

CAPACITANCE – Part 2

The RC Circuit

When the switch S is closed. the initial current 3 \mathcal{E}/R decreases over time as charges collect on the plates. $I_0 = \mathcal{E}/R$ $I = I_0 e^{-t/RC}$ © 2006 Brooks/Cole - Thomson

 $Q = C\mathcal{E}$

and the voltage across the plates approaches *E*.

The charging time depends on the *time constant*, $\tau = RC$. At time $t = \tau$ the capacitor has reached 63.2% of its maximum charge.

© 2006 Brooks/Cole - Thomson

In a circuit with a large time constant, the capacitor charges very slowly.

The capacitor charges very quickly if there is a small time constant.

After $t = 10\tau$, the capacitor is over 99.99% charged

When a charged capacitor is placed in the circuit, it discharges exponentially.

 $q = Qe^{-t/RC}$

At $t = \tau = RC$, the charge decreases to 0.368 Q_{max} . In other words, in one time constant, the capacitor loses 63.2% of its initial charge.

2006 Brooks/Cole - Thomson

Capacitor discharge: $q = Q_0 e^{-t/RC}$

Charge and discharge current: $I = I_0 e^{-t/RC}$, $I_0 = \mathcal{E}/R$

Potential difference across capacitor Discharge: $V = \mathcal{E}e^{-t/RC}$