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Abstract. We describe a general method of arithmetic coding of geodesics on the modular
surface based on the study of one-dimensional Gauss-like maps associated to a two-
parameter family of continued fractions introduced in [Katok and Ugarcovici. Structure
of attractors for (a, b)-continued fraction transformations. J. Modern Dynamics 4 (2010),
637–691]. The finite rectangular structure of the attractors of the natural extension
maps and the corresponding ‘reduction theory’ play an essential role. In special cases,
when an (a, b)-expansion admits a so-called ‘dual’, the coding sequences are obtained
by juxtaposition of the boundary expansions of the fixed points, and the set of coding
sequences is a countable sofic shift. We also prove that the natural extension maps are
Bernoulli shifts and compute the density of the absolutely continuous invariant measure
and the measure-theoretic entropy of the one-dimensional map.

1. Introduction and background
In [16], the authors studied a new two-parameter family of continued fraction
transformations. These transformations can be defined using the standard generators
T (x)= x + 1, S(x)=−1/x of the modular group SL(2, Z) and considering fa,b : R̄→ R̄
given by

fa,b(x)=


x + 1 if x < a,

−
1
x

if a ≤ x < b,

x − 1 if x ≥ b.

(1.1)

Under the assumption that the parameters (a, b) belong to the set

P = {(a, b) | a ≤ 0≤ b, b − a ≥ 1,−ab ≤ 1},
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one can introduce corresponding continued fraction algorithms by using the first return
map of fa,b to the interval [a, b). Equivalently, these so-called (a, b)-continued fractions
can be defined using a generalized integral part function:

bxea,b =


bx − ac if x < a,

0 if a ≤ x < b,

dx − be if x ≥ b,

(1.2)

where bxc denotes the integer part of x and dxe = bxc + 1.
A starting point of the theory is the following result [16, Theorem 2.1]: if (a, b) ∈ P ,

then any irrational number x can be expressed uniquely as an infinite continued fraction of
the form

x = n0 −
1

n1 −
1

n2 −
1

. . .

= bn0, n1, . . .ea,b (nk 6= 0 for k ≥ 1),

where n0 = bxea,b, x1 =−1/(x − n0) and nk+1 = bxk+1ea,b, xk+1 =−1/(xk − nk), i.e.
the sequence of partial fractions rk = bn0, n1, . . . , nkea,b converges to x .

It is possible to construct (a, b)-continued fraction expansions for rational numbers,
too. However, such expansions will terminate after finitely many steps if b 6= 0. If b = 0,
the expansions of rational numbers will end with a tail of 2s, since 0= b1, 2, 2, . . .ea,0.

The above family of continued fraction transformations contains three classical
examples: the case a =−1, b = 0 described in [12, 22] gives the ‘minus’ (backward)
continued fractions, the case a =−1/2, b = 1/2 gives the ‘closest-integer’ continued
fractions considered first by Hurwitz in [9], and the case a =−1, b = 1 was presented
in [14, 19] in connection with a method of coding symbolically the geodesic flow on
the modular surface following Artin’s pioneering work [6] and corresponds to the regular
‘plus’ continued fractions with alternating signs of the digits.

The main object of study in [16] is a two-dimensional realization of the natural
extension map of fa,b, Fa,b : R̄2

\1→ R̄2
\1, 1= {(x, y) ∈ R̄2

| x = y}, defined by

Fa,b(x, y)=


(x + 1, y + 1) if y < a,(
−

1
x
,−

1
y

)
if a ≤ y < b,

(x − 1, y − 1) if y ≥ b.

(1.3)

Here is the main result of that paper.

THEOREM 1.1. [16] There exists an explicit uncountable set E of one-dimensional
Lebesgue measure zero that lies on the diagonal boundary b = a + 1 of P such that:
(1) for all (a, b) ∈ P\E the map Fa,b has an attractor Da,b =

⋂
∞

n=0 Fn
a,b(R̄

2
\1) on

which Fa,b is essentially bijective;
(2) the set Da,b consists of two (or one, in degenerate cases) connected components each

having finite rectangular structure, i.e. bounded by non-decreasing step-functions
with a finite number of steps;
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(3) almost every point (x, y) of the plane (x 6= y) is mapped to Da,b after finitely many
iterations of Fa,b.

Figure 1 shows the attractor Da,b in the case a =−4/5 and b = 2/5.

FIGURE 1. Attracting domain Da,b for a =− 4
5 , b = 2

5 .

An essential role in the argument is played by the forward orbits associated to a and b:
to a, the upper orbit Ou(a) (i.e. the orbit of Sa) and the lower orbit O`(a) (i.e. the orbit
of T a); and to b, the upper orbit Ou(b) (i.e. the orbit of T−1b) and the lower orbit O`(b)
(i.e. the orbit of Sb). It was proved in [16] that if (a, b) ∈ P\E , then fa,b satisfies the
finiteness condition, i.e. for both a and b, their upper and lower orbits are either eventually
periodic, or they satisfy the cycle property, i.e. they meet forming a cycle; more precisely,
there exist k1, m1, k2, m2 ≥ 0 such that

f m1
a,b (Sa)= f k1

a,b(T a)= ca (respectively, f m2
a,b (T

−1b)= f k2
a,b(Sb)= cb),

where ca and cb are the ends of the cycles. If the products of transformations over the upper
and lower sides of the cycle are equal, the cycle property is strong; otherwise it is weak. In
both cases the set La,b of the corresponding values is finite; ends of the cycles belong to
the set La,b if and only if they are equal to 0, i.e. if the cycle is weak. The structure of the
attractor Da,b is explicitly ‘computed’ from the finite set La,b.

The paper is organized as follows. In §2 we give some background information about
geodesic flows and their representations as special flows over symbolic dynamical systems,
and define the coding map. In §3 we describe the reduction procedure for coding geodesics
via (a, b)-continued fractions based on the study of the attractor of the associated natural
extension map, define the corresponding cross-section set, and introduce the notion of
reduced geodesic. In §4 we prove that the first return map to the cross-section corresponds
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to a shift of the coding sequence (Theorem 4.1) and, as a consequence, show that (a, b)-
continued fractions satisfy the tail property, i.e. two SL(2, Z)-equivalent real numbers
have the same tails in their (a, b)-continued fraction expansions. In §5 we introduce a
notion of a dual code and show that if an (a, b)-expansion has a dual (a′, b′)-expansion,
then the coding sequence of a reduced geodesic is obtained by juxtaposition of the (a, b)-
expansion of its attracting endpoint w and the (a′, b′)-expansion of 1/u, where u is its
repelling endpoint. We also prove that if the (a, b)-expansion admits a dual, then the set
of admissible coding sequences is a sofic shift (Theorem 5.8). In §6 we derive formulas
for the density of the absolutely continuous invariant measure and the measure-theoretic
entropy of the one-dimensional Gauss-type maps and their natural extensions. We also
prove that the natural extension maps are Bernoulli shifts. Finally, in §7 we apply results
of [16] to obtain explicit formulas for invariant measure for the one-dimensional maps for
some regions of the parameter set P .

2. Geodesic flow on the modular surface and its representation as a special flow over a
symbolic dynamical system

Let H= {z = x + iy : y > 0} be the upper half-plane endowed with the hyperbolic metric,
F = {z ∈H : |z| ≥ 1, |Re z| ≤ 1/2} be the standard fundamental region of the modular
group PSL(2, Z)= SL(2, Z)/{±I }, and M = PSL(2, Z)\H be the modular surface. Let
SH denote the unit tangent bundle of H. We will use the coordinates v = (z, ζ ) on SH,
where z ∈H, ζ ∈ C, |ζ | = Im(z). The quotient space PSL(2, Z)\SH can be identified
with the unit tangent bundle of M , SM , although the structure of the fibered bundle has
singularities at the elliptic fixed points (see [11, §3.6] for details). Recall that geodesics
in this model are half-circles or vertical half-rays. The geodesic flow {ϕ̃t

} on H is defined
as an R-action on the unit tangent bundle SH which moves a tangent vector along the
geodesic defined by this vector with unit speed. The geodesic flow {ϕ̃t

} on H descends to
the geodesic flow {ϕt

} on the factor M via the canonical projection

π : SH→ SM (2.1)

of the unit tangent bundles. Geodesics on M are orbits of the geodesic flow {ϕt
}.

A cross-section C for the geodesic flow is a subset of the unit tangent bundle SM visited
by (almost) every geodesic infinitely often both in the future and in the past. In other words,
every v ∈ C defines an oriented geodesic γ (v) on M which will return to C infinitely
often. The ‘ceiling’ function g : C→ R giving the time of the first return to C is defined
as follows: if v ∈ C and t is the time of the first return of γ (v) to C , then g(v)= t . The
map R : C→ C defined by R(v)= ϕg(v)(v) is called the first return map. Thus {ϕt

} can
be represented as a special flow on the space

Cg
= {(v, s) : v ∈ C, 0≤ s ≤ g(v)},

given by the formula ϕt (v, s)= (v, s + t) with the identification (v, g(v))= (R(v), 0)
(see Figure 2).

Let N be a finite or countable alphabet, N Z
= {x = {ni }i∈Z | ni ∈N } be the space of

all bi-infinite sequences endowed with the Tikhonov (product) topology,

σ :N Z
→N Z defined by (σ x)i = ni+1
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FIGURE 2. Geodesic flow is a special flow.

be the left shift map, and 3⊂N Z be a closed σ -invariant subset. Then (3, σ) is called a
symbolic dynamical system. There are some important classes of such dynamical systems.
The space (N Z, σ ) is called the full shift (or the topological Bernoulli shift). If the space
3 is given by a set of simple transition rules which can be described with the help of a
matrix consisting of zeros and ones, we say that (3, σ) is a one-step topological Markov
chain or simply a topological Markov chain (also called a subshift of finite type). A factor
of a topological Markov chain is called a sofic shift. (See [10, §1.9] for the definitions.)

In order to represent the geodesic flow as a special flow over a symbolic dynamical
system, one needs to choose an appropriate cross-section C and code it, i.e. to find an
appropriate symbolic dynamical system (3, σ) and a continuous surjective map Cod :
3→ C (in some cases the actual domain of Cod is 3 except a finite or countable set
of excluded sequences) defined such that the diagram

3
σ //

Cod
��

3

Cod
��

C
R // C

is commutative. We can then talk about coding sequences for geodesics defined up to a
shift which corresponds to a return of the geodesic to the cross-section C . Notice that
usually the coding map is not injective but only finite-to-one (see [2, §§3.2 and 5]).

There are two essentially different methods of coding geodesics on surfaces of constant
negative curvature. The geometric code, with respect to a given fundamental region, is
obtained by a construction universal for all Fuchsian groups. The second method is specific
to the modular group and is of arithmetic nature: it uses continued fraction expansions of
the end points of the geodesic at infinity and a so-called reduction theory (see [14, 15] for
the three classical cases). Here we will describe a general method of arithmetic coding via
(a, b)-continued fractions that is based on study of the attractor of the associated natural
extension map. This approach, coupled with ideas of Bowen and Series [7], may be useful
for coding of geodesics on quotients by general Fuchsian groups.

3. The reduction procedure
In what follows we will denote the end points of geodesics on H by u andw, and whenever
we refer to such geodesics, we use (u, w) as their coordinates on R̄2 (u 6= w).
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The reduction procedure for symbolically coding the geodesic flow on the modular
surface via continued fraction expansions was presented for the three classical cases
in [14]; for a survey on symbolic dynamics of the geodesic flow see also [15]. Here we
describe the reduction procedure for (a, b)-continued fractions and explain how it can be
used for coding purposes.

Let γ be an arbitrary geodesic on H from u to w (irrational end points), and w =
bn0, n1, . . .ea,b. We construct the sequence of real pairs {(uk, wk)} (k ≥ 0) defined by

u0 = u, w0 = w and wk+1 = ST−nkwk, uk+1 = ST−nk uk . (3.1)

Each geodesic γk from uk to wk is PSL(2, Z)-equivalent to γ by construction. It
is convenient to describe this procedure using the reduction map that combines the
appropriate iterate of the map Fa,b:

Ra,b : R2
\1→ R2

\1

given by the formula Ra,b(u, w)= (ST−nu, ST−nw), where n is the first digit in the
(a, b)-expansion of w. Notice that (uk, wk)= Rk

a,b(u, w).

Definition 3.1. A geodesic in H from u to w is called (a, b)-reduced if (u, w) ∈3a,b,
where

3a,b = Fa,b(Da,b ∩ {a ≤ w ≤ b})= S(Da,b ∩ {a ≤ w ≤ b}).

According to Theorem 1.1, for (almost) every geodesic γ from u to w in H, the
above algorithm produces in finitely many steps an (a, b)-reduced geodesic PSL(2, Z)-
equivalent to γ , and an application of this algorithm to an (a, b)-reduced geodesic produces
another (a, b)-reduced geodesic. In other words, there exists a positive integer ` such
that R`a,b(u, w) ∈3a,b and Ra,b :3a,b→3a,b is bijective (with the exception of some
segments of the boundary of 3a,b and their images).

Let γ be a reduced geodesic with the repelling point u 6= 0 and the attracting point

w = bn0, n1, . . .ea,b. (3.2)

Then, by successive applications of the map Ra,b, we obtain a sequence of real pairs
{(uk, wk)} (k ≥ 0) (see (3.1) above) such that each geodesic γk from uk to wk is (a, b)-
reduced. Using the bijectivity of the map Ra,b, we extend the sequence (3.2) to the past to
obtain a bi-infinite sequence of integers

bγ e = b. . . , n−2, n−1, n0, n1, n2, . . .e, (3.3)

called the coding sequence of γ , as follows. There exist an integer n−1 6= 0 and a
real pair (u−1, w−1) ∈3a,b such that ST−n−1w−1 = w = w0 and ST−n−1u−1 = u = u0.
Notice that bw−1ea,b = n−1. By uniqueness of the (a, b)-expansion, we conclude that
w−1 = bn−1, n0, n1, . . .ea,b. Continuing inductively, we define the sequence of integers
n−k and the real pairs (u−k, w−k) ∈3a,b (k ≥ 2), where

w−k = bn−k, n−k+1, n−k+2, . . .ea,b,

by ST−n−kw−k = w−(k−1) and ST−n−k u−k = u−(k−1). We also associate to γ a bi-infinite
sequence of (a, b)-reduced geodesics

(. . . , γ−2, γ−1, γ0, γ1, γ2, . . .), (3.4)

where γk is the geodesic from uk to wk .
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Remark 3.2. Notice that all ‘intermediate’ geodesics T−sγk (1≤ s ≤ nk) obtained from γk

using the map Fa,b are not (a, b)-reduced.

PROPOSITION 3.3. A formal minus continued fraction consisting of the digits of the ‘past’
of (3.3),

n−1 −
1

n−2 −
1

n−3 −
1

. . .

= (n−1, n−2, n−3, . . .)

converges to 1/u.

Proof. By [13, Lemma 1.1], it will be sufficient to check that |n−k | = 1 implies n−k ·

n−(k+1) < 0, i.e. the digit 1 must be followed by a negative integer and the digit −1 must
be followed by a positive integer. We use the following properties of the set 3a,b that can
be derived from our knowledge of the shape of the set Da,b determined in [16, Lemmas
5.6, 5.10, 5.11]. The upper part of 3a,b is contained in the region

[−1, 0] ×
[
−

1
a
,+∞

]
∪ [0, 1] ×

[
−

1
b − 1

,+∞

]
if b < 1,

[−1, 0] ×
[
−

1
a
,+∞

]
if b ≥ 1.

(3.5)

The lower part of 3a,b is contained in the region

[−1, 0] ×
[
−∞,−

1
a + 1

]
∪ [0, 1] ×

[
−∞,−

1
b

]
if a >−1,

[0, 1] ×
[
−∞,−

1
b

]
if a ≤−1.

(3.6)

Recall that (u−(k+1), w−(k+1))= (T n−(k+1) Su−k, T n−(k+1) Sw−k) for an appropriate integer
n−(k+1) 6= 0. Suppose that n−k = 1. Then w−k > 0. If u−k < 0, then Su−k > 0 and
Sw−k < 0, and it takes a negative power of T to bring it back to (the lower component
of ) 3a,b, i.e. n−(k+1) < 0. The case u−k > 0, according to (3.5), can only occur if b ≤ 1.
In this case, −1/(b − 1)≤ w−k < b + 1, which is equivalent to b > 1, a contradiction.
Therefore n−k = 1 implies n−(k+1) < 0. A similar argument shows that n−k =−1 implies
n−(k+1) > 0. We conclude that the formal minus continued fraction converges. In order
to prove that the limit is equal to 1/u we use the recursive definition of the digits
n−1, n−2, . . . , to write

1
u
= n−1 − u−1 = n−1 −

1

n−2 − u−2
= · · · = (n−1, n−2, . . . , n−k − u−k)= · · · ,

and the conclusion follows since the formal minus continued fraction converges. 2

Let
C = {z ∈H | |z| = 1,−1≤ Re z ≤ 1}
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be the upper-half of the unit circle, and

C− = {z ∈H | |z + 1| = 1,− 1
2 ≤ Re z ≤ 0}

and

C+ = {z ∈H | |z − 1| = 1, 0≤ Re z ≤ 1
2 }

be the images of the two vertical boundary components of the fundamental region F under
S (see Figure 3).

PROPOSITION 3.4. Every (a, b)-reduced geodesic intersects either C or both curves C−

and C+.

Proof. If a, b are such that −1≤ a ≤ 0 and 0≤ b ≤ 1, then by properties (3.5) and (3.6)
of the set3a,b, if (u, w) ∈3a,b, then−1≤ u ≤ 1 and w ≥−1/a or w ≤−1/b, and hence
all (a, b)-reduced geodesics intersect C . For the case b > 1 we have: if −1< u < 0,
then either w >−1/a > b > 1 or w <−1/(a + 1) <−1, i.e. the geodesic intersects C ;
if 0< u < 1, then (3.5) implies that w <−1/b < a < 0, thus the corresponding geodesic
intersects C if w <−1, and it intersects first C+ and then C− if −1<w < 0. Similarly,
for the case a <−1 we have: if 0< u < 1, then either w <−1/b < a <−1 or w >
−1/(b − 1) > 1, i.e. the geodesic intersects C ; if −1< u < 0, then (3.6) implies that
w >−1/a > b > 0, therefore the corresponding geodesic intersects C if w > 1, and it
intersects first C− and then C+ if 0<w < 1. 2

Based on Proposition 3.4 we introduce the notion of the cross-section point. It is either
the intersection of a reduced geodesic γ with C , or, if γ does not intersect C , its first
intersection with C− ∪ C+.

Now we can define a map

ϕ :3a,b→ SH, ϕ(u, w)= (z, ζ ),

where z ∈H is the cross-section point on the geodesic γ from u to w, and ζ is the unit
vector tangent to γ at z. The map is clearly injective. Composed with the canonical
projection π introduced in (2.1), we obtain a map

π ◦ ϕ :3a,b→ SM.

Let Ca,b = π ◦ ϕ(3a,b)⊂ SM . This set can be described as follows: Ca,b = P ∪ Q1 ∪

Q2, where P consists of the unit vectors based on the circular boundary of the fundamental
region F pointing inward such that the corresponding geodesic γ on the upper half-plane
H is (a, b)-reduced, Q1 consists of the unit vectors based on the right vertical boundary
of F pointing inward such that either Sγ or TSγ is (a, b)-reduced (notice that they cannot
both be reduced), and Q2 consists of the unit vectors based on the left vertical boundary
of F pointing inward such that either Sγ or T−1Sγ is (a, b)-reduced (see Figure 3). Then
almost every orbit of {ϕt

} returns to Ca,b, i.e. Ca,b is a cross-section for {ϕt
}, and 3a,b is

a parametrization of Ca,b. The map π ◦ ϕ is injective, as follows from Remark 3.2: only
one of the geodesics γ , Sγ , T−1Sγ , and TSγ can be reduced.
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FIGURE 3. The cross-section (left) and its 3a,b parametrization (right).

4. Symbolic coding of the geodesic flow via (a, b)-continued fractions
If γ is a geodesic on H, we denote by γ̄ the canonical projection of γ on M . For a given
geodesic on M that can be reduced in finitely many steps, we can always choose its lift γ
to H to be (a, b)-reduced.

The following theorem provides the basis for coding geodesics on the modular surface
using (a, b)-coding sequences.

THEOREM 4.1. Let γ be an (a, b)-reduced geodesic on H and γ̄ its projection to M.
Then:
(1) each geodesic segment of γ̄ between successive returns to the cross-section Ca,b

produces an (a, b)-reduced geodesic on H, and each reduced geodesic SL(2, Z)-
equivalent to γ is obtained in this way;

(2) the first return of γ̄ to the cross-section Ca,b corresponds to a left shift of the coding
sequence of γ .

Proof. (1) By lifting a geodesic segment on M starting on Ca,b to H, we obtain a segment
of a geodesic γ on H that is reduced by the definition of the cross-section Ca,b. A coding
sequence of γ = γ0 that connects u0 to w0 = bn0, n1, . . .ea,b,

bγ0e = b. . . , n−2, n−1, n0, n1, n2, . . .e,

is obtained by extending the sequence of digits ofw0 to the past as explained in the previous
section.

Let us assume that w0 > 0, i.e. n0 ≥ 1. The case w0 < 0 can be treated similarly.
The geodesic ST−n0γ0 = γ1 is reduced by Theorem 1.1. Let z0 and z1 be the cross-
section points on γ0 and γ1, respectively. Then z′1 = T n0 Sz1 ∈ γ0; it is the intersection
point of γ0 with the circle |z − n0| = 1. We will show that the geodesic segment of
γ0, [z0, z′1], projected to M is the segment between two successive returns to the cross-
section Ca,b. Since ST−n0(z′1)= z1 is the cross-section point on γ1, the geodesic segment



764 S. Katok and I. Ugarcovici

[z0, z′1] projected to M is between two returns to Ca,b. Recall that a geodesic in F
consists of countably many oriented geodesic segments between consecutive crossings of
the boundary of F that are obtained by the canonical projection of γ0 to F .

If z0 is the intersection of γ0 with C , there are two possibilities: first, when γ0

intersects F or γ0 does not intersect F and ST−1γ0 exits F through its circular boundary;
and second, when γ0 does not intersect F and ST−1γ0 exits F through its left vertical
boundary. In the first case the segments in F are represented by the intersection with
F of the following geodesics in H : T−1γ0, T−2γ0, . . . , T−n0+1γ0, either ST−n0+1γ0 or
T−n0γ0, and either γ0 or ST−1γ0.

Suppose that for some intermediate point z ∈ γ0, z ∈ [z0, z′1] the unit vector tangent to
γ0 at z, (z, ζ ), is projected to Ca,b. By tracing the geodesic γ0 inside F , we see that (z, ζ )
must be projected to (z̄, ζ̄ ) with z̄ on the boundary of F and ζ̄ directed inward. Then the
geodesic through (z̄, ζ̄ ):
(a) enters F through its vertical boundary and exits it also through the vertical boundary;
(b) enters F through its vertical boundary and exits through its circular boundary; or
(c) enters F through its circular boundary and exits through its vertical boundary.
The following assertions are implied by the analysis of the attractor Da,b. In case (a),
T−1ST−sγ0 is not reduced for 1≤ s < n0 since s < n0, T−sw0 > b, hence ST−sw0 >

−1/b, i.e. (ST−su0, ST−sw0) /∈ Da,b, therefore

(T−1ST−su0, T−1ST−sw0) /∈3a,b.

In case (b), if the segment T−n0γ0 exits through the circular boundary of F , ST−n0γ0 = γ1

is reduced, and we reached the point z1 on the cross-section. If the segment T−n0+1γ0

intersects the circular boundary of F , ST−n0+1γ0 is not reduced. In case (c), ST−n0+1 is
not reduced.

In the second case the first digit of w0 is n0 = 2. This is because n0 = 1 would imply
that b + 1<w <−1/(b − 1) which is impossible. Thus ST−2γ0 = γ1 is reduced. In this
case the geodesic in F consists of the intersection with F of a single geodesic ST−1γ0

that enters F through its right vertical and leaves it through its left vertical boundary, since
(TS)T (ST−1γ0)= ST−2γ0 = γ1 is reduced. In all cases the geodesic segment [z0, z′1]
projected to M is between two consecutive returns to Ca,b.

If z0 /∈ C , by Proposition 3.4, since w0 > 0, z0 ∈ C−. Notice that this implies that
a <−1 and n0 = 1, and γ1 = ST−1γ0 is reduced. In this case the geodesic in F also
consists of the intersection with F of a single geodesic Sγ0 that enters F through its right
vertical and leaves it through its left vertical boundary, since (TS)T (Sγ0)= ST−1γ0 = γ1

is reduced, and hence the geodesic segment [z0, z′1] projected to M is between two
consecutive returns to Ca,b. Continuing this argument by induction in both the positive
and negative direction, we obtain a bi-infinite sequence of points

(. . . , z−2, z−1, z0, z1, z2, . . .),

where zk is the cross-section point of the reduced geodesic γk in the sequence of γ0, that
represents the sequence of all successive returns of the geodesic γ0 in M to the cross-
section Ca,b.
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If γ̃0 is a reduced geodesic in H, SL(2, Z)-equivalent to γ0, then both project to the
same geodesic on M . Therefore, the cross-section point z̃0 of γ̃0 projects on Ca,b to a
cross-section point zk of γk for some k. This completes the proof of (1).
(2) Since γ1 = ST−n0γ0, w1 = ST−n0w0 = bn1, n2, . . .ea,b. The first digit of the past

is evidently n0, and the remaining digits are the same as for γ0. Thus (2) follows. 2

The following corollary is immediate.

COROLLARY 4.2. If γ ′ is SL(2, Z)-equivalent to γ , and both geodesics can be reduced
in finitely many steps, then the coding sequences of γ and γ ′ differ by a shift.

This implies a very important property of (a, b)-continued fractions that escapes a direct
proof.

COROLLARY 4.3. (The tail property) For almost every pair of real numbers that are
SL(2, Z)-equivalent, the ‘tails’ of their (a, b)-continued fraction expansions coincide.

Remark 4.4. The set of exceptions in Corollary 4.3 is the same as the set described in
Theorem 1.1(3).

Thus we can talk about coding sequences of geodesics on M . To any geodesic γ
that can be reduced in finitely many steps we associate the coding sequence (3.3) of a
reduced geodesic SL(2, Z)-equivalent to it. Corollary 4.2 implies that this definition does
not depend on the choice of a particular representative: sequences for equivalent reduced
geodesics differ by a shift.

Let Xa,b be the closure of the set of admissible sequences and σ be the left shift map.
The coding map Cod : Xa,b→ Ca,b is defined by

Cod(b. . . , n−2, n−1, n0, n1, . . .e)= (1/(n−1, n−2, . . .), bn0, n1, . . .ea,b). (4.1)

This map is essentially bijective.
The symbolic system (Xa,b, σ )⊂ (N Z, σ ) is defined on the infinite alphabet N ⊂

Z\{0}. The product topology on N Z is induced by the distance function

d(x, x ′)=
1
m
,

where x = (ni ), x ′ = (n′i ) ∈N Z, and m =max{k | ni = n′i for |i | ≤ k}.

PROPOSITION 4.5. The map Cod is continuous.

Proof. If d(x, x ′) < 1/m, then the (a, b)-expansions of the attracting end points w(x)
and w(x ′) of the corresponding geodesics given by (3.2) have the same first m digits.
Hence the first m convergents of their (a, b)-expansions are the same, and, using the
properties of (a, b)-continued fractions and the rate of convergence of [16, Theorem 2.1],
we obtain |w(x)− w(x ′)|< 2/m. Similarly, the first m digits in the convergent formal
minus continued fraction of 1/u(x) and 1/u(x ′) are the same, and hence |u(x)− u(x ′)|<
2|u(x)u′(x)|/m < 2/m. Therefore the geodesics are uniformly 2/m-close. But the
tangent vectors v(x), v(x ′) ∈ Ca,b are determined by the intersection of the corresponding
geodesic with the unit circle or the curves C+ and C−. Hence, by making m large enough
we can make v(x ′) as close to v(x) as we wish. 2
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FIGURE 4. Domains of self-dual expansions.

In conclusion, the geodesic flow becomes a special flow over a symbolic dynamical
system (Xa,b, σ ) on the infinite alphabet N ⊂ Z\{0}. The ceiling function ga,b(x) on
Xa,b coincides with the time of the first return of the associated geodesic γ (x) to the
cross-section Ca,b. One can establish an explicit formula for ga,b(x) as the function of the
end points of the corresponding geodesic γ (x), u(x), w(x), following the ideas explained
in [8]. If −1≤ a ≤ 0 and 0≤ b ≤ 1, then ga,b(x) is cohomologous to 2 log |w(x)|; more
precisely,

ga,b(x)= 2 log |w(x)| + log h(x)− log h(σ x)

where

h(x)=
|w(x)− u(x)|

√
w(x)2 − 1

w(x)2
√

1− u(x)2
.

5. Dual codes
We have seen that a coding sequence for a reduced geodesic from u to w (see (3.3)) is
comprised of the sequence of digits in the (a, b)-expansion of w and the ‘past’, an infinite
sequence of non-zero integers, each digit of which depends on w and u. In some special
cases the ‘past’ only depends on u, and, in fact, will coincide with the sequence of digits
of 1/u by using a so-called dual expansion to (a, b).

Let ψ(x, y)= (−y,−x) be the reflection of the plane about the line y =−x .

Definition 5.1. If ψ(Da,b) coincides with the attractor set Da′,b′ for some (a′, b′) ∈ P ,
then the (a′, b′)-expansion is called the dual expansion to (a, b). If (a′, b′)= (a, b), then
the (a, b)-expansion is called self-dual.

Example 5.2. The classical situations of (−1, 0)- and (−1, 1)-expansions are self-dual.
Two more sophisticated examples, ((1−

√
5)/2, (3−

√
5)/2) and (−3/8, 2/3), are shown

in Figure 4.
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FIGURE 5. Dual expansions.

Example 5.3. The expansions (−1/n, 1− (1/n)), n ≥ 1, satisfy a weak cycle property and
have dual expansions that are periodic. A classical example in this series is the Hurwitz
case (−1/2, 1/2) whose dual is ((1−

√
5)/2, (−1+

√
5)/2) (see [9, 14]). Their domains

are shown in Figure 5.

The following result gives equivalent characterizations for an expansion to admit a dual.

PROPOSITION 5.4. The following are equivalent:
(i) the (a, b)-expansion has a dual;
(ii) the boundary of the lower part of the set Da,b does not have y-levels with a < y < 0,

and the boundary of the upper part of the set Da,b does not have y-levels with
0< y < b;

(iii) a and b do not have the strong cycle property.

Proof. If the (a, b)-expansion has a dual (a′, b′)-expansion, then the parameters a′, b′ are
obtained from the boundary of Da,b as follows: the right vertical boundary of the upper
part of Da,b is the ray x = 1− b′, and the left vertical boundary of the lower part of Da,b

is the ray x =−1− a′. Now assume that (ii) does not hold. Then at least one of the
parameters a, b has the strong cycle property, and either the left boundary of the upper part
of 3a,b or the right boundary of the lower part of 3a,b is not a straight line. Assume the
former. Then the reflection of Da,b with respect to the line y =−x is not Da′,b′ since the
map Fa′,b′ is not bijective on it: the black rectangle in Figure 6 belongs to it, but its image
under T−1, colored in grey, does not. Thus (i)⇒ (ii).

Conversely, let the vertical line x = 1− b′ be the right boundary of the upper part of
Da,b and the vertical line x =−1− a′ be the left boundary of the lower part of Da,b.
Let [xa,∞] × {a} be the intersection of Da,b with the horizontal line at the level a, and
[−∞, xb] × {b} be the intersection of Da,b with the horizontal line at the level b. Then
a′ = 1/xb and b′ = 1/xa . We also see that 1− b′ =−1/t , where t = xb or t < xb if
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FIGURE 6. Dual expansions and Da,b .

[t, xb] × {0} is a segment of the boundary of Da,b. Then −b′ + 1=−1/t ≤ a′, which
implies that b′ − a′ ≥ 1. By [16, Lemma 5.6], xb ≤−1 and xa ≥ 1, therefore

−1≤ a′ ≤ 0≤ b′ ≤ 1, (5.1)

and
3a,b = Da,b ∩ {(u, w) ∈ R̄2

: −b′ ≤ u ≤−a′}. (5.2)

We now show that ψ(Da,b)= Da′,b′ is the attractor for Fa′,b′ , where

Fa′,b′ = ψ ◦ F−1
a,b ◦ ψ

−1. (5.3)

For (u, w) ∈ Da′,b′ with a′ <w < b′, we have ψ−1(u, w)= (−w,−u) with −b′ <
u <−a′, so ψ−1(u, w) ∈3a,b by (5.2), hence F−1

a,b (−w,−u)= (1/w, 1/u), and
Fa′,b′(u, w)= (−1/u,−1/w). For (u, w) ∈ Da′,b′ with w > b′, we have ψ−1(u, w)=
(−w,−u) with u <−b′, so F−1

a,b (−w,−u)= (−w + 1,−u + 1), and Fa′,b′(u, w)=

(u − 1, w − 1). Similarly, for (u, w) ∈ Da′,b′ with w < a′, we have ψ−1(u, w)=
(−w,−u) with u >−a′, so F−1

a,b (−w,−u)= (−w − 1,−u − 1), and Fa′,b′(u, w)=
(u + 1, w + 1). This proves that (ii)⇒ (i).

Notice that (ii) and (iii) are equivalent by [16, Theorems 4.2 and 4.5]. 2

Remark 5.5. Notice that if an (a, b)-expansion has a dual, then −1≤ a ≤ 0≤ b ≤ 1. This
follows from (5.1) and the fact that the relation of duality is symmetric.

THEOREM 5.6. If an (a, b)-expansion admits a dual expansion (a′, b′), and γ0 is an
(a, b)-reduced geodesic, then its coding sequence,

bγ0e = b. . . , n−2, n−1, n0, n1, n2, . . .e, (5.4)

is obtained by juxtaposing the (a, b)-expansion of w0 = bn0, n1, n2, . . .ea,b and the
(a′, b′)-expansion of 1/u0 = bn−1, n−2, . . .ea′,b′ . This property is preserved under the
left shift of the sequence.
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Proof. We will show that the digits in the (a′, b′)-expansion of 1/u0 coincide with the
digits of the ‘past’ of (5.4). By (5.3), the diagram

3a,b
Sψ //

R−1
a,b

��

3a′,b′

Ra′,b′

��
3a,b

Sψ // 3a′,b′

is commutative. The pair (u0, w0) ∈3a,b, therefore (Su0, Sw0) ∈ S3a,b ⊂ Da,b, and
(1/w0, 1/u0) ∈3a′,b′ . The first digit of the (a′, b′)-expansion of 1/u0 is n−1, so

Ra′,b′(1/w0, 1/u0)= (ST−n−1(1/w0), ST−n−1(1/u0))

maps 3a′,b′ to itself. Then

(u−1, w−1) := R−1
a,b(u0, w0)= (T

n−1 Su0, T n−1 Sw0) ∈3a,b

and
(ST−n−1u−1, ST−n−1w−1)= (u0, w0).

Also w−1 = bn−1, n0, n1, . . .ea,b and ST−n−1(1/u0)= 1/u−1 = bn−2, . . .ea′,b′ .
Continuing by induction, one proves that all digits of the ‘past’ of the sequence (5.4)

are the digits of the (a′, b′)-expansion of 1/u0.
In order to see what happens under a left shift, we reverse the diagram to obtain

3a,b
Sψ //

Ra,b

��

3a′,b′

R−1
a′,b′

��
3a,b

Sψ // 3a′,b′

Since the first digit of (a, b)-expansion of w0 is n0,

Ra,b(u0, w0)= (ST−n0u0, ST−n0w0)

maps 3a,b to itself. Then (u1, w1) := (ST−n0u0, ST−n0w0) and w1 = bn1, n2, . . .ea,b.
Also

(1/w1, 1/u1)= R−1
a′,b′(1/w0, 1/u0)= (T

n
0 S(1/w0), T n

0 S(1/u0)),

hence 1/u1 = bn0, n−1, n−2, . . .ea′,b′ . 2

Remark 5.7. Under conditions of Theorem 5.6, if γ0 projects to a closed geodesic
on M , then its coding sequence is periodic, and w0 = bn0, n1, . . . , nmea,b, 1/u0 =

bnm, . . . , n1, n0ea′,b′ .

THEOREM 5.8. If an (a, b)-expansion admits a dual expansion, then the symbolic space
(Xa,b, σ ) is a sofic shift.

Proof. The ‘natural’ (topological) partition of the set 3a,b related to the alphabet N is
3a,b =

⋃
n∈N 3n , where3n are labeled by the symbols of the alphabet N and are defined

by the condition 3n = {(u, w) ∈3a,b | n0(u, w)= n0(w)= n}. In order to prove that the
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FIGURE 7. The partition of 3a,b and its image through Ra,b .

space (Xa,b, σ ) is sofic one needs to find a topological Markov chain (Ma,b, τ ) and a
surjective continuous map h : Ma,b→ Xa,b such that h ◦ τ = σ ◦ h.

Notice that the elements 3n are rectangles for large n; in fact, at most two elements in
the upper part and at most two elements in the lower part of3a,b are incomplete rectangles
(see Figure 7).

Since 3a,b has finite rectangular structure, we can subdivide these incomplete
rectangles horizontally into rectangles, and extend the alphabet N by adding subscripts
to the corresponding elements of N . For example, if 32 is subdivided into two rectangles,
32 =

⋃2
i=1 32i , the ‘digit’ 2 will give rise to two digits, 21, 22 in the extended alphabet

N ′ (see Figure 7). We denote the new partition of 3a,b by
⋃

n∈N ′ Mn . Notice that it
consists of rectangles with horizontal and vertical sides. Since the first return R to 3a,b

corresponds to the left shift of the coding sequence x associated to the geodesic (u, w), we
see that x = {nk}

∞
−∞, where nk is defined by Rk(u, w) ∈3nk . Now we define the symbolic

space Ma,b as follows: to each sequence x ∈ Xa,b we associate a geodesic (u, w) by (4.1),
and define a new coding sequence y = {mk}

∞
−∞, where mk is defined by Rk(u, w) ∈ Mmk ,

and τ is the left shift.

We will prove that (Ma,b, τ ) is a topological Markov chain. For this, in accordance to
[2, Theorem 7.9], it is sufficient to prove that for any pair of distinct symbols n, m ∈N ′,
R(Mn) and Mm either do not intersect or intersect ‘transversally’, i.e. their intersection
is a rectangle with two horizontal sides belonging to the horizontal boundary of Mm
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and two vertical sides belonging to the vertical boundary of R(Mn). Let us recall that
−1≤ a ≤ 0≤ b ≤ 1 (see Remark 5.5). Therefore, if Mn =3n is a complete rectangle, it
is, in fact, a 1× 1 square, and its image under R is an infinite vertical rectangle intersecting
all Mm transversally. If Mn is obtained by subdivision of some 3k and belongs to the
lower part of 3a,b, its horizontal boundaries are the levels of the step-function defining
the lower component of Da,b, and by Proposition 5.4, since the lower boundary of Da,b

does not have y-levels with a < y < 0, its image is a vertical rectangle intersecting only the
lower component of Da,b whose horizontal boundaries are the levels of the step-function
defining the lower component of Da,b. Therefore, all possible intersections with Mm are
transversal. A similar argument applies to the case where Mn belongs to the upper part
of 3a,b. The map h : Ma,b→ Xa,b is obviously continuous, surjective, and, in addition,
h ◦ τ = σ ◦ h. 2

6. Invariant measures and ergodic properties
Based on the finite rectangular geometric structure of the domain Da,b and the connections
with the geodesic flow on the modular surface, we study some of the measure-theoretic
properties of the Gauss-type map f̂a,b : [a, b)→ [a, b),

f̂a,b(x)=−
1
x
−

⌊
−

1
x

⌉
a,b
, f̂a,b(0)= 0. (6.1)

Notice that the associated natural extension map F̂a,b,

F̂a,b(x, y)=

(
f̂a,b(x),−

1
y − b−1/xea,b

)
, (6.2)

is obtained from the map Fa,b induced on the set 3a,b by the change of coordinates

x =−1/w, y = u (6.3)

(or, equivalently, on the set Da,b ∩ {(u, w) | a ≤ w < b} by the change of coordinates
x = w, y =−1/u). Therefore the domain 3̂a,b of F̂a,b is easily identified knowing 3a,b

and may be considered as its ‘compactification’.
Many of the measure-theoretic properties of f̂a,b and F̂a,b (existence of an absolutely

continuous invariant measure, ergodicity) follow from the fact that the geodesic flow ϕt on
the modular surface M can be represented as a special flow (Ra,b, 3a,b, ga,b) on the space

3
ga,b
a,b = {(u, w, t) : (u, w) ∈3a,b, 0≤ t ≤ ga,b(u, w)}

(see §2). We recall that Ra,b = Fa,b|3a,b and ga,b is the ceiling function (the time of the
first return to the cross-section Ca,b) parametrized by (u, w) ∈3a,b.

We start with the fact that the geodesic flow {ϕt
} preserves the smooth (Liouville)

measure dm = du dw dt/(w − u)2 (see [3]), hence Ra,b preserves the absolutely
continuous measure dρ = du dw/(w − u)2. Using the change of coordinates (6.3), the
map F̂a,b preserves the absolutely continuous measure dν = dx dy/(1+ xy)2.

The set 3a,b has finite measure dρ if a 6= 0 and b 6= 0, since it is uniformly bounded
away from the line 1= {(u, w) : u = w} ⊂ R2 (see relations (3.5) and (3.6)). In this
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situation, we can normalize the measure dρ to obtain the smooth probability measure

dρa,b =
dρ

Ka,b
=

du dw

Ka,b(w − u)2
(6.4)

where Ka,b = ρ(3a,b). Similarly, if a 6= 0 and b 6= 0, the map F̂a,b preserves the smooth
probability measure

dνa,b =
dx dy

Ka,b(1+ xy)2
(6.5)

and Ka,b = ρ(3a,b)= ν(3̂a,b).
Returning to the Gauss-type map, f̂a,b, one can obtain explicitly a Lebesgue-equivalent

invariant probability measure µa,b by projecting the measure νa,b onto the x-coordinate
(pushforward); this is equivalent to integrating νa,b over 3̂a,b with respect to the y-
coordinate as explained in [4].

We can immediately conclude that the systems (F̂a,b, νa,b) and ( f̂a,b, µa,b) are ergodic
from the fact that the geodesic flow {ϕt

} is ergodic with respect to dm. By using some well-
known results about one-dimensional maps that are piecewise monotone and expanding,
and the implications for their natural extension maps, we can establish stronger measure-
theoretic properties: ( f̂a,b, µa,b) is exact and (F̂a,b, νa,b) is a Bernoulli shift. Here we
follow the presentation from [23] based on [18, 21].

THEOREM 6.1. For any a 6= 0 and b 6= 0, the system ( f̂a,b, µa,b) is exact and its natural
extension (F̂a,b, νa,b) is a Bernoulli shift.

Proof. Let us consider first the case −1< a < 0< b < 1. The interval (a, b) admits a
countable partition ξ = {X i }i∈Z\{0} of open intervals and the map f̂a,b satisfies conditions
(A), (F), (U) listed in [23]. Condition (A) is Adler’s distortion estimate:

f̂ ′′a,b/( f̂ ′a,b)
2 is bounded on X =

⋃
i∈Z\{0}

X i , (A)

condition (F) requires the finite image property of the partition ξ ,

f̂a,b(ξ)= { f̂a,b(X i )}i∈Z\{0} is finite, (F)

while condition (U) is a uniformly expanding condition

| f̂ ′a,b| ≥ τ > 1 on X. (U)

Let m ≥ 0 and n ≥ 0 be such that a − m − 1≤−1/b < a − m and b + n ≤−1/a <
b + n + 1. Consider the open intervals

X1 =

(
−

1
a − m − 1

, b

)
, X i =

(
−

1
a − m − i

,−
1

a − m − i + 1

)
for i ≥ 2

and

X−1 =

(
a,−

1
b + n + 1

)
, X−i =

(
−

1
b + n + i − 1

,−
1

b + n + i

)
for i ≥ 2.

The map f̂a,b satisfies conditions (A), (F), (U) with respect to the partition ξ =

{X i }i∈Z\{0}. Indeed, | f̂ ′′a,b/( f̂ ′a,b)
2
| ≤ 2 on X , the collection of images f̂a,b(ξ) consists of
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four sets f̂a,b(X1), f̂a,b(X−1), (b − 1, b), (a, a + 1), and | f̂ ′a,b| ≥min{1/a2, 1/b2
}> 1

on X . Zweimüller [23] showed that any one-dimensional map for which conditions (A),
(F), (U) hold is exact and satisfies Rychlik’s conditions described in [18], hence its natural
extension map is Bernoulli.

We now analyze the case b ≥ 1. Let K > 0 be the smallest integer such that b(a +
1)K < 1. We will show that there exists γ > 1 such that, for every x ∈

⋂K
i=0 f̂ −i

a,b(X),

some iterate f̂ n
a,b(x) with n ≤ K + 1 is expanding, i.e. |( f̂ n

a,b)
′(x)| ≥ γ . (For the rest

of the proof, we simplify the notation and let f̂ denote the map f̂a,b.) Notice that if
x ∈

⋂n−1
i=0 f̂ −i (X), then f̂ n is differentiable at x and

d

dx
f̂ n(x)=

1

(x f̂ (x) · · · f̂ n−1(x))2
.

Assume that ab >−1. We look at the following cases:
(i) If a < x < 0, then b − 1≤ f̂ (x)≤ b, and |x f̂ (x)| ≤ |ab|< 1.
(ii) If 0< x < b, then a ≤ f̂ (x)≤ a + 1. Let K be such that b(a + 1)K < 1. Then

either there exists 1≤ n ≤ K such that 0< f̂ i (x) < a + 1 for i = 1, 2, . . . , n − 1
and a < f̂ n(x) < 0, or 0< f̂ i (x) < a + 1 for i = 1, 2, . . . , K . In the former case
we have that

|x f̂ (x) · · · f̂ n(x)| ≤ |ab(a + 1)n−1
|< 1, (6.6)

while in the latter case

|x f̂ (x) · · · f̂ K (x)| ≤ |b(a + 1)K
|< 1. (6.7)

In the case ab =−1, let τ, ε > 0 be sufficiently small such that

b <−1/(a + τ) < b + 1 and a − 1<−1/(b − ε) < a.

We again consider two cases:
(i) If a < x < a + τ , then b − 1< f̂ (x) <−1/(a + τ), and |x f̂ (x)| ≤ |a/(a + τ)|<

1. If a + τ ≤ x < 0, then |x f̂ (x)| ≤ |b(a + τ)|< 1.
(ii) If b − ε < x < b, then 0< f̂ (x) < a + 1 and we have either (6.6) with n ≥ 2

or (6.7). If 0< x ≤ b − ε, then we have (6.6) or (6.7) where b is replaced by b − ε.
In conclusion, there exists a constant γ > 1 such that for every x ∈

⋂K
i=0 f̂ −i

a,b(X) some

iterate f̂ n
a,b(x) with n ≤ K + 1 satisfies the condition |( f̂ n

a,b)
′(x)| ≥ γ . This implies that

the iterate f̂ N
a,b, with N = (K + 1)!, is uniformly expanding, i.e. it satisfies property (U).

Since properties (A) and (F) are automatically satisfied by any iterate of f̂a,b (see [23]),
we have that F̂ N

a,b is Bernoulli. Using one of Ornstein’s results [17, Theorem 4, p. 39], it

follows that F̂a,b is Bernoulli. 2

The next result gives a formula for the measure-theoretic entropy of (F̂a,b, νa,b).

THEOREM 6.2. The measure-theoretic entropy of (F̂a,b, νa,b) is given by

hνa,b (F̂a,b)=
1

Ka,b

π2

3
. (6.8)
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Proof. To compute the entropy of this two-dimensional map, we use Abramov’s
formula [1],

hm̃({φ
t
})=

hρa,b (Ra,b)∫
3a,b

ga,b dρa,b
,

where m̃ is the normalized Liouville measure dm̃ = dm/m(SM). It is well known that
m(SM)= π2/3 (see [3]) and hm̃({φ

t
})= 1 (see [20]). The measure dm̃ can be represented

by the Ambrose–Kakutani theorem [5] as a smooth probability measure on the space3
ga,b
a,b ,

dm̃ =
dρa,b dt∫

3a,b
ga,b dρa,b

, (6.9)

where dρa,b is the probability measure on the cross-section 3a,b given by (6.4). This
implies that

dm̃ =
dρ dt

Ka,b
∫
3a,b

ga,b dρa,b
=

dm

Ka,b
∫
3a,b

ga,b dρa,b
.

Therefore Ka,b
∫
3a,b

ga,b dρa,b = m(SM)= π2/3 and

hνa,b (F̂a,b)= hρa,b (Ra,b)=

∫
3a,b

ga,b dρa,b =
1

Ka,b

π2

3
. 2

Since (F̂a,b, νa,b) is the natural extension of ( f̂a,b, µa,b), the measure-theoretic
entropies of the two systems coincide, hence

hµa,b ( f̂a,b)=
1

Ka,b

π2

3
. (6.10)

As an immediate consequence of the above entropy formula we derive a growth rate
relation for the denominators of the partial quotients pn/qn of (a, b)-continued fraction
expansions, similar to the classical cases.

PROPOSITION 6.3. Let {qn(x)} be the sequence of the denominators of the partial
quotients pn/qn associated to the (a, b)-continued fraction expansion of x ∈ [a, b). Then

lim
n→∞

log qn(x)

n
=

1
2

hµa,b ( f̂a,b)=
1

Ka,b

π2

6
for a.e. x . (6.11)

Proof. The proof is similar to the classical case: using Birkhoff’s ergodic theorem, we
have

lim
n→∞

log qn(x)

n
=−

∫ b

a
log |x | dµa,b.

At the same time, Rokhlin’s formula tells us that

hµa,b ( f̂a,b)=

∫ b

a
log | f̂ ′a,b| dµa,b =−2

∫ b

a
log |x | dµa,b,

hence the conclusion. 2

7. Some explicit formulas for the invariant measure µa,b

In order to obtain explicit formulas for µa,b and hµa,b ( f̂a,b), one obviously needs an
explicit description of the domain Da,b. In [16] we describe an algorithmic approach
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for finding the boundaries of Da,b for all parameter pairs (a, b) outside of a negligible
exceptional parameter set E . Let us point out that the set Da,b may have an arbitrary large
number of horizontal boundary segments. The qualitative structure of Da,b is given by the
cycle properties of a and b. This structure remains unchanged for all pairs (a, b) having
cycles with similar combinatorial complexity. For a large part of the parameter set the
cycle descriptions are relatively simple (see [16, §4]) and we discuss them here.

In what follows, we focus our attention on the situation −1≤ a ≤ 0≤ b ≤ 1, and due
to the symmetry of the parameter set with respect to the parameter line a =−b we assume
that a ≤−b.

We treat the case 1≤−1/a ≤ b + 1 and a ≤−1/b + m ≤ a + 1 (for some m ≥ 1). The
coordinates of the corners of the boundary segments in the upper region Da,b ∩ {(u, w) |
u < 0, a ≤ w ≤ b} are given by

(−2, b − 1),
(
−

3
2
, T−2S(b − 1)

)
, . . . ,

(
−

m + 1
m

, (T−2S)(m−1)(b − 1)
)
,(

−1,−
1
a
− 1

)
,

while the corners of the boundary segments in the lower region Da,b ∩ {(u, w) | u > 0, a ≤
w ≤ b} are given by (

m,−
1
b
+ m

)
, (m + 1, a + 1).

Therefore the set 3̂a,b is given by

3̂a,b =

m−1⋃
p=1

[(T−2S)p−1(b − 1), (T−2S)p(b − 1)] ×
[

0,
p

p + 1

]
∪

[
(T−2S)m−1(b − 1),−

1
a
− 1

]
×

[
0,

m

m + 1

]
∪

[
−

1
a
− 1, b

]
× [0, 1]

∪

[
a,−

1
b
+ m

]
×

[
−

1
m
, 0
]
∪

[
−

1
b
+ m, a + 1

]
×

[
−

1
m + 1

, 0
]
. (7.1)

Figure 8 shows a typical set 3̂a,b for this case.

THEOREM 7.1. If 1≤−1/a ≤ b + 1 and a ≤−(1/b)+ m ≤ a + 1, then

µa,b =
1

Ka,b
ha,b(x) dx,

where Ka,b = log[(m − a)(1+ b)2−m
] and ha,b(x)= h+a,b(x)+ h−a,b(x) with

h+a,b(x)=



1
x + ((p + 1)/p)

if (T−2S)p−1(b − 1)≤ x < (T−2S)p(b − 1),

p = 1, . . . , m − 1,

1
x + ((m + 1)/m)

if (T−2S)m−1(b − 1)≤ x <−
1
a
− 1,

1
x + 1

if −
1
a
− 1≤ x < b
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FIGURE 8. Typical domain 3̂a,b for the case studied.

and

h−a,b(x)=


1

m − x
if a ≤ x <−

1
b
+ m,

1
m + 1− x

if −
1
b
+ m ≤ x < a + 1 .

Proof. The density formulas are obtained from the simple integration result∫ d

c

1

(1+ xy)2
dy =−

1
x

(
1

1+ dx
−

1
1+ cx

)
=

d

1+ dx
−

c

1+ cx
. (7.2)

For the density in the upper part of 3̂a,b, y ≥ 0, all integrals have the lower boundary c = 0,
hence the result of (7.2) becomes 1/(x + 1/d). This gives the description of h+a,b(x). For

the density in the lower part of 3̂a,b, y ≤ 0, all integrals have the upper boundary d = 0,
hence the result −1/(−1/c − x) and the description of h−a,b(x). By a somewhat tedious
computation, we get

Ka,b =

∫
3a,b

ha,b(x) dx = log[(m − a)(1+ b)2−m
],

and this completes the proof. 2
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