PSM, Version 4.0b - Part 9

PART NINE

Supplemental Information

This part of Practical Software and Systems Measurement: A Foundation for Objective Project Management
provides supplemental information to promote a better understanding of the concepts and terms used within the
Guide. It also provides additional background information about Practical Software and Systems Measurement.

The information in this part of the Guide includes:

e Glossary - This section provides definitions of terms used throughout the Guide.

e List of Acronyms - Acronyms used throughout the Guide are defined in this section.

e Bibliography - References related to PSM and software measurement are provided in this section.

e PSM Project Information - The project attribution policy and contact information are included in this section.

e Comment Form - Comments and suggestions concerning the PSM Guide may be submitted using this form.

9-1

[This page intentionally left blank.]

9-2

PSM, Version 4.0b - Part 9

TABLE OF CONTENTS

[Lo == T Y/ 5
ACIONYMS o ———————— 12
[Z7] o] [Te Yo T o] 2) /2P 14
PSM Project Information.............eeueeiimimmmmmmmmimmminsssssssssssssssssss s 18
Evaluation and Comment FOrmcccoommmmiiiinccciseerr s 20

9-3

[This page intentionally left blank.]

9-4

PSM, Version 4.0b - Part 9

Glossary

actual data

acquirer

aggregation structure

application software

apply measures

attribute

Capability Maturity
Model (CMM)

Commercial Off
The Shelf (COTS)

common issue area

component

9-5

See measured value.

The individual or organization responsible for funding or purchasing the software product
or system. The acquirer can be defined as the customer for the software development or
operations and maintenance effort. See customer.

Effective measurement analysis and reporting requires that the data be aggregated to
higher levels of the product and organizational structure. The aggregation structure
defines the different ways the measurement data can be grouped and organized for
reporting on the project. The aggregation structure describes how the measurement data
relates to existing product and process structures. This organization allows the
measurement results to be combined, and later decomposed, meaningfully.

Software produced for a specific user need, as opposed to general system software.
Examples include software for navigation, fire control, payroll, or general ledger.

In the PSM process, this term refers to one of the four basic measurement activities which
comprise the software measurement process. The application activity involves collecting,
analyzing, and reporting the measurement data. See tailor measures, implement process,
evaluate measurement.

Characteristics or properties assigned to each software measurement data item. Attributes
provide categories for sorting and selecting data. The attributes of the measurement data
must be collected with the data. An example of an attribute is problem reports priority
levels, or development organization.

Contains the essential elements of effective processes for one or more
disciplines. These elements are organized into hierarchical stages or levels.

Commercial items that require little or no unique government modifications or
maintenance over the life cycle of the product to meet the needs of the procuring agency.

A class of concern that is basic or common to almost all programs. PSM defines seven
common software issues. See issue.

Any separately-identifiable software or system element or unit. A component may be
defined at any size or functional level within a product. A component may be defined as
any of the structural elements that are commonly defined for products including units,
design modules, or configuration items. A component may refer to any entity in the
structure of a system. Since there is little agreement within the software communities on
structural terminology, "component”" may take on many different meanings. The supplier’s
project plan should clearly articulate the approach to creating the product structure and the
definitions that will be used for the components. Components can be units, configuration
items (CIs), objects, interfaces, screens, reports, packages, subsystems, icons, assemblies,
or other measurable product structures. Problem reports and change requests are
sometimes considered to be components, especially with respect to software maintenance
activities during the operations and maintenance phase. COTS/GOTS and other non-
developed parts or reusable software products can also be counted as components. Some
components can be aggregated to form higher level components (for example, units to
CIs to versions). These can be referred to as sub-components.

Configuration Item (CI) An aggregation of software and system products that satisfy an end-use function and is

Cost/Schedule Control
System Criteria
(C/SCSC)

customer

cyclomatic complexity

data item

defect

developer

development

earned value

estimation

estimator

designated for separate configuration management by the acquirer. Cls are selected based
on tradeoffs of various factors; including function, size, host or target computers, support
concept, plans for reuse, criticality, interface considerations, the need to be separately
documented and controlled, and other factors.

DoD requirements that define what a contractor’s management control system

must have to qualify for bidding on selected military program acquisitions. The

criteria include requirements for integrating cost, schedule, and technical performance
measurements using the Work Breakdown Structure (WBS) and earned-value accounting
methods. C/SCSC facilitates the analysis of variances from planned activities, and
provides a means to estimate the cost of the contract at completion. This requirement is
no longer required on new contracts as long as the contractor has an approved Earned
Value Measurement System in place. See earned value.

The individual or organization that procures software or system products for itself or
another organization. See acquirer.

A measure of the logical complexity of a unit, based on the number of unique paths
through the unit. This measure is used to evaluate code quality and to predict testing
effort.

An attribute that is quantified to produce a measure. For example, the Number of Labor
Hours is one data item.

A product’s nonconformance to its specification; or any error in documentation,
requirements, design, code, test plans, or any other work product. Defects are discovered
during reviews, tests, and operations.

An organization that develops software and systems. The term “develop” may include
development, modification, reuse, reengineering, operations and maintenance, or any
other activity that results in software or systems. The developer may be a contractor,
government agency, or internal development organization.

The activities that result in software products, including requirements analysis, design,
implementation, and integration and test. This term is used throughout PSM to describe
the second of three phases in the software life cycle. See program planning, operations
and maintenance.

The value of completed work, expressed in terms of the budget assigned to that work.
Earned Value Measurement (EVM) is a cost management technique that relates resource
planning to technical, cost, and schedule requirements. The earned value process budgets
and schedules all work activities into time-phased increments that establish a cost and
schedule measurement baseline.

The type of analysis that is conducted to establish target values for software size, effort,
and schedule to support project planning. Estimation usually starts with historical data
and a set of assumptions about the project’s process and products. Estimation not only
produces estimates, but also identifies uncertainties that feed back into the issue
identification process. Estimation should be conducted during the initial planning activity
and during all subsequent plans.

A special type of indicator used in estimation. An estimator describes a relationship
between two quantities so that values of one can be used to estimate values of the other.

PSM, Version 4.0b - Part 9

evaluate measurement

expected (planned)

experience base

failure

feasibility analysis

function point

implement process

increment

indicator

information system

issue

9-7

For example, the average productivity of an organization is an estimator that can be used
with an appropriate measure of size to predict the amount of effort required for a project.

One of the four basic measurement activities of the PSM process. The evaluation activity
identifies potential improvements to the project’s measures and measurement process.
See apply measures, tailor measures, implement process.

Planned or historical measurement data, such as milestone dates, target level of value
reliability, or required productivity. See measured value.

A store or repository in which lessons learned and measurement artifacts are collected for
use by later projects, or in later phases of the current project. The experience base may be
kept in electronic or paper form.

A situation in which the system or system component does not perform a required
function within specified limits.

The type of analysis that is conducted to determine whether project plans and targets are
technically realistic and achievable. Feasibility analysis uses historical data, experience,
and consistency checks to evaluate the project plans. Any risk identified during this
analysis should be entered into the project’s risk management process. Feasibility
analysis should be conducted during the initial planning activity and during all
subsequent plans.

A software size measure that describes the level of information-processing functionality
contained within a software product. Function points are derived early in the software life
cycle from requirements or design specifications, and are applied across diverse
application domains and technology platforms.

In the PSM process, this term refers to one of the four basic measurement activities which
comprise the software measurement process. The implement process activity includes all
the steps to establish commitment and deploy a measurement process within an
organization.

A functional subset of a system. Large systems are typically developed a series of
increasingly complete increments (builds.)

A measure or combination of measures that provides insight into a software issue or
concept. PSM frequently uses indicators that are comparisons, such as planned versus
actual measures. Indicators are generally presented as graphs or tables.

A combination of computer hardware and software, data, and telecommunications that
performs functions such as collecting, processing, transmitting, and displaying
information. Excluded are hardware and software computer resources that are physically
part of, dedicated to, or essential to real-time mission performance of weapon systems.

A concern where obstacles to achieving program objectives might arise. Issues include
risks, problems, and lack of information. These three types of issues are defined as:

problem: An ongoing or expected obstacle to achieving a project objective. While the
magnitude and impact of a problem may not be known, it is assumed to be nearly certain
to occur if not already occurring. Lack of qualified personnel may a known problem that
has to be dealt with. Because the situation already exists, it isn’t a risk.

lack of information

life-cycle phase

low-level data

maintenance

measure

measured (actual) value

measurement

measurement analysis

measurement analyst

measurement category

measurement
information

metric

risk: An obstacle that could occur, but is not certain. A risk is a potential problem. Risks
represent the potential for the realization of unwanted, negative consequences from a
project event. For example, a project plan may be based on the assumption that a COTS
component will be available on a given date. There is a possibility (probability) that the
COTS may be delayed and have some amount of negative impact on the project.

lack of information: A potential obstacle to the achievement of a goal arising from a
lack of appropriate historical or contextual data on which to base plans or to evaluate
performance. For example, an organization that has never developed C++ code has a lack
of information about the level of productivity that it can achieve in C++. Even if no risk
events occur, a C++ project might fail to achieve its objectives because those objectives
were developed in a vacuum.

One of three categories of issues. See issue.

PSM defines three major life-cycle phases: project planning, development, and operations
and maintenance. Four principal software activities occur within the development and
operations and maintenance phases: requirements analysis, design, implementation, and
integration and test.

Measurement data that is aggregated, collected, and reported at a level of detail that
allows for the isolation of problems and for overall analysis flexibility. Aggregation of
data is commonly at the activity level (requirements analysis, design, implementation,
and integration and test), the component level, and the function level.

See operations and maintenance.

A method of counting or otherwise quantifying characteristics of a process or product.
Measures assign numerical values assigned to attributes according to defined criteria.

Actual, current measurement data, such as hours of effort expended or lines of code
produced. See expected value.

The process of assigning quantitative values to measures and indicators, according to
some defined criteria. This process can be based on estimation or direct measurement.
Estimation defines planned or expected measures. Direct measurement results in actual
measures.

The critical examination of measures and indicators to identify problems, assess problem
impact, project an outcome, or evaluate alternatives related to project issues. See
estimation, feasibility analysis, and performance analysis.

The person or team responsible for tailoring and applying measures for a given program
or organization.

A set of related measures. Each common issue defined in PSM has one or more
corresponding measurement categories. Software measures that provide the same type of
information are grouped under the same measurement category. Each category answers

different types of software-related questions.

Knowledge derived from analysis of measurement data and measurement
indicators.

See measure, indicator.

9-8

PSM, Version 4.0b - Part 9

milestone

normalization

objective

operations and
maintenance

performance analysis

planned data
problem

problem report

project

project manager

project planning

repeatability

rework

rippling

risk

9-9

A scheduled event for which some project member or manager is held accountable. A
milestone is often used to measure progress.

The process of transforming measures from different sources so that they can be
combined or compared. For example, to compare the quality of work produced in two
programs, it would be necessary to look at defect counts in relation to the amount or size
of the product. This often requires defining and validating conversion rules and/or
models.

A business goal or technical performance requirement allocated to a software or systems
project. Objectives may include targets such as budgets, schedules, response times, and
reliability.

The activities necessary to ensure that an installed, operational system continues to
perform as intended. This term is used throughout PSM to describe the third of three
phases in the software life cycle. Software development can take place during the
operations and maintenance phase. See project planning, development.

The type of analysis that is conducted to determine whether software development efforts
are meeting defined plans, assumptions, and targets. Planned and actual performance data
are the inputs to this process. The performance analysis process is designed to identify
risks, problems, and corrective actions that can be taken. Performance analysis should be
conducted periodically once a project has committed to a plan.

See expected value.
One of three categories of issues. See issue.

A documented description of a defect, unusual occurrence, observation, or failure that
requires investigation, and may require product modifications.

The people, processes, and organizations responsible for developing or supporting a
system, either as a stand-alone system or as part of a larger system.

The official responsible for acquiring, developing, or supporting a system to meet
technical, cost, schedule, and quality requirements. Acquisition, development, and
support includes both internal tasks and work that is contracted to another source.

The activities necessary to define product requirements, assess and select suppliers, and
develop project plans. This term is used throughout PSM to describe the first of three
phases in the software life cycle. See development, operations and maintenance.

The ability of two analysts to perform the same measurement analysis and to arrive at the
same conclusions and recommendations.

Any effort to re-enact or correct work that has already been completed. Rework effort
begins once a defect is found and continues until all of the work required to obtain
acceptance of the reworked item is complete. Rework can also be measured in terms of
size changes.

Rippling occurs when a problem that arises in one issue area has an effect on another
issue. For example, product size growth may cause effort overruns. Rippling multiplies

the effect of an issue.

One of three categories of issues. See issue.

Software Engineering
Process Group (SEPG)

technical manager

supplier

structures

tailor measures

traceability

user

weapon system

Work Breakdown
Structure (WBS)

A group that facilitates the definition, maintenance, and improvement of the
processes used by an organization.

The person responsible for making decisions relating a specific discipline. For small
projects this could be the project manager. Large projects often have software
engineering, systems engineering, and hardware engineering managers.

An organization that enters into an agreement with the acquirer for the supply of a
system, software product, or software service under the terms of that agreement.

See aggregation structure.

In the PSM process, this term refers to one of the four basic measurement activities which
comprise the software measurement process. The tailoring activity includes identification
and prioritization of program issues, selection and specification of appropriate software
measures, and integration of the measurement requirements into the supplier’s software
process. See apply measures, implement process, evaluate measurement.

The ability to link conclusions and recommendations to the project measures using a
defined sequence of activities.

The agent or organization who will employ and operate a software or system product in
the intended target environment.

Items that can be used directly or indirectly by the armed forces to carry out combat
missions.

A work breakdown structure defines the - elements associated with program

work activities and products. Many measures are aggregated and analyzed at various
WBS levels.

9-10

PSM, Version 4.0b - Part 9

[This page intentionally left blank.]

9-11

Acronyms

A&T Acquisition and Technology

ACWP Actual Cost of Work Performed

AIS Automated Information System

BCWP Budgeted Cost of Work Performed

BCWS Budgeted Cost of Work Scheduled

C/SCSC Cost/Schedule Control System Criteria

C/SSR Cost/Schedule Status Reports

C41 Command, Control, Communications, Computers, and Intelligence
CMM Capability Maturity Model

COCOMO 11 Constructive Cost Model

COTS Commercial Off The Shelf

CPR Cost Performance Report

CI Configuration Item

DAB Defense Acquisition Board

DSMC Defense Systems Management College

DT&E Development, Test, and Evaluation

E&MD Engineering and Manufacturing Development

EVMS Earned Value Measurement System

GAO General Accounting Office

GOTS Government Off The Shelf

IFPUG International Function Point Users Group

I-C-M Issue-Category-Measure (Mapping)

IPPD Integrated Product and Process Development

IPT Integrated Project Team

ISO/IEC International Organization for Standardization / International Electrotechnical
Commission

9-12

PSM, Version 4.0b - Part 9

9-13

ISSA
V&V
JGSE
JLC
LAN
LOC
MAISAP
MAISRC
MDAP
MIS
MOA
MOU
NDI
OSA
OSD
OT&E
OUSD
PSM
RFP
SEI
SEPG
SISMA
SPC
STEP
SQA

WBS

Inter-Service Support Agreement

Independent Verification and Validation

Joint Group on Systems Engineering

Joint Logistics Commanders

Local Area Network

Lines of Code

Major Automated Information System Acquisition Program
Major Automated Information System Review Council
Major Defense Acquisition Program

Management Information System

Memorandum of Agreement

Memorandum of Understanding

Non-Developed Item

Open Systems Architecture

Office of the Secretary of Defense

Operational Test and Evaluation

Office of the Under Secretary of Defense

Practical Software and Systems Measurement
Request for Proposal

Software Engineering Institute

Software Engineering Process Group

Streamlined Integrated Software Metrics Approach
Software Productivity Consortium

Software Test and Evaluation Panel

Software Quality Assurance

Work Breakdown Structure

Bibliography

This bibliography lists measurement references that augment or support the guidance included in Practical Software
and Systems Measurement. Readers may wish to consult these resources for additional information. Brief
annotations are provided to describe each reference. The books are generally available through most technical
publishers and bookstores. Government documents are available through the National Technical Information
Service, 5285 Port Royal Road, Springfield, VA 22161, 703-487-4650.

Software Measurement References

Abts, Chris and Barry W. Boehm, A. Winsor Brown, Sunita Chulani, Bradford K. Clark, Ellis Horowitz, Ray
Madachy, Donald J. Reifer, and Bert Steece, 2000, Software Cost Estimation with COCOMO 11, Prentice Hall
PTR, Upper Saddle River, NJ.
This book describes an updated version of the COCOMO software cost estimation model first published in
1981. In addition to the describing the model and providing case studies of its use, there are descriptions of
other emerging models that address the areas of quality, COTS software development, and rapid
application development. The book includes a CDROM containing software tools, documents, and pointers
to the COCOMO suite website.

Baumert, John H., and Mark S. McWhinney, September 1992, Software Measures and the Capability Maturity
Model, CMU/SEI-92-TR-25, ESC-TR-92-025, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA.

A reference that identifies which software measures can reasonably be expected at the various levels of SEI

software process maturity. This book includes example graphs and advice on how to report specific
measures.

Boehm, Barry W., 1981, Software Engineering Economics, Englewood Cliffs NJ: Prentice-Hall.
This is a primary reference on how to use measurement and cost estimation to manage software projects
and make business decisions based on quantitative tradeoffs. While the book's discussion of COCOMO has
been updated with a new book, there are discussions on cost-effectiveness analysis, dealing with
uncertainties, estimation procedures, and software lifecycle cost estimation.

Brooks, Frederick O., Jr., 1975, The Mythical Man Month: Essays on Software Engineering, Reading, MA:
Addison-Wesley Publishing Company.
This is a primary reference for software engineering. This book relates key lessons learned in managing a
large software program and provides an overall perspective for the project manager.

Carleton, Anita D., Robert E. Park, Wolfhart B. Goethert, William A. Florac, Elizabeth K. Bailey, and Shari
Lawrence Pfleeger, September 1992, Software Measurement for DoD Systems: Recommendations for Initial Core
Measures, CMU/SEI-92-TR-19, ESC-TR-92-019, Software Engineering Institute, Carnegic Mellon University,
Pittsburgh, PA.
This reference provides recommendations and a rationale for the SEl-defined Core Measures. The Core
Measures include size, effort, schedule, and quality (measured in terms of defects and problem reports) and
address issues common to almost all software programs.

Deming, W. Edwards, 1986, Out of the Crisis, Cambridge, MA: Massachusetts Institute of Technology, Center for
Advanced Engineering Study.

This book describes the quality crisis across a number of industries and relates effective strategies for
dealing with them, focused on the use of Statistical Process Control techniques.

9-14

PSM, Version 4.0b - Part 9

Dumke, Reiner R., 1993, Software Metrics: A Subdivided Bibliography, Magdeburg, Germany: Technical
University “Otto von Guricke” of Magdeburg.

This bibliography provides a comprehensive guide to both research and practical publications in software
measurement, grouped by topic.

Fenton, Norman E., 1991, Software Metrics: A Rigorous Approach, London: Chapman & Hall.

This book advocates a rigorous approach to software measurement that is based on fundamental
measurement theory. It argues that much of modern software measurement is flawed because it ignores
measurement fundamentals. This book gives the reader specific tools to overcome these deficiencies and
put a measurement program on solid theoretical ground. This book is for the reader who desires a more
theoretical treatment of software measurement than is found in PSM.

Florac, William A. and Anita D. Carleton, 1999, Measuring the Software Process: Statistical Process Control for
Software Process Improvement, Reading, MA: Addison Wesley.

This book is based on lessons and experiences in software process improvement initiatives and from
implementing software measurement practices. It represents using measurement to control, improve, and
predict, using statistical process control techniques.

Florac, William A., Park, Robert E., and Carleton, Anita D, April 1997, Practical Software and Systems
Measurement: Measuring for Process Management and Improvement, CMU/SEI-97-HB-003, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.

This guide is based on the PSM process and principles of statistical process control. It identifies an
effective approach for using performance data to manage and improve software processes.

Florac, William A., with the Quality Subgroup of the Software Metrics Definition Working Group and the Software
Process Measurement Project Team, September 1992, Software Quality Measurement: A Framework for Counting
Problems and Defects, CMU/SEI-92-TR-22, ESC-TR-92-022, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA.

This reference provides a framework for counting problems and defects in software and using them to
assess quality, which is one of the SEI Core Measures. It includes checklists that allow the reader to define
how defects are actually defined and counted.

Goethert, Wolfhart B., Elizabeth K. Bailey, Mary B. Busby, with the Effort and Schedule Subgroup of the Software
Metrics Definition Working Group and the Software Process Measurement Project Team, September 1992,
Software Effort and Schedule Measurement: A Framework for Counting Staff-Hours and Reporting Schedule
Information, CMU/SEI-92-TR-21, ESC-TR-92-021, Software Engineering Institute, Carnegic Mellon University,
Pittsburgh, PA.

This reference provides frameworks for counting software staff-hours and schedule, both of which are SEI
Core Measures. It includes checklists that allow the reader to define how staff-hours and schedule data are
actually defined and counted.

Grady, Robert B., and Deborah L. Caswell, 1987, Software Metrics: Establishing a Company-Wide Program,
Englewood Cliffs, NJ: Prentice-Hall.

This book describes how Hewlett-Packard’s corporate measurement program was implemented. It includes
information on topics that range from how to compute specific measures to how to sell a measurement
program to senior management.

Grady, Robert B., 1992, Practical Software Metrics for Project Management and Process Improvement,
Englewood Cliffs, NJ: Prentice-Hall, Inc.

This book examines more detailed issues with respect to software measurement, and more specifically
relates measurement to software process improvement. It builds on information from the previous
reference.

9-15

Hetzel, Bill, 1993, Making Software Measurement Work: Building an Effective Measurement Program, Boston,
MA: QED Publishing Group.

This book addresses how to get measurement implemented in an organization. It emphasizes fundamentals,
explains how to begin, and includes a list of measurement tools and services available at the time of
publication.

The Institute of Electrical and Electronics Engineers, Inc., 2001, IEEE Standard for Software Life Cycle Processes-
-Risk Management, IEEE Std 1540-2001, New York, NY.

This IEEE Standards product is part of the family on Software Engineering. A process for the management
of risk in the life cycle of software is defined. It can be added to the existing set of software life cycle
processes defined by the IEEE/EIA 12207 series of standards, or it can be used independently.

International Function Points Users Group, revisions from 1994 to 2001, Function Points Counting Practices
Manual, Westerville, OH.

This industry-established standard defines the rules for counting function point. This can be obtained at
http://www.ifpug.org/publications/manual. htm.

International Function Points Users Group, revisions from 1994 to 2001, Guidelines to Software Measurement,
Westerville, OH.

This guidebook introduces the basic concepts of software measurement. It describes how the measurement
process fits into other software activities, and provides guidance on implementing a measurement program.
It reviews product and process measures, discusses indicators, and examines ways to use measurement
results. This can be obtained at http://'www.ifpug.org/publications/guidelines.htm.

International Organization for Standardization and International Electrotechnical Commission,, 2000, Information
Technology—Process Assessment, ISO/IEC 15504: 2000

This international standard provides a framework for the assessment of software processes.

International Organization for Standardization and International Electrotechnical Commission, 2002, Software
Engineering —Software Measurement Process, ISO/IEC 15939: 2002.

This International Standard defines a sofiware measurement process applicable to all software-related
engineering and management disciplines. The process is described through a model that defines the
activities of the measurement process that are required to adequately specify what measurement
information is required, how the measures and analysis results are to be applied, and how to determine if
the analysis results are valid. The sofiware measurement process is flexible, tailorable, and adaptable to
the needs of different users.

International Organization for Standardization and International Electrotechnical Commission, 1998, Information
Technology - Software Measurement -Definition of Functional Size Measurement, ISO/IEC 14143: 1998.

Park, Robert E., with the Size Subgroup of the Software Metrics Definition Working Group and the Software
Process Measurement Project Team, September 1992, Software Size Measurement: A Framework for Counting
Source Statements, CMU/SEI-92-TR-20, ESC-TR-92-020, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA.

This reference provides a framework for counting source lines of code (SLOC) and using them to assess
software size, which is one of the SEI Core Measures. It includes checklists that allow the reader to define
how SLOC are actually defined and counted.

9-16

PSM, Version 4.0b - Part 9

Paulk, Mark C., Bill Curtis, Mary Beth Chrissis, and Charles V. Weber, 1993, Capability Maturity Model for
Software, Version 1.1, CMU/SEI-93-TR-24, ESC-TR-93-177, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA.

This reference describes a software process maturity framework that forms the basis for assessing the
capability of a software organization. Five maturity levels and the key practices within each level are
described.

Putnam, Lawrence H., and Ware Myers, 1996, Controlling Software Development, IEEE Computer Society
Executive Briefing. IEEE Computer Society Press.

This short booklet is aimed at executives and managers. It describes important concepts related to planning
and tracking individual software projects, and also addresses how this information is used for longer-term
software process improvement. Topics include estimating, defect management, measuring progress,
productivity, and more. The booklet includes various sample indicators and explains how they should be
used and interpreted.

Putnam, Lawrence H., and Ware Myers, 1992, Measures for Excellence: Reliable Software on Time, within
Budget, Englewood Cliffs, NJ: Prentice-Hall.

This book focuses primarily on using tools for automated size estimation and project tracking, and also
discusses life-cycle models, life-cycle management, and productivity analysis. It includes observations
about patterns of software behavior, based on Putnam’s historical database of software projects.

Rozum, J. A., and Iyer, S., 1996, A Data Definition Framework for Defining Software Measurements, Technical
Report, Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University.

Capability Maturity Model®-Integrated for Systems Engineering/Software Engineering, Version 1.0., CMU/SEI-
2000-TR-018 (Staged Representation) and CMU/SEI-2000-TR-019 (Continuous Representation), Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, August 2000.

This International Standard defines a software measurement process applicable to all software-related
engineering and management disciplines. The process is described through a model that defines the
activities of the measurement process that are required to adequately specify what measurement
information is required, how the measures and analysis results are to be applied, and how to determine if
the analysis results are valid. The software measurement process is flexible, tailorable, and adaptable to
the needs of different users.

Software Productivity Consortium, Software Measurement Guidebook, SPC-91060-CMC, Version 02.01.00,
August 1994, Software Productivity Consortium, Herndon, VA, and International Thompson Computer Press, 1995.

This reference provides detailed information that helps to define and interpret a software measurement
process. It contains detailed guidance on a number of software measures. It provides a process maturity
framework that supports assessing software and system engineering processes.

9-17

PSM Project Information

Practical Software and Systems Measurement Attribution

One of the primary purposes of Practical Software and Systems Measurement: A Foundation for Objective Project
Management is to encourage the widespread implementation of software measurement throughout the DoD,
government, and industry. The information included in the Guide was developed by a group of measurement
professionals who gave much of their own time and effort to help meet this objective.

We encourage you to make direct use of the material contained in Practical Sofitware and Systems Measurement.
We ask that you acknowledge the source of the information as:

Practical Software and Systems Measurement: A Foundation for Objective Project Management, Version 4.0b,
February 2003.

Additional copies of this Guide are available in electronic formats.

Project Contact Information

Practical Software and Systems Measurement: A Foundation for Objective Project Management is intended for
those software acquisition and development organizations who need to more objectively plan, implement, control,
and evaluate their software programs.

If you would like more information on using Practical Software and Systems Measurement, or on available PSM
products and services please contact:

PSM Support Center

Cheryl Jones

US Army

TACOM-ARDEC
AMSTA-AR-QAT-A

Building 62

Picatinny Arsenal, NJ 07806-5000

(973) 724-5638 (Voice)
(973) 724-2382 (Fax)
880 (DSN)
psm@pica.army.mil
http://www.psmsc.com

9-18

PSM, Version 4.0b - Part 9

[This page intentionally left blank.]

9-19

Practical Software and Systems Measurement
y Guide
Evaluation and Comment Form

We welcome any comments that will help us improve Practical Software and Systems Measurement.
Please provide your inputs via hardcopy or email using the information provided below. If you email
your comments, please write “PSM Guide (include version #) Evaluation” in the subject line.

PSM Support Center
Cheryl Jones
US Army
TACOM-ARDEC
AMSTA-AR-QAT-A
Building 62
Picatinny Arsenal, NJ 07806-5000
Phone: (973) 724-5638
Fax: (973) 724-2382
Email: psm@pica.army.mil

Name:

Date:

Organization:

Street Address:

Email address:

Telephone:
Fax:
Version of PSM Reviewed:
Place X before Part of Guide Commented On:
Front Material: Part 5, Indicator Examples
Part 1, The Measurement Process: Part 6, Implement Process
Part 2, Tailor Measures: Part 7, Evaluate Measurement
Part 3, Measurement Selection and Part 8, Project Measurement Case Studies
Specification Tables:
Part 4, Apply Measures: Part 9, Supplemental Information

Would you like to receive updates to the Guide?

9-20

PSM, Version 4.0b - Part 9

Overall Value: (Excellent, Good, Fair, Not Useful) Please provide explanation.

General Comments:

Specific Comments on Sections:

Section: Page #: Comments:

Use Additional sheets if needed.

Thank you.

9-21

