A NOTE ABOUT FLUX CHANGE IN FARADAY'S LAW

Recall that magnetic flux is defined as:

 $\Phi_{\rm B} = BA\cos\theta$ (text, equation 20.1, page 733).

(See Figure 20.2 in the text.)

Faraday's law of induction gives induced emf (equation 20.2, top of page 667) as:

$$\mathcal{E} = -N \frac{\triangle \Phi_{B}}{\triangle t}$$
.

The change of flux, $\Delta\Phi_{\rm B}$, can result from a change of field, ΔB , or a change of area, ΔA , or a change of angle, $\Delta \theta$, over a time interval Δt .

If the <u>area</u> changes, use $\Delta\Phi_{\rm B} = B \cdot \Delta A$.

If the field changes, use $\triangle \Phi_{\rm B} = A \cdot \triangle B$.

If the <u>angle</u> changes, use $\Delta\Phi_{\mathbf{B}} = BA(\cos\theta_{\mathbf{f}} - \cos\theta_{\mathbf{i}})$.