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ABSTRACT. Odometer actions of discrete, finitely generated and residually fi-
nite groups G have been defined by Cortez and Petite. In this paper we focus
on the case where G is the discrete Heisenberg group. We prove a structure
theorem for finite index subgroups of the Heisenberg group based on their
geometry when they are considered as subsets of Z3. We use this structure
theorem to provide a classification of Heisenberg odometers and we construct
examples of each class. In order to construct some of the examples we also
provide necessary and sufficient conditions for a Z% odometer to be a product
odometer as defined by Cortez. It follows from work of Mackey that all such
actions have discrete spectrum. Here we provide a different proof of this fact
for general G odometers which allows us to identify explicitly those represen-
tations of the Heisenberg group which appear in the spectral decomposition of
a given Heisenberg odometer.

1. INTRODUCTION

In the classical theory, discrete-time measurable and topological dynamical sys-
tems are generated by the iteration of a single automorphism on a space, and are
thus actions of the group Z. Since the 1970’s an important direction of research has
focused on actions of more general groups. The work of Ornstein and Weiss [11]
has established countable amenable groups as a general setting for ergodic theory.
The discrete Heisenberg group is the first natural example of a non-abelian group
in this category and its actions are of interest in a variety of contexts within and
without dynamical systems. While the work in [11] establishes many tools of er-
godic theory for the discrete Heisenberg group, actions of this group are not nearly
as well understood as actions of Z¢. This is due, partly, to the non-commutative
nature of the group but also to the more complicated geometry of orbits of the
action. Recent work has focused on algebraic actions of this group (e.g. [7],[6]).

In this paper, we provide some geometric intuition for general measurable ac-
tions of this group by studying the concrete case of Heisenberg odometers. Our
main result gives a detailed geometric analysis of these actions. We also provide
an explicit description of the finite dimensional, irreducible representations of the
Heisenberg group which can arise in the spectral decomposition of a Heisenberg
odometer. Our work establishes explicitly, generalizing the classical theory, the
connection between the algebraic structure of the odometer and the spectrum of
the action.
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An overview of odometer actions. Odometer systems are a well studied class of
examples in the classical theory of measurable and topological dynamical systems
generated by a single transformation. They are rank one transformations, and
therefore are ergodic and have zero entropy. They have discrete rational spectrum
and are the key ingredients in the study of Toeplitz systems. They can be viewed
measure theoretically as cutting and stacking transformations of the unit interval.
Alternatively, they can be viewed algebraically as an action of Z on an inverse limit
space of increasing quotient groups of Z. They can also be viewed as an action by
addition in an adic group. It follows that they are, in fact uniquely ergodic (see,
for example, [4] and the references therein, and [10]).

All of these perspectives can be generalized to define odometer actions of Z? and
there is an obvious way to construct examples. In the case of d = 2, given any two Z
odometer actions (T, X) and (S,Y"), the maps T'x Id, Id x S acting on X xY clearly
commute and satisfy the appropriate generalizations of the above ideas to Z2. In
[2] Cortez defines odometer actions of Z¢ using the inverse limit approach. The
author calls the obvious examples described above product odometers and gives an
example of a non-product type Z2? odometer. As in the classical case, Z? odometers
are uniquely ergodic and have zero entropy. In [3] Cortez and Petite generalize
the work in [2] to define G odometer dynamical systems for G any discrete, finitely
generated and residually finite group, and show that they are also uniquely ergodic.
In Section [2] we provide this definition and introduce the notation to be used in the

paper.

Heisenberg odometers. Let H be the discrete Heisenberg group, defined on the
set Z3 with the following group multiplication:

(z,y,2)(", ¢, ) = (@ + 2"y +y, 2+ 2" + ).

In this paper we show that there are geometric considerations similar to the Z?2
case which separate different types of Heisenberg odometers. Informally, thinking
of subgroups of the Heisenberg group as subsets of Z> with a different group multi-
plication, we can associate to any Heisenberg odometer, a Z? odometer constructed
by considering the projections of the Heisenberg subgroups onto their first two co-
ordinates. If the associated Z? odometer is of product type, as defined by Cortez,
we call the Heisenberg odometer an (z, y)-product odometer. If the subgroups used
to construct the odometer, considered as sets in Z3, have the structure AZ? x mZ
for some nonsingular matrix A € M(2,Z) and m € N we call it a flat odometer. If
the Heisenberg odometer is both of (z,y)-product type and flat we call it a pure
product odometer.

As in the Z% case, it is obvious how to construct pure product type odometers
for the Heisenberg group. We show by construction that all the other types of
odometers also exist.

In Section [3] we provide an analysis of the structure of the subgroups of the
Heisenberg group necessary to classify odometer actions and in Section |4 we com-
plete the work outlined above. Figure [1| provides a guide to the examples con-
structed in the paper. In order to construct Heisenberg odometers that are not
of product type in Section 4| we extend the work in [2] by giving necessary and
sufficient conditions for a Z? odometer to be of product type. This characterization
allows us to identify a large collection of non-product examples.
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Flat (x,y)-product

Pure
product

Ex. 4.4

Ex. 4.10

FiGURE 1. Examples of all possible classes of Heisenberg odometers

Spectral analysis of G odometers. Let G be as described above and recall that
an ergodic and measure preserving action of G is said to have discrete spectrum
if the associated unitary representation can be decomposed into a direct sum of
irreducible, finite dimensional representations of G. In [9] Mackey shows that any
action of this class of groups G which is conjugate to a rotation on a compact
group by a dense subgroup has discrete spectrum as a consequence of the Peter-
Weyl Theorem. A G odometer is an example of this type of action. Here we
present a different argument where we explicitly construct the decomposition into
irreducible finite dimensional representations of G. As an easy corollary, for those
groups G where entropy theory has been sufficiently developed, we have that G
odometers have zero entropy.

In the case of Heisenberg odometers, our analysis of the geometric structure of
the subgroups of H allows us to give a complete description in Section [5| of the
finite dimensional, irreducible representations of H that can occur in the spectral
decomposition of any given Heisenberg odometer action.

2. DEFINING G ODOMETERS

Let G be a discrete, finitely generated and residually finite group. Following [3]
we define a G odometer dynamical system as follows. Since G is residually finite,
there exists a sequence I'y D I'y D ---T';, D --- of subgroups with finite indices
in G such that NI, = {e}. Let m,: G/T'41 — G/Ty, be the map induced by the
inclusion I';,4+; C T', and denote by m the inverse limit space of the sequence
{(G/Ty,mp)}n>1. It is a compact metrizable space whose topology is spanned by
the cylinder sets

%
[n;v]={g € G/Ty, : gn =~} with v € G/T,,.

(—

The group G acts by left multiplication on G/T',. If the subgroups {T,,} are
normal in G, the system is called a G odometer and otherwise a subodometer. The
odometer action of G on G/T',, preserves Haar measure p and is uniquely ergodic.
We refer to the dynamical system (G/T,, p, G) as the G odometer on G/T,,.

There exists an effective criterion to check whether two G odometers are conju-
gate which we will use extensively. It is based on the following characterization of
a factor map:
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—— ——
Lemma 2.1 ([3]). There exists a factor map « : G/TL — G/T'2 between two G
odometers if and only if for every I'? there exists Tt such that T}, C T'2.

3. SUBGROUPS OF THE DISCRETE HEISENBERG GROUP

In this section we describe the geometry of subgroups of H, the discrete Heisen-
berg group, in terms of their projection onto their first two coordinates, and the
structure of the fiber over this projection. The work in this section will allow us to
carry out the classification of Heisenberg odometers described in the introduction.

The following facts are easily verified by computation and we will use them
frequently in our arguments:

(I7 Y, 2)71 = (71‘7 -Y,—z + Iy)
(1) (u, 0, w)(x,y, 2) (u,v,w) ™!

(u, v, w)(2,y, 2)(u, v,w) " (2,y,2) 7" = (0,0,uy — vz).

= (2,9, 2 +uy — vx)

Recall also that there exist group homomorphisms f : Z — H, z — (0,0, 2), and
g: H— 72, (x,y,2) — (x,y), so that the following is a short exact sequence:

2 0 7Z=<(0,0,1)>5 H% 72 0.
(2) ,0,

Proposition 3.1. Let I be a finite index subgroup of H and let f,g be as in .
Let mp = [Imf : T N Imf], and A € M(2,Z) be such that AZ?> = g(T'). Then A is
nonsingular and there exists a map ir : AZ?> — 7 defined by

ir(z,y) =min{z > 0: (z,y,2) € T'}
such that
(3) T = {(z,y,ir(z,y) + kmr) : (z,y) € AZ* k € Z}.
Proof. Since I is a finite index subgroup of H we have mr < oo and
(4) I'Nnimf = {0} x {0} x mpZ.

Also g(T') = AZ? is a finite index subgroup of Z?2, hence A is a nonsingular matrix.
Since (0,0, kmr) and (x,y,ir(z,y)) are both in T, it follows immediately from
the group operation that (z,y,ir(x,y) + kmr) € I'. Now let (x,y,z) € I'. Then

(LL', Y, iF<x7 y))(.’L’, Y, Z)_l = (07 Oa Z.1—‘(377 y) - Z) el'n Imf
This implies that z € ip(z,y) + mrZ, concluding the proof. |

The next proposition identifies some algebraic properties of the function ir, and
the relationship between the constant mr and the matrix A.

Proposition 3.2. Let T' be a finite index subgroup of H, and A,ir, mr be as in
Proposition|3.1. Then

(5) ir(z,y) +ir(2’,y") + 2y’ =ir(z+ 2",y +y') mod mp
and
(6) mr|det(A).

If, in addition, T" is a normal subgroup then we have the stronger conclusion that
mr divides all the entries in the matriz A.
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Proof. Let (x,y,ir(z,y) + kmrp), («',y,ir(2’,y") + k'mr) € T. Proposition
yields that

ir(z,y) +ir(2",y) + (k +K)mr + 2y’ =i(z + 2",y +y') + &'mr
for some k” € Z, and follows. To see that @ holds choose p,q,r,s € Z

such that mr is relatively prime to ps — rq. Let (:}L ”;) = A <Z 7;) Then

both (u,v),(x,y) € AZ* and therefore there exist w,z € Z such that (u,v,w),
(x,y,2) € . Using we then have that (0,0,uy —vz) € TNImf and implies
that mp must divide uy — vz. But

uy — vz = det (u 3:) = det(A) det (p T)
vy q s
so by our choice of p, q,r, s we must have that mr divides det(A).

Finally, suppose that I is normal, and choose any (z,y, z) € I" and (u,v,w) € H.
Normality, the definition of mr, and (1)) yield that mr|(uy —vz) for any (u,v) € Z2.
This implies that mr|z,y. Since (x,y) € AZ? is arbitrary, it follows that mr must
divide each entry of the matrix A. O

The following proposition gives a converse result to the previous two propositions.

Proposition 3.3. Consider a nonsingular matric A € M(2,7), an integer m > 1
that divides the entries of A, and a map i : AZ?> — 7 that satisfies i(0,0) = 0 and

(7) i(x,y) +i(a',y") =i(z + 2,y +y') mod m.

Then Taim = {(z,y,km +i(x,y)) : (z,y) € AZ*, k € Z} is a finite index normal
subgroup of H.

Proof. If I'4,;.m is a subgroup, our choice of A and m will guarantee that it is a
subgroup of finite index. To see that it is a subgroup first note that since i(0,0) = 0
we have (0,0,0) € T4 ;. Choose v = (z,y,i(x,y) + km) for some k € Z. To see
that v~ ! is also in T we use (1)) to obtain v~ = (—x, —y, —i(x,y) —km+xy). Using
(7) we can replace —i(x,y) with i(—x, —y) + k'm for some k' € Z. Since m divides
the entries of A, it must divide  and y yielding that y~! lies in T

Closure under addition and normality follow from similar arguments. O

Remark 3.4. Note that in Proposition [3.1] if T is a normal, finite index subgroup
then since mr divides the entries of A in we have zy/ =0 mod mr. It is easy
to see that the map i defined in satisfies i = ir, , ,, mod m where ip, ,  is as
defined in Proposition [3.1

The next result will allow us to easily check if a sequence of normal subgroups
of H is nested.

Proposition 3.5. Suppose T’ and I are finite index normal subgroups of H defined
by the triples (ArZ?, mr,ir) and (Ap/Z2, myp.,ir), respectively. Then TV < T if and
only if Ap/Z% C ArZ?, my|mr and

(8) ir(x,y) = ir(x,y) mod mr for all (z,y) € Ap/Z>.

Proof. The proof follows immediately when the subgroups I' and I are written in
the form given by of Proposition O
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4. THE STRUCTURE OF HEISENBERG ODOMETER ACTIONS

In this section we show that it is possible to describe the structure of Heisenberg
odometers in terms of the geometric structure of its defining subgroups. Using the
results of the previous section we can now describe any sequence of subgroups I';,
of H in terms of the sequence of triples (A4,Z2, mr, ,ir, ).

Definition 4.1. A finite index subgroup I' of H is called:
e flat if ip = 0;
o (z,y)-product if there exists a diagonal nonsingular matrix A € M(2,7)
such that Imgpr = AZ?;
e pure product if it is flat and (x, y)-product.

Note that for a given subgroup I' < H, the properties of the map ir are de-
fined independent of whether ArZ?2 is of product type or not. Based on these two
characteristics, we introduce the following conjugacy invariants for H odometers.

(_
Definition 4.2. An H odometer on H/T,, is called a flat ((x,y)-product, pure

product) odometer if it is conjugate to an H odometer on H /T, where each normal
subgroup I, is flat ((z, y)-product, pure product).

The remainder of the section is devoted to justifying these classifications. Note
that if the sequence {I',,} defines a Heisenberg odometer, then the sequence {A,,Z?}

must also define a Z? odometer on Z2/A,Z?* called the associated Z? odometer.

Theorem 4.3. A Heisenberg odometer must be of one of the following types: pure
product, (x,y)-product and not flat, flat and not (x,y)-product, and neither flat nor
(z,y)-product. Furthermore there exist Heisenberg odometers of each type.

We first construct examples of odometers of each type. We defer the proof of
the rest of the theorem to the end of the section as it relies on lemmas which arise
naturally in the construction of the examples.

Example 4.4 (Pure product Heisenberg odometer). One of many examples

that can be constructed is given by A,, = <20 2On>, my, =27, i, = 0.

Remark 4.5. A direct consequence of Lemma [2.1] and Proposition [3.5] is that a
Heisenberg odometer is of (z,y)-product type if and only if the associated Z?2
odometer is of product type.

In producing Heisenberg odometers which are not (z,y)-product we cannot sim-
ply use Cortez’s [2] example of a non-product Z? odometer. That example is con-
structed with the following sequence of matrices:

n+1 . n

(9) (? 3n Zliil)

which have the property that each row has entries that are relatively prime, a
sufficient condition for the resulting odometer to be non-product type. However,
by Proposition [3.2] any sequence of normal subgroups I',, of the Heisenberg group
with such a projection must have mr, = 1 for all n and therefore will not have
trivial intersection. Thus this family of non-product type Z? examples cannot be
used to construct Heisenberg odometers.
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In what follows we give a new necessary and sufficient condition for a Z¢ odometer
to be conjugate to a product odometer which allows us to give examples where
the entries of the matrices have a non-trivial common factor. Examples of flat
and non (z,y)-product type Heisenberg odometers will follow immediately. Given
A € M(d,Z) and m € Z we write m|rowy(A) to mean m divides all the entries in
the kth row of A, and we define my(A) = min{m > 1: me}, € AZ%}.

(__—
Proposition 4.6. A Z? odometer on 72 /A, 7% is conjugate to a product odometer
if and only if the sequence {A,}, or some subsequence of it, satisfies for alln € N
and 1 <k <d

(10) mg(Ay) |rowg(Ans1) -

p . .
Proof. Assume that the odometer on Z¢/A,Z% is conjugate to the odometer on

%
72/ A, Z* where each A,, € M(d,Z) is a nonsingular diagonal matrix. The inclusion
ALZ% D Ay Z? is equivalent to

Ak k) Apg1(k k) Ve=1,...,d.
Also, by Lemma [2.1] and passing as necessary to a subsequence, one has
(11) A7 D A2 D A 70

Since A,éx = A,(k,k)é, € A,Z%, it follows that my(A,)|A,(k, k). From the
relation A,,.1Z% C A,Z¢ we also have that A, (k, k)|rowy(A,+1) and follows.

Conversely, if holds, one considers the sequence of diagonal matrices {A,,}
given by A, (k,k) = mg(A,). Notice that A,Z¢ D A, 11Z%. Moreover, A, =
my(An)ér € A,Z%, hence A, Z¢ C A,Z*. Therefore holds, and the odometers

on Z4/A, 74 and 74/ A, Z* are conjugate. O

For any nonsingular matrix A € M (d,Z) one can factor out the greatest common
(positive) factor of each row into a diagonal matrix A and write A = A - A where
each row of A € M(d,Z) has relatively prime entries. For d = 2, one can check

-~

that my(A) as defined above satisfies my(A) = A(k, k) - |det(A)|. Thus we have
the following immediate corollary:

%
Corollary 4.7. A Z? odometer on 72 /A,Z? is conjugate to a product odometer if
and only if the sequence {A,}, or some subsequence of it, satisfies for alln € N
and 1 <k <2

(12) Ay (k k) - det(Ay) |rowg (Ant1).
We can now construct a flat Heisenberg odometer which is not (z, y)-product.

Example 4.8 (Flat but not (z,y)-product type Heisenberg odometer). We
modify the matrices in @ slightly:

2" 0 gntl 7117
and we consider the subgroups I';,, given by the triple (A,,Z2,2",0). By Proposition
W each T';, is a normal subgroup of H. It is easy to check that I',,;; C I',, and

%
NI, = {(0,0,0)}, hence the H odometer on H/T,, is flat. By Corollary the
associated Z2 odometer is not of product type. Indeed, A,(1,1) - det(A,) = 2" -
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(—16)-33", and A,,(1,1) = 2™-3™*! and there are no m > n so that 2"-(—16)-33"
divides 2™ - 3™ +1,

Given any sequence { A, Z?} it is not obvious how to choose a non-trivial sequence
in, so that the resulting sequence of subgroups will give rise to a non-flat odometer,
or if it is possible to do so even for product type odometers. Below we provide an
example of an (x,y)-product but not flat Heisenberg odometer.

Example 4.9 ((z,y)-product but not flat Heisenberg odometer). Consider
the sequence of positive integers {k,} defined recursively by k1 = 2 and k,41 =
kn(kn + 1). For each n, we construct by Proposition the normal subgroup I';,
ko, O
0 k,
map i, : A,Z?> — 7 defined as i, (z,y) = 2/k,. Notice that

using the diagonal matrix A, = ), positive integer m,, = k, and the

T = {(knu, knv, kyw + )t u,v,w € Z}.

We now check I',,11 C I, using Proposition The only non-trivial condition
to verify is (§): if z = knq1u, then in11(z,y) = u and iy(z,y) = (ko + Du = u
mod k,, as needed.

Also NI',, = {(0,0,0)}, otherwise if (0,0,0) # (z,y,2) € NIy, then at least one
of |z|, |yl, |z| > ky, for all n > 1, which is impossible since k,, — oo. Therefore the

H odometer on H/T',, is of (x,y)-product type.
Notice that (kn,kn,1) € T, for every n € N. If this example has an odometer

% . .
factor on H /T, where each subgroup I", is flat, then by Lemma it would follow
that for any I", there exists I'y, such that Ty, C T, and so (km, km,1) € T, as
well.

Now suppose that ir, = 0. This contradicts the fact that I'), is flat: for if ip, =0
and there is an element of the form (K, kn,, 1) € T, for all n, then Proposition
implies that (0,0,1) € T, for all n, and therefore the sequence of subgroups do not
have trivial intersection.

Example 4.10 (Not flat and not (z,y)-product Heisenberg odometer).
Using the sequence {k;,} defined in the previous example and the matrices in (9)),
we consider the sequence of matrices

(k. O gntl 7.1
(14) An = (0 kn) ' (7.3" 1+t )
and the normal subgroups given by the triples (A, ky,4,) where i, : A,Z* — Z is
defined as i, (z,y) = x/k,. We can describe T',, as

{(kn (3" ud-7-11™ ), ki (7-3™ u+ 11" ), Ky -w 3"+ 711" 0) = u, v, w € Z}.

The inclusion I'y, 11 C I'), follows from Proposition in order to verify notice
that if = k,41(3" 2w + 7 - 11" 10), then i, 11(7,y) = 3" 2u + 7 - 11" 1y and
in(z,y) = (kn +1)(3" 2u+ 7- 11" 1) = 3"+ 2y + 7- 11"y mod ky,, as needed.

An argument similar to that of the previous example shows that NI, = {(0,0,0)},
hence the sequence{T’,,} defines a Heisenberg odometer.

By choosing u,v € Z such that 3"*! .4 +7-11" - v = 1 and letting w = 0, we
have (ky,, kn,,1) € T, for every n € N. We conclude, as above, that the odometer
on m cannot be flat.
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e_

We analyze now the associated Z? odometer, Z?/A,,Z* and show that the condi-
tion stated in Corollary [4.7]is not satisfied. Indeed, A, (1,1)-det(A,) = k, - (—16)-
33", and A,,(1,1) = ky, - 3™*! and there are no m > n so that k,, - (—16) - 33"
divides k,, - 3™*!, since each integer k,, = 2 - odd.

Proof of of Theorem[[.3 We need only verify that if a Heisenberg odometer is both
flat and (z,y)-product then it is pure product. Suppose the odometer on H/T',
is flat and (z,y)-product. Let H/T' be the conjugate flat odometer defined by

%
(Al,,m},0). By transitivity of conjugacy the odometer on H/I"/, must also be
(z,y)-product type and, as noted in Remark this implies that the associated
72 odometer is product type. Using we have diagonal matrices A/ such that

(after passing to a subsequence, if necessary) A, Z* > Al Z* D A, ,Z* . We claim

that the pure product odometer on H/T", defined by (A!,,m/,,0) is conjugate to the
odometer on ﬂf"n, and therefore to the one on H/T,,. This follows immediately

from Lemma [2.1]since the property of A/, guarantees that I, > T/, > T7 . O

5. SPECTRAL ANALYSIS OF HEISENBERG ODOMETER ACTIONS

As was discussed in the introduction, Mackey [9] has shown that a G odome-
ter, for G any discrete, finitely generated and residually finite group, has discrete

spectrum by showing that the action of G on the inverse limit space G/T', is a

sub-action of the compact group m acting on itself by rotation. In this section
we analyze the exact nature of this decomposition.

It is clear that any one dimensional irreducible representation that appears comes
from eigenfunctions of the group action. In [3] the authors show that the eigen-
values of a G odometer are those characters ¢ : G — S' of the group G for which
¢(y) =1 for all v € T, for some n and that the functions f = ZveG/Fn A(V)Xnsm
are the corresponding eigenfunctions. Below we present an alternate proof that
odometer actions have discrete spectrum that allows us to identify the rest of the
representations that occur in the decomposition explicitly and in terms of the irre-
du(ible, finite dimensional representations of the group G, as opposed to the group
G/T,,.

In the case of the discrete Heisenberg group H this approach allows us to say
much more. An easy computation shows that if ¢ : H — S! is a character, then
¢ only depends on the first two components (z,y). Thus the one dimensional
representations of a Heisenberg odometer are determined entirely by the eigenvalues
of its associated Z? odometer. We describe below the eigenvalues of a Z2? odometer

2 2 . . .
on Z?/A,Z?* in terms of the sequence of matrices A, and using the results of
Section [ we identify explicitly those finite dimensional, irreducible representations
of the Heisenberg group which arise in the spectral decomposition of the H odometer

action on H /T, as a function of the triples (4,, My, i,) defining the subgroups T',,.

5.1. Discrete spectrum of general odometer actions. Let G be a discrete,
finitely generated, and residually finite group. Fix a G odometer on G/T',. Let

%
U:Gx L*(G/T,,p) — L*(G/T,, ) denote the induced unitary operator of the
odometer action defined by

(15) U(g)(f(x)) = flg~").
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Theorem 5.1. U admits a decomposition into finite dimensional irreducible rep-
resentations of G of the form U = @2‘;1 Uy with the property that there exists an
increasing sequence k, — oo so that for all n, @ﬁ’;l Uy is equivalent to the unique
irreducible decomposition of the reqular representation of G/T,,.

Before proving the result, we introduce some additional notation. Let ¥ be
the Borel o-algebra on G/T',, generated by all cylinder sets [n;4], n > 1 and v €
G /T; for each n > 1, let ¥, be the o-algebra generated by the n'’-stage cylinder
sets, and let p, = px, be the induced probability measure on the cylinder sets,

%

which is normalized counting measure. Let X,, = (G/T'y, Xp, ptn). If g € Ty, then
U(g)(X[nw]) = X[nigy] = X[nsy]» S0 the unitary operator U induces a representation
U™ of G/T,, on L?(X,). By using the natural unitary isomorphism between the
finite dimensional spaces L?(G/T,) and L?(X,,) given by x, — X[nsy]s One easily
checks that U(™) is equivalent to the regular representation of G/T,, over L?(G/T),).

This equivalence allows us to use the machinery of regular representations of
finite dimensional groups to prove Theorem constructively. In particular we
will use two classical results which we state together in the following theorem,
reformulated in our context.

Theorem 5.2. (Maschke’s Theorem)[5| For every n, L*(X,) = @, <<y, S where

each §} is an irreducible, U™ invariant subspace. Furthermore, suppose that V C
L*(X,,) is a U™ invariant subspace. Then L*(X,,) admits a decomposition of the
form V&3 & %’Zj for some sub collection of the subspaces F}.

It is obvious that L?(X,,) C L?*(X,+1). Moreover, a compatibility relation exists
between the G/I',,-representation, U™ and the G /T, 41-representation, yntl),

Lemma 5.3. For every v € G/Tyy1, UPTY(y) restricted to L*(X,) coincides
with U™ (1, (7).

Proof. 1t is sufficient to verify the condition for a given ¥ € G/I';, and the associated
characteristic function x5

U (@nD)Xins) = Ximmaonl = D Xint1sl = D Xint1s
ey H(mn (7)7) yeymn(3)
= Z Xin+1:95) = U ()X i -
yernt(¥)

Here we used the fact that 7, (7, (7)) = vy, * (5) which follows from the definition
of m,. Indeed,

¥ € ng(ﬂ'n('y)'_y) e my)=myey= Wn(vil)ﬂnﬁ’)
ey v en (7)) e ().
|

We are now ready to prove Theorem Lemma shows that L?(X,) C
L?(X,41) is a U invariant subspace therefore by Theorem we have a de-
composition

LA(Xpi) = LX(Xy) @50 @ o

knit1
into U1 (and therefore U) invariant subspaces.
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Lemma also implies that the decomposition of L?(X,) into U™ invariant
irreducible subspaces is a decomposition into U+ invariant and irreducible sub-

spaces, therefore §7 @ - ®F} @Szrﬁl ®-- ~@3Z:+11 is a decomposition of L?(X,,+1)

into U1 (and thus U) invariant, irreducible, finite dimensional subspaces.
So for all n, by relabelling, we have the decomposition L?(X,,) = @gkgk” T
such that Uy = U, . is an irreducible, finite dimensional representation of G. Re-

calling the fact that U™ is equivalent to the regular representation of G /T, the
collection Uy, for k = 1,--- , k,, must include all representations of that finite group.

To complete the argument note that the space U = @;‘;1 §r contains all char-
acteristic functions xi,;,). Furthermore, the collection of characteristic functions

<_
generates an algebra of continuous functions that separates points in G/, is
closed under complex conjugation and contains the constants. Therefore, by the

Stone-Weierstrass Theorem 2 contains the continuous functions on G/T',,, and by
the <de_nsity of the continuous functions in the L? norm, must therefore be all of
L*(G/T,).

If in addition we suppose that G is a discrete, countable, and amenable group,
recent developments in the field yield the following immediate corollary.

Corollary 5.4. If G is a discrete, countable, and amenable group then every G
odometer action has zero entropy.

%
Proof. Suppose not. It would then follow from [11] that (G/T'y,, i, G) has a Bernoulli
factor. By [1] this factor would have countable Lebesgue spectrum, contradicting
Theorem [E.11 (I

In [3] the authors prove that every sub-odometer is the measure theoretic factor
of an odometer. The following result then follows immediately from Theorem

and Corollary

Corollary 5.5. Fvery G sub-odometer has discrete spectrum. If, in addition G
is a discrete, countable, and amenable group, then every G sub-odometer has zero
entropy.

%

5.2. Spectrum of Z? odometers. Let us fix a Z2 odometer on Z?/A,Z>. Let
p(z,y) = e2™(@=+&) denote a character of Z2. By an abuse of notation we refer
to the pair («,§), rather than the associated character, as an eigenvalue of the
action. We further only concern ourselves with (o, &) € T?. For the remaining of
this section we let the quotient notation, i.e. Z?/AZ?, mean a specific complete
collection of coset representatives.

Cortez |2 shows that a pair (a, £) is an eigenvalue of the odometer action if and
only if there exists n so that

(16) (@, )" € ((47)7'2?) 22,

An easy computation shows that holds if and only if there exists a vector
v € Z2/AT72 such that

(17) (e, )" = (A7) v

It is therefore clear that there are det(A,) distinct eigenvalues of the odometer
action which are associated to the nth stage of the construction of the odometer.
Denote the set of vectors («, &) satisfying by £(4,) and fix n. For ease of
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notation we suppress the subscript n and let the reader determine from the context
whether the eigenvalues are being represented as row or column vectors.

Let A = (CCL Z) If b = ¢ = 0 then it follows from that there will be ad

eigenvalues of the form (%, %), j€{0,...,a—1}, 5 €{0,...,d—1}. To determine
E(A) in the case of non-diagonal matrices we use (L6]) to write

du —cv —bu + av
(18) (a,ﬁ)—( det A~ det A )

for some (u,v) € Z2. If the rows of A have relatively prime entries, i.e. ged(a,b) =
ged(e,d) = 1, then the numerator of the first component can be made to take
any value 0, ...,det A — 1, taken modulo det A. Therefore there are exactly det A
choices for «, each with a corresponding . But there are det A pairs possible, so
this exhausts all possible pairs that can occur, meaning all possible £ have now
appeared. So given an « there can only be a unique ¢ such that (¢, &) is an
eigenvalue.

Notice in the above two cases, for any « that appears in the spectrum of the
odometer, the number of £ that can pair with it is the same for any a. It will follow
from our work below that this holds in general. In particular, given any matrix A
we can decompose it into the product of a diagonal matrix with a matrix whose
rows have relatively prime entries:

o a2 Y)

The set £(A) can be described in a nice geometric fashion using the matrix A.
Using we have £(A) = A~1(AT)~! (ZQ/(AA)TZQ). On the other hand,

o

22)(AA)Tz2 = ) 7?/ATZ2+ AT (?,)
0<j<gcd(a,b) J
0<j/ <ged(e,d)

and therefore taking addition modulo Z?2

s= U andnT (z/Arz)« o (j) a7t (2(d) +Ea).
0<j<ged(a.b)

0<j’ <ged(e,d)

So given any Z? odometer, there is now a clear algorithm for listing the eigen-
values corresponding to a fixed stage n. Using first find (u,v) € Z? such that
du—¢év =1 and let £ = —bu + av. The following is a complete list (without
repetition) of all det A eigenvalues of the Z? action from this stage:

U < g+jdetA qé+j'detfl>
ged(a,b)det A ged(c,d)det A)

0§q<detA
0<j<gecd(a,b)
0<j’'<gcd(c,d)
Note that the since 4,72 < A,Z? for all k < n, this collection will include all
previous stage eigenvalues as well.
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5.3. Spectral analysis of Heisenberg odometers. The main result of this sec-
tion characterizes which finite dimensional irreducible representations of the Heisen-
berg group can arise in the spectrum of a given Heisenberg odometer. Using stan-
dard inducing techniques from representation theory, Indukaev has shown in [8]
that for a given dimension p, all p dimensional, irreducible representations of the
discrete Heisenberg group H can be parametrized by three scalars («,&,n) € T3
and have the following structure:

2mi(yé+(z+5y)n+[E5 o)

(19) U(:c,y,z) L€ € €(j—x) mod p

where (z,y,2) € H, n € T! is an irreducible fraction of the form ﬁ, (a, &) € T? is
arbitrary, €; denotes the projection onto the jth coordinate in a finite p-dimensional
space, j =0,--- ,p—1, and for x € R, [z] denotes the integer part of x. Conversely,
given any such triple («, &, ﬁ), the operator defined by gives a p dimensional,
irreducible representation of H. In what follows, for ease of notation, we say that
(o, &, ﬁ) lies in the spectrum of an H odometer action if the corresponding p di-
mensional, irreducible representation of H occurs in its spectral decomposition.

Theorem 5.6. Let {T',,}, defined by {(An, mn,in)}, be a sequence of normal sub-
groups of H giving rise to a Heisenberg odometer action. Then (o, &, ﬁ) € T3, with

<—
ged(l,p) = 1, lies in the spectrum of the odometer action on H/T,, if and only if
there exists n such that p divides m,, and for all (z,y) € A,Z>

()0
(20) y§+wy)+;aez.

Proof. Fix a Heisenberg odometer action on H/T',, and let (A,,, m,,,,) denote the
triples associated with the subgroups I',,. Suppose that (a, &, g) is in the spectrum

<—

of H/T,,. Several easy observations follow from our proof of Theorem irst,
since there is an inductive structure to the spectral decomposition of L2(H /T, ),
there exists n such that (o, &, ﬁ) arises in the spectral decomposition of L2(H/T',,).
It also follows from the proof that the representations that occur in this decom-
position are exactly the regular representations of the subgroup H/T,,. Thus, for
all (z,y,z) € I',,, the representation given in with this triple reduces to the
identity operator on I',,, meaning that we have

N T+ .
(21) y§+<z+yy>p+[p~7}aez for j =0, p— 1.
Since (0,0, m,) € T, it follows immediately that p divides m,,. Recall from Propo-
sition that it is necessary that m, divides all the entries of A, so [%] = %
and %’ € Z. Thus for (x,y,2) € T, reduces to requiring

(smn + in(2,y))!

‘
(22) ye+ =+ Za—ye+ +2aez
PP P

for all s € Z. The fact that p is a divisor of m,, now yields .
Suppose now that («,¢&, %) is such that there exists n for which p divides m,,

and holds. Using (22) it follows immediately that holds and thus the
representation given in (19)) is an irreducible representation of H/T,, therefore it

must occur in the regular representation of H/T',, (|5]). It now follows from our

proof of Theorem that (&, ﬁ) occurs in the spectrum of H/T,. O
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Remark 5.7. If p = 1, then the only non-zero irreducible fraction of the form f)
comes from ¢ = 0 so in we have j = 0 and since z € Z the one dimensional
representations that occur have the form e2™/¥¢+2®)  Thus, as we noted before, we
see that the one dimensional representations that occur in the decomposition are
precisely those that come from pairs (o, &) that are eigenvalues of the associated
72 odometer.

5.4. Examples. In the case of a flat odometer, without loss of generality we can
assume i,(z,y) = 0 for all n, and we can conclude that the triples that occur are
exactly those (o, €, %) where (%, ¢) is an eigenvalue of the associated Z? odometer.
Otherwise the values of £ and a depend on the structure of the functions ,,. Below
we compute some examples to show the effect of these functions 4,, on the spectrum
of the odometer.

kn, O
0 kn
sequence k,, as defined in Example For any choice of the sequence i,, for which
the triple (A,,, m,,,i,) defines a Heisenberg odometer, the associated Z? odometer

Consider the sequence of matrices A, = and m,, = k, where the

has eigenvalues of the form (ki, Ig—/) for j,7/ € {0,--- ,k, — 1}. Fix a stage n,
assume p divides k,, and that £ is relatively prime to p. We consider three different
choices for the sequence i,,.

(a) Let i,, = 0. The p-dimensional representations that occur will be those corre-

oy
sponding to the triples ﬁ7 j—, - .
kn kn p

(b) Let i, = ki This gives rise to the odometer constructed in Example [4.9| where

n
we showed that it is not flat so we expect a different set of representations to
occur. Indeed, the triples (a, &, ﬁ) that can occur now have to satisfy:

i(x,y)l o x {4+ kya
yé—&-(y)+a=y§++a=y§+x(> € Z.
P p pkn D Pkn
Therefore the representations that occur will be those corresponding to the
trinles (2 —4 I ¢
riples — — .
p ,l{:n ) kn b p

(c) Let i, = kﬁ An argument parallel to that given in Example shows that

n
this choice of i,, gives rise to an odometer action which is not flat. The triples
that occur must satisfy

(  x 14 @

yé + 2 +a:y<§+> +z—-€Z
knp knp p

i jp—L L

which gives us triples of the form (Z‘j, J Z , ) . Thus, this last example is

n nP D

not flat and also not conjugate to the odometer from Example
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