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Abstract. We study a two-parameter family of one-dimensional maps and
the related (a, b)-continued fractions suggested for consideration by Don Zagier
and announce the following results and outline their proofs: (i) the associated
natural extension maps have attractors with finite rectangular structure for
the entire parameter set except for a Cantor-like set of one-dimensional zero
measure that we completely describe; (ii) for a dense open set of parameters the
Reduction theory conjecture holds, i.e. every point is mapped to the attractor
after finitely many iterations. We also give an application of this theory to
coding geodesics on the modular surface and outline the computation of the
smooth invariant measures associated with these transformations.

1. Introduction

The standard generators T (x) = x + 1, S(x) = −1/x of the modular group
SL(2, Z) were used classically to define piecewise continuous maps acting on the
extended real line R̄ = R ∪ {∞} that led to well-known continued fraction algo-
rithms. Don Zagier suggested considering a two-parameter family of such maps
fa,b : R̄ → R̄ defined by

(1.1) fa,b(x) =







x + 1 if x < a

−
1

x
if a ≤ x < b

x − 1 if x ≥ b .

In order for these maps to induce continued fraction algorithms the orbit of any
(irrational) point should return to the interval [a, b) infinitely often, and consist of
blocks of T ’s and T−1’s separated by S’s, i.e. the parameters (a, b) must belong to
the set

P = {(a, b) | a ≤ 0 ≤ b, b − a ≥ 1, −ab ≤ 1} .

In all our considerations we will assume that (a, b) ∈ P .

Using the first return map of fa,b to the interval [a, b), denoted by f̂a,b, we
introduce a two-parameter family of continued fraction algorithms. Let us mention
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here three classical examples: the case a = −1, b = 0 described in [19, 6] gives
the “minus” (backward) continued fractions, the case a = −1/2, b = 1/2 gives the
“nearest-integer” continued fractions considered first by Hurwitz in [4], and the case
a = −1, b = 1 was presented in [17, 7] in connection with a method of symbolically
coding the geodesic flow on the modular surface following Artin’s pioneering work
[3] and corresponds to the regular “plus” continued fractions with alternating signs
of the digits. Also, in the case b − a = 1, the class of one-parameter maps fb−1,b

with b ∈ [0, 1] is conceptually similar to the “α-transformations” introduced by
Nakada in [14] and studied subsequently in [12, 13, 15, 16, 18].

The main object of our study is a two-dimensional realization of the natural
extension map of fa,b, Fa,b : R̄

2 \∆ → R̄
2 \∆, ∆ = {(x, y) ∈ R̄

2|x = y}, defined by

(1.2) Fa,b(x, y) =







(x + 1, y + 1) if y < a
(

−
1

x
,−

1

y

)

if a ≤ y < b

(x − 1, y − 1) if y ≥ b .

Numerical experiments led Don Zagier to conjecture that such a map Fa,b has
several interesting properties for all parameter pairs (a, b) ∈ P that we list under
the Reduction theory conjecture.

(1) The map Fa,b possesses a global attractor set Da,b = ∩∞
n=0F

n(R̄2 \ ∆) on
which Fa,b is essentially bijective.

(2) The set Da,b consists of two (or one, in degenerate cases) connected com-
ponents each having finite rectangular structure, i.e. bounded by non-
decreasing step-functions with a finite number of steps.

(3) Every point (x, y) of the plane (x 6= y) is mapped to Da,b after finitely
many iterations of Fa,b.

Figure 1 shows the computer picture of such a the set Da,b with a = −4/5, b = 2/5.
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Figure 1. A typical attractor Da,b (a = − 4
5 , b = 2

5 )

Besides the classical cases mentioned above, this conjecture has been proved in
[9] for an open dense subset of parameter pairs (a, b) ∈ P . Here is the main result:
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Theorem 1.1. There exists an explicit one-dimensional Lebesgue measure zero,
uncountable set E that lies on the diagonal boundary b = a + 1 of P such that:

(a) for all (a, b) ∈ P \E the map Fa,b has an attractor Da,b satisfying properties
(1) and (2) above;

(b) for an open and dense set in P \ E property (3), and hence the Reduction
theory conjecture, holds. For the rest of P \ E property (3) holds for almost
every point of the plane.

We point out that this approach gives explicit conditions for the set Da,b to have
finite rectangular structure that are satisfied, in particular, for all pairs (a, b) in
the interior of the maximal parameter set P . At the same time, it provides an
effective algorithm for finding Da,b, independent of the complexity of its bound-
ary (i.e., number of horizontal segments). The simultaneous properties satisfied by
Da,b, attracting set and bijectivity domain for Fa,b, is an essential feature that has
not been exploited in earlier works. This approach makes the notions of reduced
geodesic and dual expansion natural and transparent, with a potential for general-
ization to other Fuchsian groups. We remark that for “α-transformations” [14, 12],
explicit descriptions of the domain of the natural extension maps have been ob-
tained only for a subset of the parameter interval [0, 1] (where the boundary has
low complexity).

If one identifies a geodesic on the hyperbolic upper half-plane with a pair of real
numbers (x, y) ∈ R̄

2, x 6= y, its endpoints, then Fa,b maps a geodesic from x to y
to a geodesic PSL(2, Z)-equivalent to it, and hence can be perceived as a reduction
map.

In this paper we announce and sketch the proof of the above theorem [9], and
describe its applications to coding of geodesics [10] and the computation of invariant
measures associated with these transformations [9, 11].

2. (a, b)-continued fractions

The map fa,b defines what we call (a, b)-continued fractions using a generalized
integral part function:

(2.1) ⌊x⌉a,b =







⌊x − a⌋ if x < a

0 if a ≤ x < b

⌈x − b⌉ if x ≥ b ,

where ⌊x⌋ denotes the integer part of x and ⌈x⌉ = ⌊x⌋ + 1.

Theorem 2.1. If (a, b) ∈ P, then any irrational number x can be expressed uniquely
as an infinite continued fraction of the form

x = n0 −
1

n1 −
1

n2 −
1

. . .

= ⌊n0, n1, n2, . . . ⌉a,b, (nk 6= 0 for k ≥ 1),

where n0 = ⌊x⌉a,b, x1 = − 1
x−n0

, and nk = ⌊xk⌉a,b, xk+1 = − 1
xk−nk

, i.e. the

sequence of partial fractions rk = ⌊n0, n1, . . . , nk⌉a,b converges to x.
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The proof follows the lines of the proof presented in [6] for the case of minus
continued fractions (where a = −1, b = 0, and nk ≥ 2 if k ≥ 1). We define
inductively two sequences of integers {pk} and {qk} for k ≥ −2:

p−2 = 0 , p−1 = 1 ; pk = nkpk−1 − pk−2 for k ≥ 0

q−2 = −1 , q−1 = 0 ; qk = nkqk−1 − qk−2 for k ≥ 0

and prove that pk

qk
= rk converges to x. Here we use the important fact that

nk · nk+1 < 0 if the entry nk+1 = ±1.

Remark 2.2. One can construct (a, b)-continued fraction expansions for rational
numbers, too. However, such expansions will terminate after finitely many steps if
b 6= 0. If b = 0, the expansions of rational numbers end with a tail of 2’s.

In what follows, we use (in some situations) the simplified notations ⌊ · ⌉, f , f̂ and

F for ⌊ ·⌉a,b, fa,b, f̂a,b and Fa,b, respectively, assuming implicitly their dependence

on parameters a, b. We use also the notation fn (or f̂n) for the n-fold composition

operation of f (or f̂). Also, for a given point x ∈ [a, b) the notation f̂ (k) means the
transformation of type T iS (i is an integer) such that

f̂k(x) = f̂ (k)f̂ (k−1) · · · f̂ (2)f̂ (1)(x),

where f̂ (1)(x) = f̂(x).

3. Cycle property

The structure of the attractor Da,b is actually “computed” from the data (a, b)
as follows. We associate to the points of discontinuity of the map f , a and b, two
forward orbits: to a, the upper orbit Ou(a) (i.e. the orbit of Sa) and the lower orbit
Oℓ(a) (i.e. the orbit of Ta), and to b, the upper orbit Ou(b) (i.e. the orbit of T−1b)
and the lower orbit Oℓ(b) (i.e. the orbit of Sb). Now we explore the patterns in the
above orbits.

The following property plays an essential role in studying the map f .

Definition 3.1. We say that a (resp., b) has the cycle property if the upper and
lower orbits meet forming a cycle, i.e. if for some k1, m1, k2, m2 ≥ 0 s.t.

fm1(Sa) = fk1(Ta) = ca, (resp., fm2(T−1b) = fk2(Sb) = cb).

We refer to the sets

{Ta, fTa, f2Ta, . . . fk1−1Ta} and {Sb, fSb, f2Sb, . . . , fk2−1Sb}

as lower, and the sets

{Sa, fSa, f2Sa, . . . , fm1−1Sa} and {T−1b, fT−1b, . . . , fm2−1T−1b}

as upper sides of the corresponding cycles, and the numbers ca and cb as the ends
of the cycles.

If the product over the a-cycle (resp., b-cycle) equals the identity transformation

T−1f−k1fm1S = Id, (resp., Tf−m2fk2S = Id),

we say that a (resp., b) has the strong cycle property; otherwise, we say that a
(resp., b) has the weak cycle property.
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The structure of the set of points in P for which parameter b has the cycle
property follows from the following theorem and the symmetry of the parameter
set P with respect to the line b = −a, (a, b) 7→ (−b,−a). The case a ≤ −1 is simple
and can be analyzed separately. A similar result holds for parameter a.

Theorem 3.2. Let (a, b) ∈ P, 0 < b ≤ −a < 1 and m ≥ 1 such that a ≤ T mSb <
a + 1.

(1) Suppose that there exists n ≥ 0 such that

f̂kT mSb ∈
( b

b + 1
, a + 1

)

for k < n, and f̂nT mSb ∈
[

a,
b

b + 1

]

.

(i) If f̂nT mSb ∈ (a, b
b+1 ), then b has the cycle property; the cycle property

is strong if and only if f̂nT mSb 6= 0.

(ii) If f̂nT mSb = a, then b has the cycle property if and only if a has the
cycle property.

(iii) f̂nT mSb = b/(b + 1), then b does not have the cycle property, but the
(a, b)-expansions of Sb and T−1b are eventually periodic.

(2) If f̂kT mSb ∈ ( b
b+1 , a + 1) for all k ≥ 0, then b does not have the cycle

property.

We remark that the cases m = 1, 2 can be explicitly analyzed and the cycle
relations are simple (and short); the situation m ≥ 3 is more intricate and the
following property is essential for the proof of Theorem 3.2: if

b

b + 1
< f̂kT mSb < a + 1 for all k < n ,

then

• the lower orbit of b satisfies f̂ (k) = T mS or T m+1S, and the upper orbit of

b satisfies f̂ (k) = T−iS with i = 2 or 3;

• there exists q > 1 such that (STS)f̂nT mS = (T−2S)f̂ qT−1.

The proof is by induction on n. In order to determine the upper side of the b-cycle,
we use the following relation in the group SL(2, Z)

(STS)T iS = (T−2S)i−1T−1 (i ≥ 1),

obtained from the “standard” relation STS = T−1ST−1.

4. Structure of the attractor

In order to state the condition under which the natural extension map Fa,b has
an attractor with finite rectangular structure mentioned in the Introduction, we
follow the split orbits of a and b, and define the truncated orbits La and Ua by

La =







Oℓ(a) if a has no cycle property

lower part of a-cycle if a has strong cycle property

lower part of a-cycle ∪{0} if a has weak cycle property,

Ua =







Ou(a) if a has no cycle property

upper part of a-cycle if a has strong cycle property

lower part of a-cycle ∪{0} if a has weak cycle property,

and, similarly, Lb and Ub.
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Definition 4.1. We say that (a, b) satisfies the finiteness condition if the sets of
values in the truncated orbits La, Ua, Lb, and Ub are finite.

The following proposition follows from Theorems 3.2.

Proposition 4.2. Suppose that the set Lb is finite. Then

(1) either b has the cycle property or the upper and lower orbits of b are even-
tually periodic.

(2) The finiteness of Lb implies the finiteness of Ub.

Similar statements hold for the sets La, Ua and Ub as well.

Definition 4.3. We say that a proper subset of R
2 has finite rectangular structure

if it consists of two (or one, in degenerate cases) connected components bounded
by non-decreasing step-functions with finitely many steps.

The following theorem is proved in [9]:

Theorem 4.4. If (a, b) ∈ P satisfies the finiteness condition, then the attractor set
Da,b ⊂ R̄

2 \∆ has finite rectangular structure, and Fa,b : Da,b → Da,b is a bijection
except for some images of the boundary of Da,b.

The proof consists of the following steps:

Step 1: Construction of a set Aa,b with finite rectangular structure where the map
Fa,b is a bijection except for some images of its boundary. We prove that there
exists a unique set Aa,b whose upper connected component is bounded by a step-
function with values in the set Ua,b = Ua ∪ Ub that we refer to as upper levels, and
whose lower connected component is bounded by a step-function with values in the
set La,b = La ∪ Lb that we refer to as lower levels. Notice that each level in Ua

and Ub appears exactly once, but if the same level appears in both sets, we have to
count it twice in Ua,b. The same remark applies to the lower levels.

Our goal is to prove that all levels of La,b are connected by a vertical segment
(we will refer to this as connected), i.e. that the right end of a segment at a certain
level is equal to the left end of the segment on the next level.

First we notice that STa ∈ La and Sb ∈ Lb are two consecutive levels of La,b,
and the levels Sa ∈ Ua and ST−1b ∈ Ub are two consecutive levels of Ua,b. Since the
x-coordinate of the right end of the segment at the level STa and the x-coordinate
of the left end of the segment at the level Sb are equal to 0, the levels STa and
Sb are connected. Similarly, the levels Sa and ST−1b are connected. Let yℓ ∈ La,b

be the closest y-level to Sb with yℓ ≥ Sb, and yu ∈ Ua,b be the closest y-level to a
with yu ≤ Sa. Since each level in Ua and in Lb appears only once, if yu = Sa, yu

can only belong to Ub, and if yℓ = Sb, yℓ can only belong to La. We look at the
rays [−∞, xb] and [xa,∞], where xa and xb are unknowns, and “transport” them
(using the special form of the natural extension map Fa,b) along the truncated
orbits La, Lb, Ua and Ub until we reach the levels yu and yℓ. Then we set-up a
system of two fractional linear equations by equating the right end of the segment
at the level Sb with the left end of the segment at the level yℓ, and, similarly, the
left end of the segment at the level Sa and the right end of the level yu, and prove
that this system has a unique solution (xa, xb). Therefore the levels Sb and yℓ, and
the levels yu and Sa are connected, so three consecutive levels STa ≤ Sb ≤ yℓ,
and yu ≤ Sa ≤ ST−1b are connected. Moreover, their images under the same
transformations in SL(2, Z) remain connected. The main technical difficulty of the
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proof is to follow the connected triples over the truncated orbits and to show that
they create longer and longer chains of connected segments until all upper and all
lower segments are connected.

The following proposition is instrumental to the proof. In the statement we write
fa,b(x) = ρa,b(x)x using the following map ρa,b : R̄ → {T, S, T−1}

(4.1) ρa,b(x) =







T if x < a

S if a ≤ x < b

T−1 if x ≥ b.

Proposition 4.5. Suppose that the set La,b is finite and y ∈ La,b with y > STa.

(1) If y ∈ La, then there exists n0 > 0 such that ρ(fny) = ρ(fnSTa) for all
0 < n < n0 and ρ(fn0y) 6= ρ(fn0STa), or fn0y = 0;

(2) If y ∈ Lb, then y > Sb, and there exists n0 > 0 such that ρ(fny) = ρ(fnSb)
for all n < n0 and ρ(fn0y) 6= ρ(fn0Sb), or fn0y = 0.

A similar statement holds for the set Ua,b as well.
Bijectivity is proved by partitioning the upper and lower components of Aa,b

into 6 pieces and making sure that their images fit together without overlapping
(see Figure 2). The cycle or periodic structure are used in the proof.
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Figure 2. Bijectivity of the map Fa,b

Corollary 4.6. If both a and b satisfy the strong cycle property, then for any
boundary component h of Aa,b (vertical or horizontal) there exists N > 0 such that
FN

a,b(h) is in the interior of Aa,b.

This follows from the fact that the “locking segments” at the levels corresponding
to the ends of the cycles ca and cb are in the interior of the upper or lower connected
components of Aa,b.
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Step 2: Proof that the attractor Da,b coincides with Aa,b. The attractor of the map
F is constructed by starting with a trapping region, i.e. a set Θa,b ⊂ R̄

2 \ ∆ with
the following properties:

(i) for every pair (x, y) ∈ R̄
2 \ ∆, there exists a positive integer N such that

FN
a,b(x, y) ∈ Θa,b;

(ii) Fa,b(Θa,b) ⊂ Θa,b.

The precise description of Θa,b is given in [9]. To prove the “trapping” property
for any initial pair (x, y) ∈ R̄

2 \∆, one uses the (a, b)-continued fraction expansion
of y = ⌊n0, n1, . . . ⌉a,b to show that there exists a positive integer N > 0 depending
on (x, y) such that FN

a,b(x, y) = ST−nk . . . ST−n1ST−n0(x, y) ∈ Θa,b. Using Θa,b,

one defines the attractor Da,b by Da,b =
⋂∞

n=0 Dn, where Dn =
⋂n

i=0 F i(Θa,b).
We prove that under the finiteness condition each region Dn has a finite rectan-

gular structure. In order to show connectedness of the upper and lower components
we use the fact that Aa,b ⊂ Dn for all n. Then we show that connectedness implies
that all levels of Ua,b and La,b appear in the boundary of Dn for some n and all
horizontal levels of the boundaries belong to Ua,b ∪ La,b. Using these facts and
surjectivity of Fa,b, which follows from the nesting property of the sets Dn, we
conclude that the “jumps” of the step-functions between the lower levels Sb and yℓ

and between the upper levels yu and Sa defining the boundary of Da,b satisfy the
same equations as the corresponding “jumps” of the boundary of Aa,b, hence the
boundaries coincide and Da,b = Aa,b.

Notice that generically (almost surely) the finiteness condition comes from the
strong cycle property, and in this case, using Corollary 4.6, we obtain a stronger
result that establishes the Reduction theory conjecture proposed by Don Zagier:

Theorem 4.7. If both a and b have the strong cycle property, then for every point
(x, y) ∈ R̄

2 \ ∆ there exists N > 0 such that FN(x, y) ∈ Da,b.

Remark 4.8. The strong cycle property is not necessary for the Reduction theory
conjecture to hold. For example it holds for the two classical expansions (−1, 0)
and (−1, 1) that satisfy only a weak cycle property. Moreover, if (a, b) ∈ P satisfies
the finiteness condition but not the strong cycle property, then the above result
remains true for almost every point (x, y) of the plane. It can be used to describe
a “reduction” procedure for (almost) every geodesic on the upper half-plane, and,
ultimately, a symbolic coding of the geodesic flow on the modular surface if the
(a, b)-expansion admits a so-called “dual” expansion (see Section 6).

5. Exceptional set

The structure of the exceptional set E ⊂ P where the finiteness condition does
not hold can be explicitly described. Let us write E = Ea ∪ Eb, where the set Ea

consists of all points (a, b) ∈ P for which a does not satisfy the finiteness condition
(i.e. either the set Ua or La is infinite), and Eb consists of all points (a, b) ∈ P
for which b does not satisfy the finiteness condition (i.e. either the set Ub or Lb is
infinite). Let Em

b
denote the subset of Eb such that a ≤ T mSb ≤ a+1. We describe

the recursive construction of the exceptional set Em
b

: one starts with the set

T m
b = {(a, b) ∈ P :

b

b + 1
≤ T mSb ≤ a + 1}
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and looks for all values b whose future iterations under the map f̂ belong to the
interval [b/(b + 1), a + 1]. The following two regions can be obtained at the next
stage:

T m,m
b

= {(a, b) ∈ T m
b

:
b

b + 1
≤ T mST mSb ≤ a + 1}

T m,m+1
b

= {(a, b) ∈ T m
b :

b

b + 1
≤ T m+1ST mSb ≤ a + 1} .

Recursively, if T n1,n2,...,nk

b
is one of the regions obtained after k steps of this con-

struction (where n1 = m and ni ∈ {m, m + 1} for 2 ≤ i ≤ k), then at the next step
we get two new sets (possible empty):

T n1,n2,...,nk,m
b = {(a, b) ∈ T n1,n2,...,nk

b :
b

b + 1
≤ T mST nkS . . . T n1Sb ≤ a + 1}

T n1,n2,...,nk,m+1
b = {(a, b) ∈ T n1,n2,...,nk

b :
b

b + 1
≤ T m+1ST nkS . . . T n1Sb ≤ a + 1} .

Now, the exceptional set Em
b

is obtained as the union of all sets of type

E
(ni)
b

=

∞⋂

k=1

T n1,n2,...,nk

b

where n1 = m, ni ∈ {m, m + 1} if i ≥ 2, and the sequence (ni) is not eventually

periodic. If such a set E
(ni)
b

is non-empty and (a, b) belongs to it, then b is uniquely
determined by the expansion −1/b = ⌊−n1,−n2, . . . ⌉. Moreover, one can prove
that for every n ≥ 0, there exist integers lA(n) ≥ 2, lB(n) ≥ 1 such that the sequence
(ni) can be written as a concatenation of blocks

(5.1) A(n+1) = (A(n), . . . , A(n)

︸ ︷︷ ︸

l
A(n)

, B(n)) , B(n+1) = (A(n), . . . , A(n)

︸ ︷︷ ︸

l
A(n)−1

, B(n))

or

(5.2) A(n+1) = (A(n), B(n), . . . , B(n)

︸ ︷︷ ︸

l
B(n)

) , B(n+1) = (A(n), B(n), . . . , B(n)

︸ ︷︷ ︸

l
B(n)+1

) ,

starting with A(0) = m and B(0) = m + 1. It turns out that the two recursive

conditions are also sufficient for the set E
(ni)
b

to be nonempty. If in addition (ni) is

an aperiodic sequence, then E
(ni)
b

consists of a single point that belongs to the line
segment b − a = 1 of P . More precisely,

Theorem 5.1. For any (a, b) ∈ P , b 6= a+1, the finiteness condition holds. The set
of exceptions E to the finiteness condition is an uncountable set of one-dimensional
Lebesgue measure zero that lies on the diagonal boundary b = a + 1 of P.

This is the last ingredient in the proof of Theorem 1.1.

6. Reduction theory and coding of geodesics

Let H = {z = x + iy : y > 0} be the upper half-plane endowed with the
hyperbolic metric, F = {z ∈ H : |z| ≥ 1, |Re z| ≤ 1

2} be the standard fundamental
region for the modular group PSL(2, Z) = SL(2, Z)/{±I}, and M = PSL(2, Z)\H
be the modular surface. Let SH denote the unit tangent bundle of H. Then the
quotient space PSL(2, Z)\SH can be identified with the unit tangent bundle of M ,
SM , although the structure of the fibered bundle has singularities at the elliptic
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fixed points (see [5, §3.6] for details). The geodesic flow on M is defined as an
R-action on SM , {ϕt} : SM → SM .

The coding procedure for the geodesic flow on the modular surface via continued
fraction expansions was presented for the three classical cases in [7]; for a survey
on symbolic dynamics of the geodesic flow see also [8]. Here we describe how (a, b)-
continued fractions can be used for coding purposes. This is the subject of one of
our papers in preparation [10].

We will explain how Theorem 1.1 can be used to describe a reduction procedure
for (almost) every geodesic in H. In what follows we will denote the end points
of geodesics by u and w, and whenever we refer to geodesics, we use (u, w) as
coordinates on Da,b.

First, we notice that the orbit of any point in Da,b returns to the subset Λa,b =
Fa,b(Da,b ∩ {a ≤ w ≤ b}) infinitely often.

Definition 6.1. A geodesic in H from u to w is called (a, b)-reduced if (u, w) ∈ Λa,b.

In order to use (a, b)-expansions for coding geodesics we need the notion of a
dual expansion.

Definition 6.2. The (a, b)-expansion has a dual expansion if the reflection of Da,b

about the line y = −x is the attractor set of some (a′, b′)-expansion. If (a′, b′) =
(a, b), then the (a, b)-expansion is called self-dual.
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Figure 3. Domains of self-dual expansions

In order to determine whether an (a, b)-expansion has a dual, one notices that
the parameters (a′, b′) of the dual must be obtained from the boundary of Da,b as
follows: the right vertical boundary of the upper part of Da,b is a ray x = 1 − b′,
and the left vertical boundary of the lower part of Da,b is a ray of x = −1 − a′.
Furthermore, the boundary of the lower part of the set Da,b does not have y-levels
with a < y < 0, and the boundary of the upper part of the set Da,b does not have
y-levels with 0 < y < b, while the boundary of the lower part of the set Da′,b′ does
not have y-levels with a′ < y < 0, and the boundary of the upper part of the set
Da′,b′ does not have y-levels with 0 < y < b′. Therefore, we have the following
result:

Proposition 6.3. If the (a, b)-expansion admits a dual expansion, then (a, b) does
not satisfy the strong cycle property.
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Thus the parameter pairs (a, b) ∈ P \ E that admit dual expansions form a
discrete set in D \ E , where

D = {(a, b) | − 1 ≤ a ≤ 0 ≤ b ≤ 1, b − a ≥ 1} ⊂ P ,

and there are no parameter pairs (a, b) that admit dual expansions in the set P \D.
Their expansions either satisfy a weak cycle property or are periodic. The clas-
sical situations of (−1, 0)- and (−1, 1)-expansions are self-dual; these expansions
satisfy a weak cycle property. Two more sophisticated examples are shown below:

(1−
√

5
2 , 3−

√
5

2 ) is periodic and (− 3
8 , 2

3 ) satisfies a weak cycle property. The expan-

sions (− 1
n
, 1 − 1

n
), n ≥ 1, satisfy a weak cycle property and have dual expansions

that are periodic. A classical example in this series is the Hurwitz case (− 1
2 , 1

2 )

whose dual is (1−
√

5
2 , −1+

√
5

2 ) (see [4, 7]).

In what follows we assume that (a, b) ∈ D\E . Then every (a, b)-reduced geodesic
from u to w intersects the unit half-circle. Let Ca,b = P ∪Q1∪Q2, where P consists
of the unit vectors based on the circular boundary of the fundamental region F
pointing inward such that the corresponding geodesic γ on the upper half-plane H
is (a, b)-reduced, Q1 consists of the unit vectors based on the right vertical boundary
of F pointing inward such that TS(γ) is (a, b)-reduced, and Q2 consists of the unit
vectors based on the left vertical boundary of F pointing inward such that T−1S(γ)
is (a, b)-reduced (see Figure 4). Then a.e. orbit of {ϕt} returns to Ca,b, i.e. Ca,b is
a cross-section for {ϕt}, and Λa,b is a parametrization of Ca,b.

-1 0 1

P

Q1Q2

F

-6

-1 10

4

0
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b

Figure 4. The cross-section (left) and its Λa,b parametrization (right)

Let γ be an arbitrary geodesic on H, from u and w, and w = ⌊n0, n1, . . . ⌉a,b. We
construct the sequence of real pairs {(uk, wk)} (k ≥ 0) defined by u0 = u, w0 = w
and wk+1 = ST−nkwk , uk+1 = ST−nkuk . Each geodesic with end points uk and
wk is PSL(2, Z)-equivalent to γ by construction.

According to Remark 4.8, for (almost) every geodesic in H, the above algorithm
produces, in finitely many steps, an (a, b)-reduced geodesic PSL(2, Z)-equivalent
to γ, i.e. there exists a positive integer ℓ such that the geodesic with end points uℓ

and wℓ is (a, b)-reduced. To an (a, b)-reduced geodesic γ, we associate a bi-infinite
sequence of integers

⌊γ⌉ = ⌊. . . , n−2, n−1, n0, n1, n2, . . . ⌉,
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its coding sequence, by juxtaposing the (a, b)-expansion of w = ⌊n0, n1, n2, . . . ⌉a,b

and the dual (a′, b′)-expansion of 1/u = ⌊n−1, n−2, . . . ⌉a′,b′ .
The following theorem provides the basis for coding geodesics on the modular

surface using (a, b)-coding sequences. If γ is a geodesic on H, we denote by γ̄ the
canonical projection of γ on M .

Theorem 6.4. If γ is an (a, b)-reduced geodesic, then the first return of γ̄ to the
cross-section Ca,b corresponds to a left shift of the coding sequence of γ.

The geodesic γ̄ on M can be represented as a bi-infinite sequence of geodesic
segments between successive returns to the cross-section Ca,b. To each segment one
can associate the corresponding (a, b)-reduced geodesic γi on H. Thus we obtain a
sequence of reduced geodesics {γi}∞i=−∞ representing the geodesic γ̄. If one asso-
ciates to γi (with end points u, w) its coding sequence ⌊γi⌉ = ⌊. . . , n−1, n0, n1, . . . ⌉,
then γi+1 = ST−n0(γi), because the map ST−n0 gives the first return to the cross-
section Ca,b. For, notice that ST−n0w = ⌊n1, n2, . . . ⌉a,b and 1/ST−n0u = −u+n0.
Since the (a′, b′)-expansion is dual to the (a, b)-expansion, (u, w) ∈ Λa,b implies that
−b′ < u ≤ 1−b′ ≤ −a′, hence a′ ≤ −u < b′, i.e. 1/ST−n0u = ⌊n0, n−1, n−2, . . . ⌉a′,b′

is a legitimate dual expansion, and the left shift of the coding sequence corresponds
to the first return to the cross-section. Thus all (a, b)-reduced geodesics γi produce,
up to a shift, a bi-infinite coding sequence, which we call the (a, b)-code of γ̄, and
denote by ⌊γ̄⌉. We remark that if γ̄ is a closed geodesic on M then its coding
sequence is periodic w = ⌊n0, n1, . . . , nm⌉a,b, 1/u = ⌊nm, . . . , n1, n0⌉a′,b′ .

In conclusion, the geodesic flow becomes a special flow over a symbolic dynamical
system (Xa,b ⊂ N Z, σ), on the infinite alphabet N = Z \ {0}, where Xa,b is the
closure of the set of admissible sequences and σ is the left shift map. The coding
map Cod : Xa,b → Ca,b

Cod(⌊. . . , n−2, n−1, n0, n1, n2, . . . ⌉) = (1/⌊n−1, n−2, . . . ⌉a′,b′ , ⌊n0, n1, n2, . . . ⌉a,b)

is continuous, surjective, and essentially one-to-one.

7. Invariant measures and ergodic properties

Based on the finite rectangular geometric structure of the domain Da,b one can

study the measure-theoretic properties of the Gauss-type map f̂a,b : [a, b) → [a, b),

(7.1) f̂a,b(x) = −
1

x
−

⌊

−
1

x

⌉

a,b

, f̂a,b(0) = 0

and its associated natural extension map F̂a,b : D̂a,b → D̂a,b

(7.2) F̂a,b(x, y) =

(

f̂a,b(x),−
1

y − ⌊−1/x⌉a,b

)

.

We remark that the map F̂a,b is obtained from the map Fa,b induced on the set
Da,b ∩ {(x, y) | a ≤ y < b} by a change of coordinates x′ = y, y′ = −1/x. Therefore

the domain D̂a,b is easily identified knowing Da,b and may be considered to be its
“compactification”.

We present the simple case when 1 ≤ − 1
a
≤ b+1 and a−1 ≤ − 1

b
≤ −1 described

in Section 9 of [9]. The general theory is the subject our paper in preparation [11].
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The truncated orbits of a and b are

La =

{

a + 1,−
1

a + 1

}

, Ua =

{

−
1

a
,−

a + 1

a

}

Lb =

{

−
1

b
,
b − 1

b

}

, Ub =

{

b − 1,−
1

b − 1

}

and the end points of the cycles are ca = a
a+1 , cb = b

1−b
.

Theorem 7.1. If 1 ≤ − 1
a
≤ b + 1 and a− 1 ≤ − 1

b
≤ −1, then the domain D̂a,b of

F̂a,b is given by

D̂a,b = [a,−
1

b
+ 1] × [−1, 0] ∪ [−

1

b
+ 1, a + 1] × [−1/2, 0]

∪ [b − 1,−
1

a
− 1] × [0, 1/2] ∪ [−

1

a
− 1, b] × [0, 1]

and F̂a,b preserves the Lebesgue equivalent probability measure

(7.3) dνa,b =
1

log[(1 + b)(1 − a)]

dxdy

(1 + xy)2
.

The description of D̂a,b follows directly from the cycle relations and the finite
rectangular structure.
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Figure 5. Typical domain D̂a,b for the case studied

It is a standard computation that the measure dxdy
(1+xy)2 is preserved by F̂a,b.

Moreover, the density 1
(1+xy)2 is bounded away from zero on D̂a,b and

∫

D̂a,b

dxdy

(1 + xy)2
= log[(b + 1)(1 − a)] < ∞

hence the last part of the theorem is true.

The Gauss-type map f̂a,b is a factor of F̂a,b (projecting on the x-coordinate)
so one can obtain its smooth invariant measure dµa,b by integrating dνa,b over

D̂a,b with respect to the y-coordinate as explained in [2]. The measure dµa,b is

ergodic and the measure-theoretic entropy of f̂a,b can be computed explicitly using
Rokhlin’s formula.



THEORY OF (a, b)-CONTINUED FRACTION TRANSFORMATIONS 33

Theorem 7.2. The map f̂a,b : [a, b) → [a, b) is ergodic with respect to the Lebesgue
equivalent invariant probability measure

(7.4) dµa,b =
1

Ca,b

(
χ(a,− 1

b
+1)

1 − x
+

χ(− 1
b
+1,a+1)

2 − x
+

χ(b−1,− 1
a
−1)

x + 2
+

χ(− 1
a
−1,b)

x + 1

)

dx

where Ca,b = log[(1 + b)(1 − a)]. The measure-theoretic entropy of f̂a,b is given by

(7.5) hµa,b
(f̂a,b) =

π2

3 log[(1 − a)(1 + b)]
.
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