message passing, interface, and com-

ponent are clari�ed and illustrated. Although the chapter includes some

brief Java examples, the emphasis is on object-oriented programming

in general. The chapter includes a section on UML with an overview

of the modeling language and various examples of UML diagrams. The

section also indicates how UML models can guide coding.

� Chapter 2: Introductory Programs. This chapter provides a series

of short but realistic programs so that the reader is exposed at once to

the \look and feel" of Java code. The sections and the section exercises

suggest ways in which the programs can be adapted and expanded

so that the reader can gain quick experience with Java programming.

The chapter begins with a traditional Hello, world! program and then



iv Preface

introduces other short programs to illustrate variables of primitive and

class types, variable declarations and assignments, control structures

such as tests and loops, constructor and method invocation, and arrays.

Writing, documenting, compiling, and running programs is explained

carefully. The chapter assumes that the reader compiles and executes

from the command line using the JDK for Java 2.

Some of the programs are paired with one program in the pair process-

ing randomly generated numbers and the other reading data from a disk

�le. The chapter's second introductory program called BigAndSmall is

an example. The program selects the largest and smallest integers from

a sequence. In one version, the integers are randomly generated using

the standard java.util.Random class; in a second version, the integers

are read from a local disk �le. The two versions together provide the

reader with early, alternative examples of generating input data. A

similar approach is taken with output: one program in a pair writes to

the standard output, whereas the other program writes to a local disk

�le.

The chapter has a section dedicated to strings, introducing both the

String and the StringBuffer classes. The section on the String class

also emphasizes how the writing of a test client facilitates learning the

language.

The three remaining sections cover programmer-de�ned classes, further

basics of the java.io package, and the three sample utility classes:

Vector, Hashtable, and StringTokenizer. The sample programs

again are short but perform familiar, realistic programming tasks such

as sorting.

� Chapter 3: Programs and Packages. This chapter explains the

role of the Java Virtual Machine and the relationships among program

types such as application, applet, servlet, and bean. The chapter re-

views and extends the coverage of source (java) and compiled (class)

�les. The chapter also introduces the package statement and clari�es

the CLASSPATH environment variable. The use of subdirectories as sub-

packages is covered as well. The chapter has a sample application with

a programmer-de�ned package. Many reference �gures, including lists

of the standard java and javax packages, are included for convenience.

� Chapter 4: Language Fundamentals. This chapter covers language

fundamentals, including identi�ers, primitive and class data types, con-

trol structures, operators, arrays, and exceptions. The chapter has a

section to review constructors and methods and then to extend cover-

age of these key topics. The chapter is organized carefully into sections

and subsections so that the chapter can be used as a reference as well as

an introduction to basic Java. My assumption is that the reader would

return repeatedly to selected sections in the chapter. For instance, the



Preface v

reader might delay a careful reading the section on the switch con-

struct until a programming need arises. Some specialized language fea-

tures such as the bitwise operators are explained in the Java Postscript

rather than the chapter's main body. The chapter includes a sample

application.

� Chapter 5: Classes. This chapter provides a comprehensive and

technical coverage of classes. The chapter examines class and mem-

ber scope, information hiding, encapsulation, constructors, methods,

and �elds. The chapter explains how technical aspects of class seman-

tics can be used to achieve practical goals. For example, a subsection

explains how selective constructor de�nition can be used to restrict

object construction. The chapter also examines the key role of the

no-argument constructor.

The chapter includes a section on using class libraries such as Java's

own standard libraries. This section reviews the use of test clients to

gain 
uency in a class, and underscores again the relationship between

the exposed and hidden in a class.

The chapter's �rst sample application provides two classes, BasicInput

and BasicOutput, that illustrate the usefulness of wrapper classes. The

two classes support the high-level input and output with intuitive con-

structors and methods. For instance, BasicInput objects can be con-

structed with either the standard input or a disk �le as the source.

Methods such as getRecord and getDouble are straightforward. This

sample application, together with the introductory programs in Chap-

ter 2 that use the java.io package for both binary and character in-

put/output, provide su�cient examples to write programs that perform

realistic input and output operations.

The second sample application has a graphical component to illustrate

how graphics is integrated into the language. The early use of graphics

underscores that a program can be furnished with graphical components

even before the full details of Java's graphics packages are mastered.

� Chapter 6: Inheritance, Interfaces, and Abstract Classes. This

chapter extends the material covered in Chapter 5 by explaining inheri-

tance, interfaces, and abstract classes. The chapter introduces the tech-

nical aspects of polymorphism and underscores its power with a series

of short programs and a sample application on polymorphic input and

output. The chapter goes into the details of constructors under inher-

itance, method overriding, and the use of interfaces in object-oriented

programming.

The chapter explains the di�erences between interfaces and classes, un-

derscoring the object-oriented dictum about \programming to the inter-

face." Examples of standard Java interfaces and programmer-de�ned

interfaces are included. The chapter's last section introduces abstract



vi Preface

classes by contrasting these with concrete classes and interfaces. The

section emphasizes that abstract classes are bona �de classes with spe-

cial uses.

� Chapter 7: Graphics and Event Handling. This chapter be-

gins with an overview of the Abstract Window Toolkit (AWT) and

the Swing set, event-driven programming, and the Java event model.

The chapter emphasizes common features between the AWT and the

Swing set by focusing on fundamental constructs such as container and

component. The chapter discusses the relationship between \heavy-

weight" and \lightweight" components and how this distinction relates

to the AWT and the Swing set. A section on the model-view-controller

architecture presents a foundational view of Swing set graphics. The

chapter's many programs and two sample applications illustrate framed

windows, dialogs, fonts, colors, layout managers, and controls such

as buttons, menus, menu bars and tool bars, lists, checkboxes, and

scrollbars. Basic drawing and images are also covered. The emphasis

throughout is on practical approaches to graphics programming. For

this reason, many short programs are used to focus on particular topics

such as closing windows or using popup menus.

The chapter emphasizes Swing set graphics wherever feasible but uses

the relatively simpler AWT to illustrate some key ideas. The two sample

applications introduce the high-level Swing set components JTree and

JTable.

� Chapter 8: Three Interfaces. This chapter examines three key in-

terfaces: Cloneable, Serializable, and Runnable. The �rst section

explains the di�erences among object construction, the copying of ob-

ject references, and cloning. The section discusses and illustrates the

dangers of cloning objects whose �elds include object or array refer-

ences. There are subsections on overriding the default clone method,

disabling cloning, and cloning arrays.

The chapter's second section introduces serialization and object persis-

tence. The section covers not only the basics but also technical details

such as serialization for objects whose superclass does not implement

Serializable, the serial version number, and the dangers of serial-

izing the same object repeatedly to the same stream. The di�erence

between serialization and writing primitive types to binary streams is

clari�ed. Customized serialization is examined and motivated through

a series of related examples, all of which are short but complete pro-

grams. There are subsections on disabling serialization and implement-

ing Externalizable. A sample application on a serializable time card

is included to review and consolidate the material. Chapter 9 on net-

working extends the discussion by covering serialization and sockets,

and Chapter 10 covers the relationship between serialization and beans.



Preface vii

The third section o�ers a comprehensive introduction to multithread-

ing. The section begins with a detailed examination of the di�erences

between single-threaded and multithreaded applications, using full pro-

gram examples to illustrate the bene�ts and basics of multithreading.

The section covers thread priorities, the distinction between user and

daemon threads, the relationship between start and run, the recom-

mended way to stop threads, and the use of the join method. The

section also explains thread groups. Once the basics have been ex-

amined, the section then illustrates and discusses the need for thread

synchronization. Issues of deadlock, starvation, and fairness are covered

in this section and in the sample application on the dining philosophers

problem. Basic concepts such as critical section, mutual exclusion, and

lock are explained and then illustrated with Java constructs. Chapter 9

on networking extends the discussion with examples of multithreaded

servers.

� Chapter 9: Network Programming. This chapter covers network-

ing in Java. The chapter begins with an overview section on networking

basics, in particular on the TCP/IP protocol suite. Addresses, packets,

transport protocols, sockets, �rewalls, proxy servers, and other funda-

mental concepts are explained. A section on sockets follows. This sec-

tion covers client Sockets, ServerSockets, and DatagramSockets with

various examples. MulticastSockets are also clari�ed. For motivation,

the chapter's examples are full programs, some of which implement fa-

miliar utilities such as a port tester and a �nger program. The section

highlights the power of serialization over sockets. A sample application

illustrates a multithreaded server.

The chapter's third section presents a thorough coverage of applets, in-

cluding the issue of sandbox security. The section begins with elemen-

tary examples that can be adapted readily for experimentation. There

is a multimedia applet and a discussion of applets and jar �les. The

section illustrates how applets can communicate with one another and

how programs other than Web browsers can serve as host programs for

applets. There is a sample program, a Java application, that downloads

and then displays an applet in the application's own framed window.

This section also highlights Java's support for URLs and other network-

ing constructs. Although applets can be run on a standalone machine,

this section emphasizes their usefulness in a distributed, client/server

system. A sample application shows how an applet order form can use

a socket to send information back to the server.

The fourth section covers RMI. After motivating RMI, the section pro-

vides a step-by-step explanation of setting up an RMI server and client.

The section explains the role of the registry and RMI activation. A �nal

subsection introduces Jini, clarifying its relationship to RMI. A sam-



viii Preface

ple application on matrix algebra operations reviews and extends the

RMI material. In particular, the sample application o�ers a realistic

example of how RMI could be used in a distributed system.

The chapter's �nal section covers object-request brokers in general and

CORBA in particular. Like the RMI section, this section o�ers a step-

by-step explanation of setting up a CORBA server and client. The

section covers the IDL �le, the idltojava utility, CORBA modules and

interfaces, language and location transparency, naming services, the

dynamic invocation interface, and IIOP with respect to the convergence

of RMI and CORBA technologies. The Java Postscript clari�es how an

applet can be a CORBA client.

The chapter explains how distributed applications can be developed

and tested on a standalone machine using the localhost IP address.

This chapter together with Chapter 10 has su�cient material for an

introductory course in network programming or distributed systems.

� Chapter 10: Selected Topics. This chapter covers special topics

divided into four sections. The �rst section is devoted to component-

based programming using Java beans. The section underscores how

bean technology, including Enterprise Java Beans, leverages basic Java

constructs such as serialization, interfaces, properties as pairs of get/set

methods, and the event model. The section introduces and clari�es the

beanbox utility for developing and testing beans. The section explains

how property change events can be used for bean interaction.

The second section deals with security and cryptography. The secu-

rity roles of the the compiler, the bytecode veri�er, and the security

manager are examined. The section emphasizes the use of high-level

security constructs such as the access controller and policy �les. The

subsection on security o�ers several illustrations of permissions for im-

plementing security. Some examples such as the ones on sandbox secu-

rity review and extend earlier sections. The subsection on cryptography

�rst presents an overview of Java library support and then focuses on

authentication. The relationships among message digests, public and

private keys, and digital signatures is explained. The approach is a

step-by-step discussion and illustration of how digital signatures are

used on the sender and the receiver sides. Several short examples and

one longer one illustrate Java support for authentication.

The third section, on re
ection, is also example-based. This section �rst

presents an overview of Java's support for run-time class information

and then illustrates with several examples. For instance, the section

shows how basic information about a class can be reconstructed from

a class �le using re
ection technology. The section also extends the

discussion of beans by showing how re
ection technology underlies the

dynamic construction of property sheets in utilities such as the beanbox.



Preface ix

The fourth section covers servlets and database. Together with the

sample application on database webi�cation, this material extends the

network programming covered in Chapter 9. After introducing servlet

basics, the fourth section o�ers several short examples that the reader

can extend. A subsection then explains how JDBC works and how

database and servlet technology are commonly integrated. The exam-

ples use the sample Northwind database that comes with Microsoft's

Access relational database management system. However, the examples

are su�ciently modular so that they could be adapted straightforwardly

to other databases. The coverage of JDBC emphasizes the core features

such as connection, query, and result set. The sample application then

illustrates the integration of servlet and database technology. In the

sample application, one servlet presents a list of products in HTML.

After the user selects a product, a second servlet generates an HTML

list of customers who purchased the product. The data for both lists

resides in a database. The application again is designed to be readily

adaptable.

Chapter Structure

The basic chapter organization is as follows:

Contents

Overview

Section

Section Exercises

Section

Section Exercises

: : :

Java Postscript

Common Errors and Safe Practices

Programming Exercises

Chapters 3 through 10 have 13 sample applications. A sample applica-

tion section contains a statement of a problem, sample input and output,

a solution to the problem, and a Java implementation of a solution to the

problem. The section concludes with an extended discussion of the Java

implementation and program development. The sample applications include

the following:

� Random number generation through a wrapper class (Section 3.4)

� Basic input and output classes (Section 5.4)

� A graphical utility for �le copying (Section 5.5)

� Polymorphic input and output operations (Section 6.3)

� Graphical directory assistance (Section 7.4)



x Preface

� A graphical table editor (Section 7.6)

� A serializable time card (Section 8.3)

� A multithreaded simulation of the dining philosophers problem (Section

8.5)

� A socketed applet with a membership form (Section 9.5)

� Matrix algebra operations using RMI (Section 9.7)

� Database webi�cation using servlets (Section 10.5)

The Java Postscript sections discuss highly specialized parts of the lan-

guage and give additional technical details about language features.

The Common Errors and Safe Practices sections highlight those aspects

of the language that are easily misunderstood.

The book contains more than 140 programming exercises drawn from a

wide variety of applications. The programming exercises di�er in di�culty

from the relatively straightforward to the highly challenging.

About This Book

This book includes:

� Examples and exercises that cover a wide range of applications.

� Motivating real-world applications.

� A broad variety of programming exercises. The book contains over 140

programming exercises.

� End-of-chapter lists of common programming errors and safe practices.

� Exercises at the ends of sections so that readers can check their mastery

of the sections. The book contains over 600 such exercises. Answers to

the odd-numbered section exercises are given in the back of the book,

and answers to the even-numbered section exercises are provided on the

instructor CD-ROM.

� Figures to facilitate the learning process.

Examples

The book contains 270 numbered examples, which clarify particular facets

of Java. Most numbered examples are full programs or class de�nitions. A

box marks the end of each example.

Exercises

The book contains over 600 section review exercises, the answers to which are

short answers, code segments, and, in a few cases, entire programs. These

exercises are suitable as homework problems or as self-tests. The answers to

the odd-numbered exercises are given in the back of the book. The Web site

includes additional materials for self-study. My experience teaching Java has

convinced me of the importance of these exercises.



Preface xi

Student and Instructor Support Materials

The book includes a CD-ROM with the JBuilder Integrated Development

Environment for Java and the source code for all of the sample applications

and major examples. The Java source code is also available at

http://condor.depaul.edu/~mkalin

The Instructor CD-ROM and Web Site provide full instructional support

for courses using the text. The Instructor CD-ROM includes

� Solutions to even-numbered Section Exercises.

� Source code for the sample applications and main programs.

� Test suites consisting of multiple-choice questions for each chapter.

There are over 160 multiple choice questions.

� Chapter outlines as Power Point slides.

� A sample syllabus.

The Web site's instructional support includes true/false review questions

for each chapter. There are over 100 such questions. Source code for all of

the sample applications and main programs also is available at the Web site.

Acknowledgments

I wish to thank the following reviewers for their generous help: Sergio Antoy,

Portland State University; Chaya Gurwitz, CUNY Brooklyn College; Rex

Jaeschke, independent consultant; and Celia Schahczenski, Montana Tech of

the University of Montana.

I am indebted to the School of Computer Science, Telecommunications,

and Information Systems at DePaul University and its dean, Helmut Epp,

for encouraging the development of this book.

Once again I am grateful to Patricia Johnsonbaugh for her patient and

insightful copy editing.

I received consistent support from the people at Prentice Hall. Special

thanks go to Petra Recter, Senior Acquisitions Editor; Jennie Burger, Senior

Marketing Manager; Sarah Burrows, Assistant Editor; and Irwin Zucker,

Production Coordinator.

M.K.


