

A N I N T R O D U C T I O N T O
M E S S A G I N G T E C H N O L O G Y

MARK EHR
POLARSOFT LIMITED

2465 C ENTRAL AVENUE SUITE 205
BOULDER , COLORADO 80301

MARKEHR @POLARSOFTLTD.COM

ABSTRACT

The world of messaging technology can be a complex and confusing one. Many people
travel a difficult road in trying to understand just what messaging is, how (and if) it
should be applied to a given business need, and which messaging vendor to choose. This
white paper provides a technical introduction to messaging technologies, describes major
messaging products, and defines advantages and disadvantages of messaging technology.

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- i i –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

Table of Contents

SECTION 1. A HISTORY OF MESSAGING ...1
EARLY MESSAGING SYSTEMS.. 1

Characteristics of an E-mail System... 1
Late 1980’s to Mid 1990’s: The Client/Server Revolution ... 3
Mid to Late 1990’s: Web/Internet, Thin Clients and “Rarely Connected” Users... 4
Late 1990’s and Early 2000’s: Application Servers, Corporate Web Portals, and Business-To-Business
Applications ... 7
Messaging helps solve many of these problems! .. 8

SECTION 2. MESSAGING CONCEPTS ...9
BASE MESSAGING ARCHITECTURAL COMPONENTS... 9

Messages ... 9
Queues ..11
Queue managers...11
Nodes ...12

OTHER MESSAGING CONCEPTS... 12
Asynchronous messaging ..12
Synchronous Messaging ..12
“Push” vs. “Pull” technologies...12
Publish/subscribe technologies ...12
Guaranteed “once-only” delivery..13
Transactional integrity / guaranteed units of work..13
Message Brokers and Message Hubs..13
Messaging application programming interfaces..13

SECTION 3. MESSAGING ARCHITECTURES ...15
APPLICATION TO APPLICATION ARCHITECTURES... 15

One-to-one ..15
One-to-many...15
Many-to-one ...16
Many-to-many..16

SECTION 4. MESSAGING VENDORS..19
IBM MQSERIES ... 19

MQSeries Integrator ..19
MQSeries Workflow...20
MQSeries Bridges..22
MQSeries Adaptors..23
MQSeries Everyplace ..23

TIBCO... 23
TIB/Rendezvous ...24
TIB/ETX..24
TIB/ObjectBus ...24
TIB/InConcert..24
TIB/IntegrationManager..24
TIB/MessageBroker ...25
TIB/Adapters...25

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- i i i –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

TIB/Adapter ..25
TIB/Hawk...25
TIB/BusinessConnect ...25

MICROSOFT MQ... 26
MSMQ APIs...27
MSMQ Connectors...27
MSMQ Market Penetration ..27

BEA SYSTEMS MESSAGEQ .. 27

SECTION 5. ADD-ON MESSAGING PRODUCTS ..29
MESSAGE BROKERS... 29
TRANSACTION SERVERS.. 29
MESSAGING BRIDGES.. 30

SECTION 6. CONCLUSION..31

SECTION 7. APPENDICES ...32
APPENDIX I: GLOSSARY AND ACRONYMS.. 32
APPENDIX II: WEB RESOURCES.. 34

SECTION 8. INDEX ...35

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- iv –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

Table of Figures
Figure 1: Simple E-mail Messaging Architecture.. 2
Figure 2: A Personal Digital Assistant (PDA).. 5
Figure 3: Internet- and Web-enabled Devices .. 6
Figure 4: Elements of a Message.. 11
Figure 5: A Message Queue... 11
Figure 6: One-to-one Messaging Architecture ... 15
Figure 7: One-to-many (publish/subscribe) Architecture ... 16
Figure 8: TIBCO Active Enterprise Products... 26

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 1 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

SECTION 1. A HISTORY OF MESSAGING

EARLY MESSAGING SYSTEMS

Some of the first messaging systems that were placed into production were electronic
mail, otherwise known as “e-mail”. E-mail systems were (and still are) the most
prevalent application of messaging technology, and serve as a very good model for
describing the general characteristics of any messaging architecture.

CHARACTERISTICS OF AN E-MAIL SYSTEM

All e-mail systems share the same common characteristics:

• Asynchronous transmission & reception of messages

• Resilience to program and network outages

• Application Programming Interface (API) for sending and receiving messages

• Simple, unique, global message addressing scheme

ASYNCHRONOUS TRANSMISSION AND RECEPTION OF MESSAGES
E-mail systems, by their nature, cannot assume that the recipient of a given message will
be available to receive the message at the same time that it is sent. This concept, known
as asynchronous messaging, is an important one—senders and receivers function
asynchronously of one another.

When an e-mail message is sent, it is queued at the e-mail server pending delivery. The
e-mail client is then free to continue processing, and the responsibility for delivery of the
message is placed on the e-mail server. The recipient of the message need not be
connected to the network (or even turned on!) at the time that the message is sent.

Unless the recipient of the e-mail happens to have an account on the same server as the
sender, the e-mail message must be sent to the appropriate e-mail server upon which the
recipient has an account (a “mail queue”, if you will). Unless the recipient has an
account on the sending e-mail server, the message is passed from one e-mail server to
another until the message arrives at the recipient’s queue. In every case, when the
sending server has passed the message to another, responsibility for delivery falls on the
next server. If the message arrives at the destination e-mail server “domain” and is
undeliverable (for a variety of reasons), an error or “bounce back” message is returned to
the sender. Advanced routing logic allows e-mail messages to be routed from e-mail
server to e-mail server along the most efficient path.

Once the message arrives in the recipient’s queue, the e-mail recipient is then free to
receive e-mail at its leisure, be it minutes, hours, days, or weeks later. When the e-mail
has been received, it is generally deleted from the e-mail server queue. The sender may
request confirmation that the message has been received, which causes another message
to be sent to the sender by the recipient’s e-mail server at the time of delivery.

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 2 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

The key concept here is that neither the sender nor the recipient are connected to each
other in any way other than via their respective e-mail servers.

RESILIENCE TO PROGRAM AND NETWORK OUTAGES
Due to the nature of the architecture of e-mail systems, they are extremely resilient to
program and network outages. If a given network segment is down at the time that a
message is trying to be delivered, it simply remains in the server’s outbound queue until
it is able to be delivered. Likewise, if an e-mail recipient’s e-mail program is not
running, the message will remain in the queue until it is retrieved. If the message is
undeliverable after a given amount of time, the sender receives an error message.

API FOR SENDING AND RECEIVING MESSAGES
Another key messaging concept is that of a common API for sending and receiving
messages. E-mail systems commonly have two separate APIs for sending and receiving:
Post Office Protocol (POP) for sending and Simple Mail Transport Protocol (SMTP) for
receiving. Full messaging systems typically have just one API for sending and receiving
messages.

MESSAGES ARE ADDRESSED USING A UNIQUE ADDRESSING SCHEME
In order for a message to be sent and received successfully, it must be addressed using a
commonly accepted method that uniquely identifies the recipient on the network. Since
the network can be the Internet, the addressing scheme must be able to handle global
addresses.

Unless the recipient’s e-mail system is in the same domain as the sender, the message
must be fully qualified. An example of a domain name would be a company name plus
an extension—“ibm.com”, for example. A fully qualified e-mail address includes the
recipient’s account name plus a domain name. The domain name allows the sending e-
mail server to figure out which receiving e-mail server to send the message to.

A summary diagram that depicts a simple e-mail messaging architecture is shown below:

jack@acme.com
addresses e-mail to
john@doe.com

acme.com e-mail server
forwards message to
doe.com’s server

doe.com e-mail server
queues e-mail message
pending delivery

john@doe.com
receives the message

FIGURE 1: SIMPLE E-MAIL MESSAGING ARCHITECTURE

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 3 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

The messaging concepts shown by this diagram are:

• Messages are sent from one PC to another via message servers

• Messages are stored in queues on the message servers

• PCs using messaging communicate asynchronously

• Messages must have a unique recipient address for delivery to succeed

LATE 1980’S TO MID-1990’S: THE CLIENT/SERVER REVOLUTION

Beginning in the late 1980’s and continuing through the late 1990’s, client/server
technologies were the primary type of solution being developed for mission-critical
applications. The client/server paradigm, prior to the World Wide Web, consisted of a
“fat client” application that typically contained a client application API, business logic,
presentation logic, and communications protocols. Client applications would pass API
commands to a server, which would process the commands and return results back to the
client application. In this paradigm, business logic may be contained in the client
application or on the server platform.

CLIENT/SERVER REQUIRES A CONTINUOUS PROGRAM-TO-PROGRAM CONNECTION
One of the requirements for client/server architectures is that the client applications
typically remain connected to the server during the duration of the command-processing-
result interchange. For instance, a client application would connect to a database server,
passing security information to the server. After authentication, the client application
would pass a database request, generally in the form of an SQL statement, to the database
server for processing. The database server would process the request and generate a
relational result set, which would be passed back to the client application.

One of the problems with this architecture was that if the communications link between
the client and server were to break due to LAN or applications problems, the chain of
command-processing-result would also break and the request would have to be re-started
from scratch. In recent years, there have been some high- and continuous-availability
products released which help address this issue, but it still remains a problem fo r
client/server applications.

CLIENT/SERVER APIS AND NETWORK PROTOCOLS MUST MATCH
Another problem with client/server was that specific APIs and network protocols were
required between the client and the server, unless complex “bridge” middleware was
installed in between to provide translation. For example, an Oracle PL/SQL client
application normally cannot communicate with a Sybase database server unless an
Oracle-to-Sybase gateway middleware server is installed. In another example, an Oracle
PL/SQL client application on a Novell network (SPX/IPX) cannot communicate with an
Oracle database server on a UNIX server running TCP/IP without some intervening
middleware to provide the protocol translation. This problem has been solved to some
degree by increasing acceptance of TCP/IP as the standard enterprise-wide
communications protocol.

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 4 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

In the late 1990’s, another major drawback of the “classic” fat client/server architecture
emerged – maintenance of client applications became prohibitively expensive and time
consuming. For instance, a major insurance company deployed a client/server customer
service application written in PowerBuilder to 10,000 PCs distributed throughout the U.S.
In order to update the client application, an automated process had to be instituted to
replace program executables and DLLs on all 10,000 PCs via the company wide area
network, which took a tremendous amount of bandwidth and a long time to complete, not
to mention the difficulty in maintaining the process. If the update were to fail on a PC, a
support event was created resulting in tremendous expense to repair the application, not
to mention the opportunity cost of the user’s downtime.

MID- TO LATE 1990’S: WEB/INTERNET, THIN CLIENTS AND “RARELY CONNECTED” USERS

In the mid- to late 1990’s, several shifts in the way that companies conducted business
began to appear:

• Some users became “rarely connected,” connecting to the company network
sporadically, many times over low-bandwidth, highly volatile dialup or wireless
connections.

• The Internet and the World Wide Web gained popularity at an astounding rate.

• The availability of cheap, reliable Internet connections caused many companies to
begin utilizing the Internet for field personnel needing connectivity to the
corporate LAN instead of expensive point-to-point solutions (like T1s) or
proprietary dial-up modem lines. These were termed Virtual Private Networks
(VPN’s). VPN’s included robust end-to-end encryption, which allowed sensitive
corporate data to be carried by the Internet without compromising security.

The advent of these major changes caused a rapid shift in the way that new applications
were developed and in the underlying architectures that supported them.

MANY USERS BECAME “RARELY CONNECTED”
Another major trend in the 1990’s was for corporate computer users to be “rarely
connected” to the corporate LAN. There were many driving reasons for this shift in
corporate computing:

• Sales Force Automation (SFA) & Customer Relationship Management (CRM)

• Telecommuting

• Personal Digital Assistants (PDAs), Cell Phones, and Pagers

Sales Force Automation (SFA) & Customer Relationship Management (CRM)
The concepts of Sales Force Automation and Customer Relationship Management came
into vogue in the late 1990’s. The idea was to provide sales and customer service
representatives with as much information as possible relating to the customer, regardless
of whether they were using a desktop PC, a laptop, or a Personal Digital Assistant. Many
of these workers spend a high percentage of their time away from their offices meeting

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 5 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

with customers, attending trade shows, and the like, which results in their becoming
“rarely connected” users.

Whether the user was a sales representative that needed access to a customer database or
a technical support engineer that needed remote access to a case management system, the
issues were the same. Indeed, the trend was for these systems to be one and the same,
with the information content customized to the role of the person.

For example, the sales representative would have access to the customer database, order
entry system, and a marketing encyclopedia, and would be able to check the status of
support cases, while a technical support representative would have access to the customer
database and read/write access to the support case system. The holy grail of SFA and
CRM was that one integrated system, regardless of the platform being used (i.e. laptop,
palmtop, desktop, etc.) should include all of those functions.

Telecommuting
Telecommuting began gaining popularity in the 1990’s for a variety of reasons:

• Natural disasters closed some company buildings for months, especially in
California, and having workers telecommute became a highly desirable option.
This also became a perk for many employees, and companies began using
telecommuting as a recruiting tool.

• Powerful laptop computers with desktop functionality became available for a
reasonable cost.

• Availability of higher bandwidth data connections to the home increased with
DSL, ISDN, and Cable Modems.

• Some workers began “job sharing”, where two or more people, each working part
time, fill one full-time position.

Since telecommuters typically use company-provided laptops or their own home PCs, the
idea of a thin client makes a lot of sense. When a company’s internal systems department
loses control over what is installed on a PC (since the company may not even own it), the
less company software that is permanently installed on it, the better.

Personal Digital Assistants (PDAs)

FIGURE 2: A PERSONAL DIGITAL ASSISTANT (PDA)

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 6 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

In addition to laptops, palm-sized Personal Digital Assistants gained a foothold in the
computing market, either supplementing or replacing them in some applications. The
availability of PDAs with large memory capacity and reasonable processing speeds
fueled the development of embedded, “small fingerprint” applications and databases
which could communicate with larger LAN- and mainframe-based databases.

Many companies are aggressively integrating these devices into their “legacy”
applications for a variety of reasons, including inventory, order entry, case management,
as well as the normal PDA functions which include address lists, calendar, to-do lists,
notes, and Internet (Web and e-mail) access. Many of these applications require
integration between large database systems and smaller embedded systems, over low
speed, unreliable networks.

Internet- and Web-enabled PDAs, Cell Phones, and Pagers

FIGURE 3: INTERNET- AND WEB-ENABLED DEVICES
(From left: Mitsubishi T250 phone, Palm VII, Motorola Talkabout T900 2-way pager, and Motorola PF1500 “1 1/2 way” pager)

A major development that began in the late 1990’s was the integration of the Internet into
PDAs, cell phones, and pagers. PDAs and cell phones which could send and receive e-
mail and surf the Web were introduced, and pagers became two-way, enabling short
messages including e-mail to be sent and received.

The trend in the industry is for all of these devices to be integrated into one device—an
“information appliance” with wireless Internet connectivity, PDA, and phone capabilities.

COMMON ELEMENTS
All of the above-mentioned trends share many of the same characteristics:

• Limited Bandwidth

• Distributed Application Requirements

• Questionable Connection Quality

Limited bandwidth
Compared with a dedicated LAN connection, which typically has a bandwidth of either
10 megabits per second (Mbps) or 100 Mbps, most of these devices have limited
bandwidth.

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 7 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

Some examples follow:

• Wireless data - two-way pagers, Palm VII, etc: 9.6 Kbps to 19.2 Kbps (.0096 to
.0192 Mbps!)

• Dial-up “56K” modem: 56 Kbps (limited by FCC to 51 Kbps, or .051 Mbps!)

• ISDN (Integrated Services Digital Network): 64 Kbps or 128 Kbps (.064
Mbps/.128 Mbps, respectively)

• DSL (Digital Subscriber Line): between 256 Kbps and 1440 Kbps (.256 Mbps /
1.44 Mbps, respectively)

• Cable modems: between 320 Kbps and 2 Mbps

Distributed application requirements
With many of these applications running on Web, laptop, or hand-held devices, most of
the business logic is performed on another “mid-tier” platform—especially since the
same application may need to run on a variety of these devices! The Java programming
language may make ubiquitous thin-client based applications a reality some day, but at
this point Java is still in the process of being developed and deployed on platforms other
than “traditional” Web browsers.

Questionable connection quality
Wireless and modem connections are notoriously finicky—and even ISDN, DSL, and
cable modems have sporadic outages. Any of these can wreak havoc on traditional
client/server applications, which require constant connections.

Since most of these users are rarely connected to the network, and when they are, it isn’t
for a long time, all of these uses dictate that information be ready for distribution at the
time that the user becomes connected to the network. Short connection times, unreliable
connections, limited bandwidth, limited processor speed and memory, and Web-based
applications make fat client applications not practical for any of these uses. The push for
thin clients dictates that as much of the logic as possible be moved from the client
platform to a “middle tier” application server.

And all of this needs to be ava ilable 24 hours a day, 365 days a year! It’s a different
world.

LATE 1990’S AND EARLY 2000’S: APPLICATION SERVERS, CORPORATE WEB PORTALS, AND
BUSINESS-TO-BUSINESS APPLICATIONS

APPLICATION SERVERS
In the early 2000’s, the push is now toward thin-client applications that are primarily
Web-based. Even “classic” client/server applications are being re-architected to move as
much business logic as possible off of the client platform to a middle-tier server, known
as an Application Server. A variety of vendors have released Application Servers,
including Sybase Enterprise Application Server, Lotus Domino, and SilverStream.

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 8 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

CORPORATE WEB PORTALS
Business requirements in the 2000’s require constant access to corporate data by
employees, customers, and business partners anytime, anywhere. The most common
mechanism by which to accomplish this is via the World Wide Web. This type of access
has been termed “Web Portals”, in which a “portal” is opened between legacy corporate
data and the outside world. Depending on who is accessing the portal, different
information is available. Security becomes a major issue, as does availability, as the
Internet economy expects 24x7 availability, 365 days per year—something that many of
the legacy corporate systems (especially mainframe) were not designed to provide.

Web portals also introduce the concept of “personalized access” to corporate resources—
after identifying yourself to a Web site, you are presented with screens of information
that have been customized based on what you are interested in and/or are allowed to
access.

Corporate Portals are often mixed up with other types of Internet portals, including Web
portals such as Yahoo!. They are very different concepts.

BUSINESS-TO-BUSINESS (B2B) APPLICATIONS
The final major initiative in the early 2000’s is the focus of Business-To-Business (B2B)
applications. These applications are used to facilitate inter-business processes such as
supply-chain management, funds transfer, sharing of data for “coopetition”, etc. As you
might guess, the majority of these applications are Internet-based, and security is an even
bigger concern—many of these transactions may involve hundreds of thousands or even
millions of dollars!

MESSAGING HELPS SOLVE MANY OF THESE PROBLEMS!

First, it is important to understand that messaging is not the “holy grail” which solves all
of these problems. Like any technology, messaging has its strengths and weaknesses, and
the critical factor is ensuring that the technology is applied correctly.

Briefly, messaging products enable heterogeneous programs to talk to each other across a
network of unlike components—processors, operating systems, subsystems, and
communications protocols—using a simple and consistent API.

Messaging, in and of itself, does not necessarily solve all of these problems, but a
combination of messaging and complementary products, when architected correctly, can
solve many of these issues.

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 9 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

SECTION 2. MESSAGING CONCEPTS

BASE MESSAGING ARCHITECTURAL COMPONENTS

Now that you have an understanding of the business factors that are driving applications
architects toward messaging architectures, let’s drill down into the mechanics of
messaging. All messaging architectures share four basic elements:

• Messages

• Queues

• Queue Managers

• Nodes

Each of these elements will be discussed in detail in this section, along with some other
important messaging concepts.

MESSAGES

The basic unit of any messaging architecture is the message. Messaging technology
allows programs to communicate with each other by sending each other data in a generic
format, known as a message, instead of calling one another directly. For example, a
“classic” client/server application would communicate using a proprietary vendor API,
such as Sybase Open Client/Open Server. These APIs were designed for a specific
purpose (Open Client/Open Server is a relational database API), and as such, they do not
lend themselves to other uses.

Before messaging, if program “A” wished to communicate with program “B”, it would
have to make a connection using one of a variety of network protocols (i.e. TCP/IP
Sockets, Novell SPX/IPX, etc). Significant coding and knowledge of network protocols
was essential, as both PCs needed to be running the same protocol and API. Continuous
network connections were also essential; if the network went down, applications had to
have their own recovery logic built- in.

Applications that use pure messaging, on the other hand, function at a lower level in the
hierarchy—instead of proprietary APIs and network dependencies, messaging
applications simply send “messages” to one another via a simple API. At this level, more
application coding is required, however—one reason that proprietary APIs exist is
because they provide a higher level of functionality. We will cover this in detail later.

MESSAGES DEFINED
What exactly is a message? Merriam-Webster defines it as follows:

Main Entry: 1mes·sage
Pronunciation: 'me-sij
Function: noun
Etymology: Middle English, from Old French, from Medieval Latin missaticum, from
Latin missus, past participle of mittere

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 10 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

Date: 14th century
1 : a communication in writing, in speech, or by signals
2 : a messenger's errand or function
3 : an underlying theme or idea

A more germane definition would be as follows:

Main Entry: 1mes·sage
Pronunciation: 'me-sij
Function: noun
Etymology: Late twentieth century American, from International Business Machines
and others
Date: 20th century
1 : a generic unit of information (bits) which may be sent from one computer program
to another

Messages may contain any data, so long as it may be represented as a stream of bits! So
long as the sending program and receiving program know what to expect from one
another, the messaging system does not care what the format of the data is that it is
delivering. With messaging, program “A’ makes a simple API call specifying which
“node,” or recipient, to send the message to, and the messaging architecture takes care of
the rest.

Applications do not have to be using the same network protocol, operating system,
language, etc.—the messaging architecture takes care of required translations. If the
receiving application is down, or the network is down, the message queue stores the
message until the recipient is ready to receive it (see queuing in the next section).

EXAMPLE MESSAGES
Question: what exactly can an application place in a message? Answer: anything!

• E-mail

• Database requests & results

• Binary data (images, music, etc.)

• Entire files (i.e. IBM MQSeries allows messages up to 100 megabytes in size,
although most vendors have a two-to-four megabyte message size limit)

BASE ELEMENTS OF A MESSAGE
All messages, regardless of vendor architecture, contain the following base elements:

Message type
The message type indicates the basic purpose of a message, such as ‘send’, ‘reply’,
‘status’, etc.

Destination
This is the message recipient’s unique address. The format varies depending on vendor,
but it must uniquely identify the recipient on the network. Some messaging systems

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 11 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

allow multiple destinations to be specified for one source message; this is commonly
known as multicasting.

Message data
This is the actual “body” of the message, and may literally contain anything made up of
bits. The maximum size of a message varies depending on the vendor, but multiple
messages may be “chained” if necessary.

Body

Type Destination

FIGURE 4: ELEMENTS OF A MESSAGE

QUEUES

Messages are placed into queues, which are containers that hold messages until they are
delivered. Queues allow the sender and receiver to function asynchronously-- in other
words, if the receiving application is not available at the time the message is sent, the
message remains in the queue until ready to be received. This allows programs to run
independently of one another, at different speeds, times, and locations, without requiring
a logical connection between them. Messages may be defined with a timeout parameter,
which allows a message to expire if not delivered within a given period of time. Some
messaging systems can notify the sender if a message expired, and others allow the
sender to query the status of a message to check if it has been delivered successfully.

Body

Type Destination

Body

Type Destination

Body

Type Destination

Body

Type Destination

Incoming
Messages

Outgoing
Messages

FIGURE 5: A MESSAGE QUEUE

QUEUE MANAGERS

Queue managers (QMs) manage the message queues, serving as the intermediary
between nodes sending messages to one another. The QM stores messages in a queue
until recipients are ready to receive them.

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 12 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

Some QMs are capable of multicasting. Multicasting allows a message sent from a single
application to be distributed to multiple recipients – this is analogous to sending an e-mail
message to a distribution list. Intelligent e-mail and messaging systems require the
sender to transmit only one copy of the message, and the server then sends multiple
copies to the specified recipients.

Publish/subscribe and push technologies utilize this concept--more detail on this later in
the paper.

NODES

Nodes are the logical ends of a network connection. Applied to messaging, a node is an
application that is either sending or receiving messages from another node.

OTHER MESSAGING CONCEPTS

This section describes some messaging concepts that you will find useful as you read this
paper.

ASYNCHRONOUS MESSAGING

By definition, messaging is an asynchronous technology. In other words, the sender and
recipient do not have to be connected to the network at the same time—messages will be
queued until the recipient is available.

The sending application does have the option of checking to see if a message has been
delivered. Some messaging systems can also notify the sender if a message has not been
received within a given timeout period.

SYNCHRONOUS MESSAGING

Messaging systems may also be used in synchronous mode. The inverse of asynchronous
mode, synchronous messaging involves sending a message to a recipient and then waiting
for a response. While synchronous transactions were not the intent of messaging
systems, most vendors support this mode to support classic client/server transaction
characteristics.

“PUSH” VS. “PULL” TECHNOLOGIES

In the late 1990’s, “push” technologies were all the rage. The idea was that a server
could “push” information to a client application—for instance, a news alert could be sent
to a client application when it occurs instead of the application having to “poll,” or “pull”
the information on a timed basis. This has evolved into a variation of push, known as
“publish/subscribe,” which is described below.

PUBLISH/SUBSCRIBE TECHNOLOGIES

Publish/subscribe, as the name implies, is the process in which a client application
“registers,” or “subscribes” to a particular stream of information. When information is
“published,” it is sent to the list of subscribers using multicast technology.

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 13 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

GUARANTEED “ONCE-ONLY” DELIVERY

Another important messaging concept is that of guaranteed, “once only” delivery of
messages. This means that when a message is sent, the messaging system guarantees that
it will be delivered, once and only once.

TRANSACTIONAL INTEGRITY / GUARANTEED UNITS OF WORK

One of the newer messaging features is the ability to group several messages together
into a single “unit of work.” This means that all messages live or die based on the
assumption that they all must succeed or none of them succeeds. As an example,
MQSeries can be used to send update messages to several database systems (providing
they are XA compliant), and the MQ server can be used to provide multi-phase commits
across the database platforms. If any of the messages fails (e.g. the database update
failed), then all of the other updates are automatically rolled back.

MESSAGE BROKERS AND MESSAGE HUBS

Traditionally, one of the fundamental difficulties in implementing messaging applications
is that they are difficult to develop since they do not have client/server database
connectivity built in to them. As a result, access to database systems and other non-
messaging applications had to be written into the application, which created a significant
amount of development and maintenance effort.

Message brokers, also known as message hubs, solve many of these problems by
allowing messages to be examined as they pass through the message server. Rules may
be defined that cause actions based on a rule matching a particular characteristic of a
given message; actions may include database access, interfaces to other messaging or
middleware systems, or business logic.

For instance, a message broker could be used to provide access to a relational database
for a messaging client. The client application would place a SQL statement inside of a
message and send it to a queue manager. After the queue manager enqueues the
message, the message broker would take the SQL statement from the message, submit it
for processing against the database, and return the results to the sending application via a
“reply” message. This processing could take place using either synchronous or
asynchronous messaging.

Examples of these products include Sybase Enterprise Event Broker and IBM MQSeries
Integrator.

MESSAGING APPLICATION PROGRAMMING INTERFACES

As mentioned previously, applications that communicate using messaging do so via an
Application Programming Interface (API). Depending on the vendor, the API may
include program function calls (supported by most major languages) as well as
Component Object Model (COM) and callable objects (such as Visual Basic VBX
objects).

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 14 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

Generally, most major languages are supported, including C, C++, COBOL, Visual
Basic, PowerBuilder, Java, etc. This includes Web-based “thin” clients, which typically
use Java and/or JDBC connections.

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 15 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

SECTION 3. MESSAGING ARCHITECTU RES

Unlike some of the more traditional architectures that include client/server, messaging is
extremely flexible. While flexible may also mean powerful, the fact that there are so
many choices when architecting a system means that it is easy to design it the wrong
way.

APPLICATION TO APPLICATION ARCHITECTURES

Messaging systems have the following possible architectures:

ONE-TO-ONE

The one-to-one architecture is a true “peer-to-peer” system, where one program sends a
message to another, and the receiving program can reply if necessary. E-mail in its
simplest form is a one-to-one system (although it may also be one-to-many). Another
example of one-to-one would be a “chat” program, in which two PC users chat with one
another via a split-screen windowed application.

Node "A"

Body

Type Dest.

Body

Type Dest.

Message Queue

Send Message

Reply Msg Rcvd

Message Enqueued

Reply Msg
Dequeued

Node "B"

Message
Dequeued

Send Reply MsgBody

Type Dest.

Body

Type Dest.

Msg Rcvd

Reply Msg Enqueued

FIGURE 6: ONE-TO-ONE MESSAGING ARCHITECTURE

ONE-TO-MANY

A one-to-many architecture, as the name implies, is one program sending a message to
many recipients. This may employ multicasting technology, in which one message is
sent with multiple recipients, or it may be the same message sent many times (depending
on the messaging system being used). E-mail is a logical application of one-to-many, as
are publish/subscribe applications.

An example of a one-to-many application which makes use of publish/subscribe would
be SkyTel’s nationwide paging system. Their pagers have the capability of receiving
news updates from a variety of sources. The individual paging subscriber registers
interest (subscribes) to one or more categories via a Web interface. When news arrives,
the paging system automatically sends it out to the list of pagers that subscribed to that
category.

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 16 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

Node "A"

Body

Type Dest.

Body

Type Dest.

Message Queue

Send Message
Message Enqueued

for "n" recipients
Node "B"

Messages
Dequeued

Body

Type Dest.

Body

Type Dest. Msg Rcvd

Node "C"

Body

Type Dest.

Body

Type Dest.

Msg Rcvd

Msg Rcvd

Nodes Send
Reply Msgs

(optional)

Body

Type Dest.

Body

Type Dest.

Reply Messages
Enqueued

Body

Type Dest.

Body

Type Dest.

Reply Msgs
DequeuedReply Msgs

Rcvd

Node "D"

FIGURE 7: ONE-TO-MANY (PUBLISH/SUBSCRIBE) ARCHITECTURE

MANY-TO-ONE

Many-to-one architectures involve many sending applications communicating with one
receiving application. This is essentially a client/server architecture, where many clients
communicate with a single server. Client/server architectures are possible with many-to-
one messaging technology; in particular, decision-support client/server applications lend
themselves to messaging due to their lower time sensitivity and asynchronous nature.

A decision support application may require quite a bit of processing in order to formulate
a result set. With messaging, the request is sent to the server, which begins processing.
The client application is then freed to continue other processing; when the result is
available, the server can send a reply message to the sender that notifies it to retrieve the
result set. If the sending application is no longer active when the result set is ready, it can
be queued until the application is ready to receive it.

As an example, a manager may request a report that takes many hours to process—if it is
ready after she has gone home for the evening, the results will be waiting for her upon her
return the next morning.

MANY-TO-MANY

Many-to-many applications are very complex and really show the power of messaging.
One of the most popular uses of many-to-many architectures are workflow applications,
in which several complex processes must be completed, sometimes in a given sequence,
in order to complete a particular objective. If this is confusing, an example may help.

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 17 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

An excellent example of a workflow application may be seen on the trading floor of
major stock exchanges. In order for a successful stock trade to be completed, several
steps must be completed (these steps are the workflow). Some steps must be completed
sequentially, and other steps may happen in parallel. If any of these steps fails, the trade
must be declared void. In addition, SEC regulations require that all of these steps be
completed within a fifteen-minute time window, or the trade is void. An example of
some of the steps involved in a trade could be as follows (note that this does in no way
depict a real trading system—your mileage may vary!).

1. A Web-based day trader decides to purchase 1,000 shares of stock in the
Burgundian Crossbow Company (ticker symbol BCBC). After signing on to her
account and checking the stock price, she enters the trade order and presses the
“OK” button.

2. At the Web-based trading company (STOCKSRUS.COM), an application server
receives the buy order and generates a message with the following data items in
the body of the message:

• The day trader’s account number and password

• The ticker symbol of the stock she wishes to purchase

• The quantity of shares she wishes to purchase

• A timestamp indicating the time the trade request was received

3. The ticker symbol must be validated to be correct:

• A copy of the message is sent to a trading system to validate the ticker symbol

4. The account number and password of the day trader must be verified:

• A copy of the message is sent to the system that manages subscriber accounts
for verification of the account number and password

5. The current price of the stock must be retrieved, and the total amount of the
purchase must be calculated:

• A message is sent to a trading system to retrieve the current “buy” price of the
stock; this also triggers a search to locate one or more sellers that add up to
1,000 shares of BCBC stock

6. The purchase amount is sent to the subscriber accounts system to verify that
adequate funds are available for the purchase:

• The purchase must be approved by a trading company representative; a
message is sent to their PC, and they click “approve” if everything seems to
be in order

7. The complete “package” is sent to the trading floor system, which executes the
trade.

8. In order for the trade to execute, four transactions must be executed (committed)
together:

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 18 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

• The purchase amount is debited from the purchaser’s account;

• The purchase amount is credited to the seller’s account;

• The shares are electronically debited from the seller’s brokerage account;

• The shares are electronically credited to the buyer’s brokerage account.

9. The trading floor system sends a confirmation message to the trading company’s
Web application server, which sends an e-mail to the purchaser confirming the
purchase.

There are many complex “workflow” applications like this in today’s business climate,
and messaging is a perfect architecture for many of them. Indeed, this type of application
is nearly impossible to do with anything but a messaging architecture—in fact, TIBCO
built their company on trading floor applications (more on TIBCO in the next section).

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 19 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

SECTION 4. MESSAGING VENDORS

There are many messaging vendors, including some of the biggest names in the industry
as well as some of the smallest. The market leader at the time of this writing is IBM
MQSeries, with a 65% market share in 1999; other leaders include TIBCO and
Microsoft.

IBM MQSERIES

MQSeries is developed and maintained by IBM’s Hursley, England division—the same
division that develops and maintains CICS.

MQSeries supports over 35 server and/or client operating systems:

• AIX (RS/6000)

• HP/UX

• OS/2

• OS/390 (MVS)

• OS/400 (AS/400)

• Sun Solaris

• Tandem NSK

• VSE/ESA

• Windows 3.x, 95, 98, NT, and 2000

According to IBM literature, MQSeries attained a 65% market share in 1999
(WinterGreen Research). It is used by over 7,000 cus tomers, including seventy of the
Fortune 100 corporations and 2/3 of the world’s leading banks. One major US
organization uses MQSeries to transmit over 250 million messages per day!

MQSeries is a mature product (IBM defined the first message-oriented API in the early
1990’s), with several additional components to help solve architectural issues:

MQSERIES INTEGRATOR

MQSeries Integrator (MQI) is a middleware component that allows MQSeries to act as
an “Application Integration Broker,” or “message hub” between messaging applications.
MQI acts as a “way station” between applications, allowing logic to be placed in the
middle tier (and not in the application). It intercepts messages and provides real- time
processing as they arrive in message queues.

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 20 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

The Application Integration Broker market grew 90% in 1999 to over $550 million, and
according to WinterGreen Research, IBM holds a 12% market share, at $66.5M. Other
competitors in this market space include NEON (New Era of Networks) (10.8%),
Mercator (10%), and TIBCO (9.1%). There are over 50 vendors in this market space,
although the top four vendors hold nearly 50% of the market. Interestingly enough, IBM
has bundled several NEON products into MQI.

MQI contains three significant va lue-added features:

PUBLISH/SUBSCRIBE
Publish/subscribe, as described earlier, allows MQ client applications to “subscribe” to
particular messages; when a message arrives that matches the subscription criteria, it may
be “published” to one or more MQ clients.

MESSAGE FORMATTER
Messages may be parsed and formatted between sending and receiving nodes, providing
the ability to transform data. This functionality is provided by the NEON (New Era of
Networks) Formatter utility, which is bundled with the MQI product.

RULES-BASED MESSAGE EVALUATION
This feature allows messages to be converted into computer commands (such as
spawning an executable program on the MQ server platform), which may carry out
actions based on the results. An example of this would be an application that performs
database access based on an incoming message (which could contain the criteria for the
access); the results generated could then be returned to the calling MQ application using a
“reply” message. This feature allows rules to be defined that specify which message
criteria to match, and which command to execute when a match occurs. This is also
based on a NEON product that is bundled with the MQI product.

“SEAMLESS” DATABASE INTEGRATION
Using the features outlined previously, MQI can be used as middleware between
normally incompatible database systems. Using rules-based message evaluation and the
message formatter, relational data being moved from one platform to another may be
transformed “on the fly,” on the MQ server, not at the application (or gateway) level.

XML SUPPORT
IBM has announced that MQSeries Integrator version 2.0 has new XML (Extensible
Markup Language) support. This means that MQI can take data from existing
applications and transform it into XML, which is usable by any XML-enabled application
including Web browsers. MQI can also take XML data and format it for use by older
non-XML applications.

MQSERIES WORKFLOW

MQSeries Workflow is a product which allows complex workflow applications to be
modeled and implemented using messaging. A workflow application is defined as one in
which many different stages must be completed, often by different people and/or systems,

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 21 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

and if any of the stages are not successful, the entire workflow transaction fails. IBM
defines workflow as “a number of related tasks to achieve a defined business outcome.”
Characteristics for a workflow application include:

• Multiple activities

• Many people

• Various procedures

• Multiple information sources

Workflow applications bind the procedures and logic with the people and the information
sources that perform them. It is no longer acceptable to engineer “vertical”, custom
designed processes that are difficult to maintain as business needs change. Workflow
applications attempt to make these processes more “horizontal”, or reusable, in design—
this makes them easier to adapt and re-use as business needs change.

Some of the advantages of a workflow application are:

• Faster execution of processes

• Higher productivity through automation

• Better service to customers at reduced costs

• Improved quality of process execution

• Process enforcement helps achieve ISO 9000 compliance

MQSeries Workflow provides a graphical way to define workflow applications. A
workflow model is built first which defines the various stages in the workflow; after the
model is completed, it is “translated” to run the actual business processes. For each stage
in the workflow, MQ Workflow, using MQSeries, moves the work from one person to
the next, ensuring delivery from person to person (or system to system). MQ Workflow
can leverage existing systems as stages in a workflow, or new systems may be built and
“plugged in” as the system is developed.

IBM has announced that it has plans to add support for MQSeries Workflow to its
Enterprise Information Portal, which will allow Web-based workflow applications to be
developed rapidly.

WORKFLOW APPLICATIONS
Some example workflow applications are:

• Trading floor applications

• Insurance underwriting

• Technical/customer service case tracking

• Tax return processing

• Credit application processing

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 22 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

MQSERIES WORKFLOW SUPPORTED PLATFORMS

Server platforms
The MQSeries Workflow 3.2.2 server runs on the following operating systems and is
easily scalable from Windows up to mainframes:

• Microsoft Windows NT

• Microsoft Windows 2000

• IBM OS/2

• IBM AIX

• HP-UX

• SUN Solaris

• IBM OS/390

Client platforms
The MQSeries Workflow 3.2.2 client runs on the following operating systems:

• Microsoft Windows NT

• Microsoft Windows 2000

• Microsoft Windows 95/98

• Client for Lotus Notes

The MQSeries Workflow 3.2.2 client for Lotus Notes runs on:

• IBM OS/2

• Microsoft Windows NT

• Microsoft Windows 2000

• Microsoft Windows 95/98

MQSERIES BRIDGES

IBM provides a series of MQSeries “bridges” which allow MQSeries to “bridge” into
data sources, extending the MQ functionality. Available bridges include:

• CICS/ESA (IBM)

• ODBC Data Sources (MQSoftware’s SQL Bridge for MQSeries)

MQ bridges are available from IBM and MQSoftware. MQSoftware is an independent
software vendor specializing in add-on MQSeries products. MQSoftware’s SQL Bridge
product for MQSeries allows MQSeries to access any ODBC compliant data source,
including DB2, Oracle, Sybase, Informix, etc.

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 23 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

MQSERIES ADAPTORS

IBM has a family of custom MQSeries “adaptors” that may be purchased or built to access non-
traditional data sources and applications. For example, various vendors have built MQSeries
adaptors for MRP (Material Resource Planning) applications, including SAP R/3, Baan IVb, and J.D.
Edwards OneWorld.

Adaptors allow MQSeries to transparently access data that are stored in proprietary back-
end systems without the necessity of bridges or transformations. IBM has announced
intent to provide an “MQSeries Adaptor Offering” tool in June 2000 that will allow
custom adaptors to be written by third parties. The adaptor builder tool will also support
XML.

IBM also intends to provide an MQSeries Internet pass-thru function that can be used to
simplify the passage of MQSeries channel protocols through corporate firewalls and to be
sent using the HTTP protocol.

MQSERIES EVERYPLACE

IBM has been involved in the “palm” computing market for some time. They were the
first to “OEM” (Original Equipment Manufacture) the Palm Computing platform, selling
it under their own name (with a black case). Their latest foray into the market is
MQSeries Everyplace, which extends the MQSeries model to laptops and personal digital
assistants (PDAs). IBM has termed this “Pervasive Messaging”, and these rarely
connected devices are the perfect vehicles for messaging applications, as they are
oftentimes subject to “hostile communications environments.”

As of June 15, 2000, the product will be Generally Available for the Palm OS (Palm
Computing and Handspring PDAs), as well as Java on Windows (Windows CE, 95, 98,
NT, 2000) and EPOC32 (Psion PDAs). IBM has stated intent to continue porting it to
additional devices, including cell phones and embedded systems (like sensors and
probes).

TIBCO

Palo Alto, California-based TIBCO (The Information Bus Company) (NASDAQ: TIBX),
had its genesis in providing Wall Street vertical message-based trading systems. They
have now shifted their focus to e-business, although trading floor systems remain a
significant part of their business. A principal stockholder in TIBCO is Cisco Systems,
and Reuters is a majority stockholder.

TIBCO is the successor to a portion of the business of Teknekron Software Systems, Inc.
Teknekron developed software, known as the TIB technology, for the integration and
delivery of market data, such as stock quotes, news and other financial information, in
trading rooms of large banks and financial services institutions. In 1992, Teknekron
expanded its development efforts to include solutions designed to enable complex and
disparate manufacturing equipment and software applications—primarily in the
semiconductor fabrication market—to communicate within the factory environment.
Teknekron was acquired by Reuters in 1994. Following the acquisition, continued

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 24 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

development of the TIB technology was undertaken to expand its use in the financial
services markets. In January 1997, TIBCO Software Inc. was established as an entity
separate from Teknekron.

TIBCO claims to have 600 enterprise customers, including Cisco Systems, Yahoo!,
Ariba, NEC, 3Com, Sun Microsystems, SAP, Philips, AT&T and AOL/Netscape.

TIBCO’s product line consists of the following products:

TIB/RENDEZVOUS

TIB/Rendezvous is the foundation of the ActiveEnterprise messaging system. It supports
publish/subscribe as well as request/reply messaging, and facilitates personalized
information delivery. TIB/Rendezvous leverages the networking protocols of the Internet
to offer a range of service levels in the delivery of information and the execution of
transactions. It provides efficient, reliable information delivery and high scalability, and
can be embedded in an enterprise's existing information system.

TIB/ETX

TIB/ETX is a transaction-based messaging system designed for use in environments that
require a greater degree of transaction management and control than is provided by a
standard messaging solution. TIB/ETX provides a transactional form of publish/
subscribe messaging similar to traditional computer transaction models.

TIB/OBJECTBUS

TIB/ObjectBus is an object request broker, or ORB. ORBs enable computer systems to
operate more efficiently by employing reusable, self-contained pieces of software code
known as objects. TIB/ObjectBus allows TIBCO’s products to integrate with CORBA
2.0, a major programming standard for object-oriented applications. TIB/ObjectBus can
be fully integrated with TIBCO’s messaging software, combining the efficiency of an
object-oriented computing model with the scalability, performance and ease of use
benefits of TIB/Rendezvous.

TIB/INCONCERT

TIB/InConcert allows the definition of document-oriented process workflow, as specified
through graphical user interfaces. TIB/IntegrationManager manages and executes
automated system-to-system processes, while TIB/InConcert manages and executes the
document-oriented workflows that involve human and computer processes. Together
TIB/InConcert and TIB/IntegrationManager span the full range of requirements for
process and workflow automation and execution within and between enterprises.

TIB/INTEGRATIONMANAGER

TIB/IntegrationManager controls the flow of information and system-to-system
communication among applications and components in the TIB environment. It allows
the enterprise to define business rules that govern information processing between
applications and where information should go and under what conditions.

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 25 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

TIB/IntegrationManager coordinates the message transport and transformation functions
of the TIB products for internal process automation and B2B trading systems.

TIB/MESSAGEBROKER

TIB/MessageBroker is a message routing and transformation system. It combines and
transforms data from applications into formats that can be understood by other
applications, and routes data according to pre-defined rules. TIB/MessageBroker also
allows an enterprise to conduct transactions and exchange information with customers
and business partners. Unlike many competing technologies, TIB/MessageBroker
requires no independent database or third-party messaging system.

TIB/ADAPTERS

TIB/Adapters are software components that link applications to the TIB environment,
thus enabling these applications to communicate with each other. A TIB/Adapter is the
single point of integration for the application. TIB/Adapter products connect leading
enterprise applications and complementary middleware products to the TIB environment.
A series of standard TIB/Adapters are designed to link applications and other software
developed by SAP, Siebel Systems, PeopleSoft, IBM and Oracle, among others, to the
TIB.

TIB/ADAPTER

TIB/Adapter SDK allows TIBCO customers and systems integrators to build custom
TIB/Adapters to link applications to the TIB environment. The TIB/Adapter SDK
product provides a common framework for the rapid development of new TIB/Adapters.

TIB/HAWK

TIB/Hawk is TIBCO’s monitoring and applications management product. Through a
graphical user interface, TIB/Hawk can be configured to monitor systems and
applications in a local or wide area network and act autonomously when pre-defined
conditions occur.

TIB/BUSINESSCONNECT

TIB/BusinessConnect, scheduled for release in 2000, is a server software product built
around TIB/IntegrationManager and TIB/MessageBroker that will enhance TIBCO’s
capabilities for B2B trading activities and simplify the implementation of B2B solutions.
TIB/BusinessConnect is used to define trading relationships through a graphical user
interface and then execute the resulting transactions between trading partners.
TIB/BusinessConnect supports the core technologies and standards for B2B (business to
business) e-commerce.

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 26 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

FIGURE 8: TIBCO ACTIVE ENTERPRISE PRODUCTS

The foundation of the TIBCO messaging product line is the TIB/Rendezvous product.
This product is available on the following platforms:

• AIX (RS/6000)

• Digital UNIX (Alpha processors)

• HP-UX

• Linux (Intel processors)

• Sun Solaris (Sparc processors)

• DEC VMS (Alpha processors)

• Windows 95/98/NT/2000 (Intel processors)

Note the lack of IBM AS/400 and OS/390 support, which eliminates many potential
Fortune 1000 customers.

MICROSOFT MQ

Microsoft (NYSE: MSFT) MQ (MSMQ) is an interesting “niche” product that happens to
be published by the 800-pound gorilla of the industry. Starting with NT Server 4.0, it was
built into the product, making it the most cost-effective messaging system on the market
today. As Microsoft has discovered, the easiest way to build market share is to give a
product away!

Unfortunately, MSMQ is only available on 32-bit Windows platforms (95/98/NT/2000),
which significantly limits its appeal to the Fortune 1000 market. There are a series of
“connectors” to interface MSMQ into other messaging systems; these are described later
in this section.

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 27 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

MSMQ APIS

MSMQ has two APIs available for applications to use:

• C function calls

• COM (Component Object Model) objects (C++/Visual Basic/Java applications)

COM is required in order to use many of the more advanced features of MSMQ (like
distributed commit logic using NT’s Distributed Transaction Coordinator or the
Microsoft Transaction Server). As it sounds, application development using COM
requires a serious investment in Microsoft technology.

One of MSMQ’s limitations is message size, which is limited to 4 megabytes. Multiple
messages may be “chained” together, but this limitation makes moving large quantities of
data difficult and slow.

MSMQ CONNECTORS

Microsoft MQ has “connector” functionality that allows 3rd-party “bridges” to connect
MSMQ to other messaging systems. Microsoft has licensed FalconMQ from Level 8
Systems to provide MSMQ to IBM MQ Series integration. A free version of FalconMQ
is bundled with Microsoft Back Office on the SNA Server CD; Level 8 also sells
FalconMQ on non-NT platforms to integrate MSMQ with other MQSeries systems.

MSMQ MARKET PENETRATION

Based on purely anecdotal evidence, there do not seem to be many customers using
MSMQ in a production environment. There are undoubtedly systems in use, but due to
its limited interoperability and server platform support, this product will most likely
continue to have low market penetration.

BEA SYSTEMS MESSAGEQ

San Jose, California-based BEA Systems (NASDAQ: BEAS), incorporated in 1995, is
best known for its “TUXEDO” product. TUXEDO is a transaction processor (TP) that
dates back to the Bell companies; BEA obtained worldwide distribution rights to it in
1996. One of BEA’s latest products is their entry into the messaging arena with
MessageQ.

BEA has an impressive list of customers including Federal Express, amazon.com, United
Airlines, E*Trade, DirecTV and Quest. Like many software vendors, BEA has recently
released a series of products designed for the e-commerce market as well as a messaging
offering known as “MessageQ”.

In 1999, BEA reported gross sales of $464 million, up from $289 million in the previous
year, of which 44% was derived from services. BEA has over 2,100 employees
worldwide. Although BEA has been posting per-share losses for several years due to
high investment in product development and strategic acquisitions, they are financially
stable with approximately $779 million in cash reserves against $564 million in long-
term debt.

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 28 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

BEA’s core business has been providing infrastructure for high-volume transaction
systems, such as telecommunications billing applications, commercial bank ATM
networks and account management systems, credit card billing systems and securities
trading account management systems. With the growth of internet-based systems, BEA
has been extending its product line to accommodate these new areas.

The features and benefits of MessageQ are as follows:

• Scalability up to thousands of messages per second

• Synchronous as well as asynchronous message delivery

• Recoverable messaging on all BEA MessageQ clients and servers

• Platform support: UNIX, Windows, Win NT, OpenVMS, IBM, and Unisys
mainframes

• Easy — Common API, FML support

• Interoperability using TCP/IP and LU6.2

• Publish/subscribe mechanism

• Self-describing messages allow for conversion between heterogeneous platforms

• Messages may be up to 4MB in size

• Connectivity to BEA applications as well as MQSeries and other applications
including SAP

Market share data for BEA’s MessageQ product were not available at the time of this
writing, but it appears that BEA most likely sells MessageQ to its existing customer base
as an add-on product, and its appeal to non-BEA customers is likely to be very limited.

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 29 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

SECTION 5. ADD-ON MESSAGING PRODUCTS

Since the market space for messaging systems has matured, there is not much room for
new messaging architectures to take hold. As a result, the main area of growth in the
market has been in value-added products that work with the existing messaging vendors’
systems.

One of the problems with the early messaging systems was that they required a
significant amount of coding in order to accomplish virtually any task. The messaging
system provided all of the fundamentals (guaranteed delivery, simple API, etc.), but fell
short by not providing any sort of database access or other mechanisms for manipulating
messages as they passed through the server.

MESSAGE BROKERS

Message Brokers provide this functionality, making development of message-based
systems much easier by reducing the amount of coding required. Message brokers are
referred to by a variety of names, including “integrators”, “event brokers”, and many
others.

The main concept behind a message broker is this: when a message arrives in a given
queue, the broker examines the message and may perform a variety of functions
depending on the contents of the message. For example, if the message were to contain a
SQL query, the broker could take the contents of the message and send the request to a
database server using ODBC. The result of the query could then be placed in a “reply”
message and sent back to the sender, all with a minimal amount of coding. Event brokers
also may have interfaces to other messaging systems—Sybase Event Broker, for
example, can participate in a variety of messaging architectures including IBM MQSeries
and Tibco.

Some message brokers include:

• Sybase Enterprise Event Broker (SEEB)
• IBM MQSeries Integrator
• TIBCO TIB/Message Broker

TRANSACTION SERVERS

Transaction Servers allow transactional applications to be written easily and with a
minimal amount of transaction-specific coding. For example, an application may need to
update several databases at once, performing a “multi-phase” commit across all of them
at once. Without a transaction server, this is a very difficult task to accomplish, as the
application must perform all of the commit and rollback logic itself. A transaction server
provides a set of common transaction services to applications, greatly simplifying the
task of developing and maintaining these applications.

The first transactions were mainframe-based. These included CICS (Customer
Information and Control System) and IMS (Information Management System). Over the

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 30 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

past few years, LAN-based transaction servers have begun to be deployed. These include
ports of CICS to non-mainframe operating systems (like Window NT and various flavors
of UNIX) as well as new products like Microsoft’s Transaction Server (MTS).

Many of the messaging architectures interface with transaction monitors, which allow
transactions to be sent from one monitor to another using messaging technology. A good
example of this is IBM CICS.

MESSAGING BRIDGES

As mentioned previously, one of the drawbacks to messaging systems is their lack of
connectivity to other systems. To solve the problem, various vendors have developed
messaging “bridge” technology that provides this connectivity. One example is
MQSoftware’s SQL Bridge for MQSeries. SQL Bridge connects MQSeries to any
ODBC-compliant relational database for seamless SQL integration, thus reducing
application development time significantly.

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 31 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

SECTION 6. CONCLUSION

Messaging systems, when implemented properly, can be an amazingly powerful tool in
the arsenal of an applications architect. Candidate applications for messaging technology
should include at least some of the following characteristics:

• Relatively time- insensitive (asynchronous transactional requirements)

• Disparate operating systems, network protocols, applications, and/or data sources

• Complex application requirements (many data sources, workflow requirements,
rarely connected users, etc.)

As with any technology, it is critical that messaging be considered and implemented in
applications that can really leverage the advantages of the architecture. When used
incorrectly, applications using messaging can be a disaster. There are tradeoffs to be
dealt with in exchange for the power and flexibility that messaging offers. These
tradeoffs are usually seen in the areas of performance and scalability, coupled with a
higher investment to acquire the software and develop applications, and higher
maintenance.

Take your time and really analyze the pros and cons of each application that is a
candidate for messaging. Take into account the application requirements and contrast
those with the benefits of all options open to you. If messaging seems to fit the bill, then
the application will benefit greatly from messaging. If it doesn’t, there are plenty of
alternative technologies to consider.

Polarsoft Limited specializes in continually available business solutions utilizing a
variety of middleware products, including messaging. You may contact us at (877) 440-
7778 or via our Web page at http://www.polarsoft.com.

Good luck!

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 32 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

SECTION 7. APPENDICES

APPENDIX I: GLOSSARY AND ACRONYMS

This section will help you to understand some of the terms and acronyms that are used in
this document.

Asynchronous Messaging is the concept in which the sender and receiver are not
directly linked to one another. All communications take place with a messaging server,
which ensures that messages are delivered to the proper recipient.

CICS (Customer Information Control System) is a TP monitor from IBM that was
originally developed to provide transaction processing for IBM mainframes. It controls
the interaction between applications and users and allows programmers to develop screen
displays without detailed knowledge of the terminals being used. CICS is also available
on non-mainframe platforms including the RS/6000, AS/400, NT, and OS/2 -based PCs.

CORBA (Common Object Request Broker Architecture) is an architecture that enables
pieces of programs, called objects, to communicate with one another regardless of what
programming language they were written in or what operating system they're running on.
CORBA was developed by an industry consortium known as the Object Management
Group (OMG).

ERP (Enterprise Resource Planning) is a business management system that integrates all
facets of the business, including planning, manufacturing, sales, and marketing. As the
ERP methodology has become more popular, software applications have emerged to help
business managers implement ERP.

FML (Field Manipulation Language) a widely accepted full- featured self-describing
message format, which allows applications to easily pass data from one to another. FML
is a pre-cursor to XML.

HTML (HyperText Markup Language) is the language that encodes the content and
presentation of a Web page, allowing them to appear the same on all Web browsers
regardless of platform.

MRP (Material Resource Planning) is a system for effectively managing material
requirements in a manufacturing process. MRP is a set of techniques that uses bills of
material data, inventory data, and a master production schedule to calculate requirements
for materials. It makes recommendations to release replenishment orders for materials.

ODBC (Open DataBase Connectivity) is an API that allows applications to easily
connect to a variety of data sources regardless of vendor and platform.

ORB (Object Request Broker) is a component in the CORBA programming model that
acts as the middleware between clients and servers. In the CORBA model, a client can
request a service without knowing anything about what servers are attached to the
network. The various ORBs receive the requests, forward them to the appropriate servers,
and then hand the results back to the client.

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 33 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

PDA (Personal Digital Assistant) is any one of the small “personal”-sized computing
devices including the Palm Computing Platform and Pocket PCs running Microsoft
Windows CE.

Publish/Subscribe is a three-tier architecture in which “subscribers” are matched with
“publishers” via a middleware broker. An example would be where an application that is
interested in receiving information from a data source “subscribes” to the data; when
updates become available, the server automatically sends the updated information to the
subscriber. This is also known as “push” technology.

T1 Line is a dedicated phone connection supporting data rates of 1.544 Megabits per
second (Mbps). A T-1 line actually consists of 24 individual channels, each of which
supports 64Kbits per second. Each 64Kbit/second channel can be configured to carry
voice or data traffic. Most telephone companies allow you to buy just some of these
individual channels, known as fractional T-1 access. T-1 lines are sometimes referred to
as DS1 lines.

T3 Line is a dedicated phone connection supporting data rates of about 43 Megabits per
second (Mbps), or 28 times the speed of a T1 line. A T-3 line actually consists of 672
individual channels, each of which supports 64 Kbps. T-3 lines are used mainly by
Internet Service Providers (ISPs) connecting to the Internet backbone and for the
backbone itself. T-3 lines are sometimes referred to as DS3 lines.

VPN (Virtual Private Network) is a private network constructed using a public network
(the Internet) to connect nodes. These systems use encryption and other security
mechanisms to ensure that only authorized users can access the network and that the data
cannot be intercepted.

XML (eXtensible Markup Language) is an extension of the HTML specification, which
provides a standardized (vendor neutral) mechanism for applications to pass self-
describing data to one another.

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 34 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

APPENDIX II: WEB RESOURCES

BEA Systems Home Page

http://www.beasys.com/

BEA Systems MessageQ Product Home Page

http://www.beasys.com/products/messageq/index.html

IBM MQSeries Home Page

http://www-4.ibm.com/software/ts/mqseries/

MQSoftware (independent software vendor of MQSeries products and services)

http://www.mqsoftware.com/

MQSoftware SQL Bridge for MQSeries:

http://www.mqsoftware.com/products/prodsum/sqlbridge.html

Polarsoft Limited

http://www.polarsoft.com/

TIBCO (The Information Bus Company)

 http://www.tibco.com

AN INTRODUCTION TO MESSAGING TECHNOLOGY

- 35 –

COPYRIGHT 2000 POLARSOFT L IMITED . A LL R IGHTS RE SERVED.
WWW.POLARSOFT .C O M

SECTION 8. INDEX

Application Servers, 7
Baan, 23
BEA Systems, 27
Business-To-Business (B2B) Applications, 8
CICS, 29
client/server, 3
CRM. See Customer Relationship Management
Customer Relationship Management, 4
e-mail, 1
FalconMQ, 27
fat client, 3
IBM MQSeries. See MQSERIES
J.D. Edwards, 23
message, 9
Message Brokers, 29
MessageQ, 27
MESSAGING BRIDGES , 30
Microsoft MQ, 26
MQSeries, 19
MQSeries Adaptors, 23
MQSeries Bridges , 22
MQSeries Everyplace, 23
MQSeries Integrator , 19
MQS ERIES WORKFLOW, 20
MRP, 23
MSMQ. See Microsoft MQ

MSMQ Connectors, 27
multicasting, 11, 12
PDAs. See Personal Digital Assistants
Personal Digital Assistants, 5
Publish/Subscribe, 20
queue, 11
queue manager, 11
Sales Force Automation, 4
SAP, 23
SFA. See Sales Force Automation
SkyTel, 15
TIB/Adapter SDK, 25
TIB/Adapters, 25
TIB/BusinessConnect, 25
TIB/ETX, 24
TIB/Hawk, 25
TIB/InConcert, 24
TIB/IntegrationManager, 24
TIB/MessageBroker, 25
TIB/ObjectBus, 24
TIB/Rendezvous, 24
TIBCO, 23
TRANSACTION SERVERS , 29
TUXEDO, 27
Virtual Private Networks, 4
workflow, 16

Polarsoft Limited and the Polarsoft Limited logo are trademarks of Polarsoft Limited.
All other product and service names are registered trademarks of their respective
companies.

