A Design Framework and a Scalable Storage Platform to Simplify
Internet Service Construction

by

Steven D. Gribble

B.Sc. (The University of British Columbia) 1995
M.S. (The University of California at Berkeley) 1997

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy
in
Computer Science
in the

GRADUATE DIVISION
of the
UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Eric A. Brewer, Chair
Professor David Culler

Professor Marti Hearst

Fall 2000

The dissertation of Steven D. Gribble is approved:

Chair Date

Date

Date

University of California at Berkeley

Fall 2000

A Design Framework and a Scalable Storage Platform to Simplify

Internet Service Construction

Copyright Fall 2000
by
Steven D. Gribble

Abstract

A Design Framework and a Scalable Storage Platform to Simplify Internet Service

Construction

by

Steven D. Gribble

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Eric A. Brewer, Chair

The Internet infrastructure has evolved from a collection of loosely organized data
repositories and web pages to a rich landscape populated with industrial strength applica-
tions and services. Although this evolution has been rapid, the task of building and main-
taining these services nonetheless remains challenging, primarily because services must be
exceptionally robust, remaining available and performing well in the face of voluminous and
growing traffic demands. Coupled with a lack of suitable reusable building blocks and de-
sign methodologies for service construction, this challenge unfortunately implies that only
organizations with very capable engineering and operations staff can currently successfully
build and maintain new Internet services.

This dissertation represents a step towards ameliorating this situation; in it, we
address two sets of challenges: the design and implementation of a programming model,
concurrency model, and I/O substrate specifically geared towards Internet service construc-

tion, and the design and implementation of a storage platform that shields service authors

from the complexities of robust, scalable persistent data management.

The first half of this dissertation focuses on the development of a programming
model and design framework that is well suited to the needs of scalable, highly concurrent
services. The framework consists of a set of design patterns that can be applied to code
in order to “condition” it against load, concurrency, failure, and performance bottlenecks.
The framework also describes a way of structuring programs using queues to separate and
decouple the program’s stages.

The second half of this dissertation describes a scalable storage platform that we
built using our design framework. This platform, called a distributed data structure (DDS),
greatly simplifies the task of implementing a new Internet service by completely shielding
authors from the complexities of scalable, available, consistent storage management. We
describe the design, implementation, and performance of a distributed hash table, as well as
a number of services implemented using it. The hash table design makes several assumptions
and optimizations based on the properties of clusters of workstations.

We believe that this dissertation makes several contributions that greatly reduce
the complexity of implementing new Internet services. As such, we hope that it will accel-
erate the evolution of the Internet by encouraging more people to implement and deploy

new, innovative, creative services.

Professor Eric A. Brewer
Dissertation Committee Chair

Contents

List of Figures

List of Tables

I

1

I1

Motivation

Introduction

1.1 A Historical Perspective on Internet Services

1.2 Internet Service Challenges and the “Service Properties”

1.3 On the use of Clusters of Workstations
1.3.1 Complexities of Clusters

1.4 Contributions L

1.5 Thesis Map o o e

Towards a Cluster-Based Internet Service OS

2.1 Dodging the WAN Bullet
2.1.1 The CAP Principle
2.1.2 Fighting our Battlesina Base

2.2 The Trail of Cluster-Based Internet Service Platforms
2.2.1 The Inktomi Search Engine
2.2.2 TACC o e
2.2.3 MultiSpaceo

2.3 A Programming Model for Bases

2.4 Hypotheses L

A Programming Model for Highly Concurrent Servers

The Thread and Event Spectrum

3.1 Threaded Servers
3.2 Event-Driven Servers
3.3 The Thread and Event Spectrum: a Hybrid Server

iii

vii

XV

16
16
19
21
22
23
23
24
26
28

30

3.4

Summary e e e e e

4 A Design Framework for Well-Conditioned Systems

4.1
4.2
4.3
4.4

5 The
5.1

5.2

5.3

5.4

The Four Design Patterns
Composition Operators i i
Constructing a Conditioned Service
Putting It All Together
4.4.1 The Threaded SignServer
4.4.2 The Wrapped SignServer
4.4.3 The Wrapped, Pipelined SignServer
4.4.4 The Wrapped, Pipelined, Replicated SignServer
4.4.5 SUMMArY oo e e e e

I/O Core

Interface Design oL
5.1.1 Pitfalls. o o
5.1.2 Code Structure
Disentangling Control Flow
5.2.1 Polling
5.2.2 Unstructured Upcalls
5.2.3 Structured Upcallso oo
I/O Core Performance,
5.3.1 Network Performance
5.3.2 Disk Performance oo oo
Experienceo
5.4.1 Impact.

III Distributed Data Structures

6 A Storage Management Layer for Internet Services

6.1

6.2

6.3

DDS Overview oL
6.1.1 Relational database management systems (RDBMS)
6.1.2 Distributed file systemso oo
6.1.3 Distributed data structures (DDS)
DDS Design Principles oo
6.2.1 Separation of concerns oo
6.2.2 Appeal to propertiesof clusters L.
6.2.3 Design for high throughput and high concurrency
An Early, Failed Prototype: the mmap ()-based Distributed Hash Table . . .
6.3.1 Storage “Bricks”
6.3.2 Lessons from the Prototype

v

46

47
48
51
93
o6
o8
99
61
63
66

67
67
70
72
74
76
78
81
83
83
85
87
90

91

7 A Robust Distributed Hash Table Implementation

7.1 Assumptions L
7.2 Architecture
7.2.1 Partitioning, Replication, and Replica Consistency
7.2.2 Metadata mapso
7.2.3 Recovery
7.2.4 Convergence of Recovery
7.2.5 Programming Model o L.
7.3 Hash Table Performance
7.3.1 In-Core Benchmarks,
7.3.2 Out-of-core Benchmarks
7.4 Availability and Recovery o

Experience and Applications

8.1 Operational Experience: Violations of Assumptions
8.1.1 NFS Considered Harmful
8.1.2 DDSasalock Manager
8.1.3 Independence of Failures
8.1.4 Failstop
8.1.5 Debugging Workload vs. Operational Workload

8.2 Java as a High Performance Systems Platform

8.3 Example Services e e
8.3.1 Parallelisms
8.3.2 Sanctio
8.3.3 Web Server e
83.4 Others

IV Related and Future Work

9 Related Work

9.1 Programming Models for Concurrent Systems
9.2 Scalable Storage Systems L L o o
9.3 Clusters and Internet Service Platforms

10 Discussion and Future Directions

10.1 Programming Model L
10.1.1 Debugging.
10.1.2 Conditioning Beyond Load
10.1.3 Demultiplexing and Layering

10.2 Distributed Data Structures L L oo
10.2.1 Indexes and Embeddable Data Structures
10.2.2 Transactions vs. Atomic Actions
10.2.3 Caching and Code Shipping
10.2.4 Administration Lo

107
107
109
111
113
115
117
118
119
120
125
127

129
129
131
133
136
138
139
140
141
142
143
144
146

147

148
148
151
154

10.3 Future Directions e e e e e e

10.3.1 Layered Distributed Data Structures
10.3.2 A Distributed Lock Manager
10.3.3 A Better Single-Node Hash Table
10.3.4 Additional Data Structures
10.3.5 Alternative Languages to Java,
10.3.6 Different Consistency Models

11 Conclusion

Bibliography

A Source Code: SignServer

Al
A2
A3
A4
A5

Common Utility Functions
Threaded SignServer
Wrapped SignServero
Wrapped, Pipelined SignServer
SignServer Client

vi

165
166
167
168
168
169
170

171

173

vii

List of Figures

1 Yahoo! traffic scaling: The number of page views per day served by
Yahoo! has been exponentially increasing since June 1996. 6
2 HTTP traffic patterns: (a) Illustrates the diurnal traffic pattern of web
requests measured from a closed population of 8,000 modem pool users from
UC Berkeley in the Fall of 1996, and (b) shows the number of web requests
received every 180 seconds by the UC Berkeley CS division web server on
February 2nd, 2000. L 8

3 DNS architecture: This figure illustrates the software components, databases,
caches, and network connections that are necessary in order for an applica-
tion running on a Berkeley workstation to resolve a Stanford workstation’s
DNS name. The labeled arrows refer to messages exchanged between the
software components; these messages are explained in detail below. 17
4 The CAP tradeoff: C,A, and P are not boolean characteristics; a system
can be described in terms of weaker consistency or availability. Thus, a given
system can choose any balance between C, A, and P that falls within the
illustrated triangle. For example, a load balancer can operate with stale
information during a network partition, but the efficacy of its load balancing
decreases the longer that the network partition lasts. 20
) Service architecture: Services are confined to run inside bases, which are
clusters of workstations that are engineered in such a way that the probability
of a network partition is negligible. oL L. 21

6 Stages in a Task: A task that enters an Internet service can be separated
into a sequence of stages, each of which consists of pure computation. Stages
are separated by high or variable latency operations such as disk I/O, network
I/O, and lock or mutex acquisition. 32

10

11

Concurrent server model: (a) The server receives A tasks per second,
handles each task with a service latency of L seconds (the result of invoking
an external resource such as a disk or network), and has a service response
rate of S tasks per second. The system is closed loop: each service response
causes another tasks to be injected into the server; thus, S = A in steady
state. (b) A task from the programmer’s point of view: a task consists of
two (null) stages separated by three long-latency operations.
Threaded server: (a) For each task that arrives at the server, a thread is
either dispatched from a statically created pool, or a new thread is created to
handle the task. At any given time, there are a total of T' threads executing
concurrently, where T'= A x L. (b) From the programmer’s point of view,
the program consists of the logic for a single, linear task; programmers must
worry about synchronization, but not scheduling or state management.

Threaded server throughput degradation: This benchmark has a very
fast client issuing many concurrent 150-byte tasks over a single TCP connec-
tion to a threaded server as in Figure 8 with L = 50ms. We implemented the
server in two languages (C and Java), and gathered measurements on two
machines (a 167TMHz UltraSPARC running Solaris 5.6, and a 4-way 296 MHz
UltraSPARC SMP also running Solaris 5.6). The arrival rate determined
the number of concurrent threads; sufficient threads are preallocated for the
load. As the number of concurrent threads T' increases, throughput increases

viii

33

34

until 7" > T, after which the throughput of the system degrades substantially. 36

Threaded server performance curve: This parametric curve demon-
strates the 1-way SMP Java server implementation’s throughput and end-to-
end task latency as the load on the server is increased. “L” in this graph
refers to the per-task latency introduced by the server, as defined in Figure
7. The numbers next to points on the curves represent the # of parallel
tasks handled by the server for those points. Note that after the system sat-
urates, additional load drives the server into a regime where both throughput
degrades and latency continues to increase.
Event-driven server: (a) Each task that arrives at the server is placed
in a main event queue. The dedicated thread serving this queue sets an L
second timer per task; the timer is implemented as a queue which is pro-
cessed by another thread. When a timer fires, a timer event is placed in the
main event queue, causing the main server thread to generate a response.
(b) From the programmer’s perspective, the program has a single thread of
execution that services completion events (NR=network read, NW=network
write, SC=sleep completion) from an event queue. The program must man-
age all task state in a table, and dispatches events plus task state to the
program’s two stages. oL Lo

37

12

13

14

15

16

17

Event-driven server throughput: Using the same benchmark setup as in
Figure 9, this figure shows the event-driven server’s throughput as a function
of the number of tasks in the pipeline. The event-driven server has one
thread receiving all tasks, and another thread handling timer events. The
throughput flattens in excess of that of the threaded server as the system
saturates, and the throughput does not degrade with increased concurrent
load. o
Event-driven server performance curve: This parametric curve demon-
strates the 1-way SMP Java server implementation’s throughput and end-to-
end task latency as the load on the server is increased. The numbers next
to points on the curves represent the # of parallel tasks handled by the
server for those points. Note that after the system saturates, additional load
increases the latency of the system, but doesn’t degrade its throughput.

A hybrid thread and event system: This server uses a constant-size
thread pool of T' threads to service tasks with an arrival rate of A from an
incoming task queue; each task experiences a service latency of L seconds.
If the number of tasks received by the hybrid server exceeds the size of the
thread pool, the excess tasks are buffered by the incoming task queue.
Throughput of the hybrid event and thread system: (a) and (b)
illustrate the theoretical performance of the hybrid server, where T” is larger
or smaller than the concurrency demand A x L. (¢) shows measurements of
the benchmark presented in Figure 9, augmented by placing a queue in front
of the thread pool, for different values of L and T'. (d) shows the throughput
of the hybrid server when T' = T, which is the optimal operating point of
the server. Here, L = 50ms. The middle plateau in (d) corresponds to the
point where the pipeline has filled and convoys are beginning to form in the
server. The right-hand plateau in (d) signifies that the convoys in all stages
of the pipeline have merged. Note that the z-axis of (a) and (b) are on a
linear scale, while (c) and (d) are on logarithmic scales.
Hybrid server performance curve: This parametric curve demonstrates
the 1-way SMP Java server implementation’s throughput and end-to-end
task latency as the load on the server is increased. The numbers next to
points on the curves represent the # of parallel tasks handled by the server
for those points. this hybrid server exhibits the same graceful degradation
under overload as the event-driven server, since the fixed-size thread pool
limits the maximum number of concurrently executing threads. After the
system’s throughput has saturated, additional load is absorbed on the queue,
increasing latency but not degrading throughput.

The Four Design Patterns: The four design patterns, wrap, pipeline,
combine, and replicate, can be applied to stages of a service to condition
it against load, failures, and limited or bottleneck resources.

ix

40

41

43

44

45

18

19

20

21

22

23

24

25

Using Wrap for Thread Boundaries: The Wrap pattern introduces a
“thread boundary” between stages. Because composition across wrapped
stages is done through message passing on queues, threads from one stage
cannot directly call code in a wrapped stage. This thread boundary imposes
a strict layering on the control flow of the program.
Composition Operators: Services are constructed by composing stages
together into a directed graph. Composition can be done using a number of
semantically different operators, including the four operators shown in this
figure. Solid arrows represent data flow, and dashed arrows represent the
flow of metadata or control information.
A vSpace Service: A vSpace service is a composition of workers. In (a),
the service logic is broken into 3 stages. In (b), the wrap operator is used to
convert each stage into a conditioned vSpace “worker”; direct composition is
used to form the workers into a pipeline. In (c), each worker is replicated,
and the pipeline composition is load-balanced across replicas.
Threaded SignServer Architecture: This diagram illustrates the archi-
tecture of the thread-per-task implementation of the SignServer.
Threaded SignServer Performance: In (a), we show the throughput
and latency of the thread-per-task SignServer as a function of the number
of simultaneous tasks in the pipeline. In (b), we show a parametric curve
showing the relationship between throughput and latency as the number of
tasks in the pipeline is varied. The value of the parameter (# of simultaneous
tasks) is displayed next to a number of points on the curve.
Wrapped SignServer Architecture: This diagram illustrates the archi-
tecture of a single-threaded, wrapped implementation of the SignServer. In-
coming tasks (1) are placed on the single server thread’s queue. The thread
dequeues tasks, applying hash function #1 (2) and then issuing an asyn-
chronous disk write (3). The disk write completions flow back onto the main
queue. The single server thread dequeues completions, and applies hash func-
tion #2 (4). After this hash has completed, response packets are enqueued
on network channels destined for the originating client (5).
Wrapped SignServer Performance: In (a), we show the throughput and
latency of the wrapped SignServer as a function of the number of simulta-
neous tasks in the pipeline. In (b), we show a parametric curve showing the
relationship between throughput and latency as the number of tasks in the
pipeline is varied. The value of the parameter (# of simultaneous tasks) is
displayed next to a number of points on the curve.
Wrapped, Pipelined SignServer Architecture: This diagram illustrates
the architecture of the wrapped, pipelined SignServer. Incoming tasks are
placed on a queue (1). A thread dequeues tasks, applies hash #1 to them
(2), and then issues an asynchronous disk write. The write completions (3)
flow onto a second queue. A second thread dequeues completions, applies
hash #2 to them (4), and then enqueues a response into a network channel
destined for the originating client (5).

50

92

o4

o8

99

60

60

62

26

27

28

29

30

31

32

xi

Wrapped, Pipelined SignServer Performance: In (a), we show the
throughput and latency of the wrapped, pipelined SignServer as a function

of the number of simultaneous tasks in the pipeline. In (b), we show a
parametric curve showing the relationship between throughput and latency

as the number of tasks in the pipeline is varied. The value of the parameter

(# of simultaneous tasks) is displayed next to a number of points on the curve. 62
Wrapped, Pipelined, Replicated SignServer Architecture: This dia-
gram illustrates the architecture of the wrapped, pipelined, replicated SignServer.
Two instances of a wrapped, pipelined server are run on different nodes; each
client spreads its tasks across the two server instances. 64
Wrapped, Pipelined, Replicated SignServer Performance: In (a),

we show the throughput and latency of the wrapped, pipelined, replicated
SignServer as a function of the number of simultaneous tasks in the pipeline.

In (b), we show a parametric curve showing the relationship between through-

put and latency as the number of tasks in the pipeline is varied. The value

of the parameter (# of simultaneous tasks) is displayed next to a number of
points on the curve. L L 64
Fault Tolerance in the Wrapped, Pipelined, Replicated SignServer:

This chart shows the throughput of the replicated server over time. After 37
seconds, we deliberately crashed one of the two servers. The clients detected

this crash, and began routing all tasks to the surviving server; because of

this, the system continued to operate, although at a diminished capacity. . 65
Performance Comparison between Servers: This graph shows the para-
metric curves of throughput version latency as a function of load, for all

four server implementations. SS = thread-per-task SignServer. W(SS) =
wrapped SignServer. WP(SS) = wrapped, pipelined SignServer. WPR(SS)

= wrapped, pipelined, replicated SignServer. 66

I/O core structure: The I/O core has three layers to it: the common in-
terface layer defines abstractions such as sinks, queues, and event handlers.
The network/disk abstraction layer consists of source and sink interface ex-
tensions that are specific to networks and disks (e.g., defining the ability to
open a connection to a network peer). The device specific layer consists of
implementations of the network/disk abstraction layer for particular devices,
such as a Via user-level network stack or a raw disk. 72
Example I/O core event flow graph: In this example I/O core appli-
cation, data flows from a disk file source into a queue, and from a network
peer source into another queue. Data from these two queues is aggregated
into a third queue, which also receives completion events from a disk file
sink. Events from this aggregation queue flow into an application-defined
UpcallHandlerIF event handler, which processes them, and generates data
to be sent to the disk filesink. L oL 75

33

34

35

36

37

38

39

40

41

42

43

Polling-based control flow: (a) Illustrates a hypothetical composition of
elements in an I/O core graph. Only upwards flowing composition is shown,
i.e. the flow of completions or data upwards through a layered system. (b)
Shows two threads polling for completions on the top-most layer, and the
cascade of downward polls that this triggers. The in-degree of each node is
labelled, and represents the number of times that node is polled by the two
threads. o .o
Unstructured upcall-based control flow: (a) The same composition
graph as in the previous figure. (b) Shows two thread contexts pushing
events upwards through the composition graph, but also shows I/O request
downcalls, and the resulting “spaghetti” control flow. The labels next to
edges show the order of control transfer across the elements in the graph.
Structured upcall-based control flow: (a) The same composition graph
as in the previous two figures. (b) Shows a structured upcall-based graph, in
which queues are used to impose thread boundaries between layers, thereby
disentangling control flow, but also eliminating the need for mutexes.
Network throughput: This benchmark shows the measured throughput
of the client-server pipeline as a function of packet size. Both request and
reply packets were taken into account to calculate the total throughput. The
Ethernet saturated (reaching 85 Mb/s) at a 2000 byte packet size.
Network latency: This benchmark shows the roundtrip latency of a mes-
sage as a function of its size. Latency increases with message size, from a
minimum of 650 ps.
Disk latency, random reads, cache miss: This graph shows the latency
of reading a random disk block through the I/O core during a file system
cache miss, thus incurring a disk seek. This latency number is graphed as a

function of the number of concurrent read requests issued to the disk source.

Disk latency, random reads, cache hit: This graph shows the latency of
reading a random disk block from the file system cache as a function of the
number of concurrent readers.o

High-level view of a DDS: A DDS is a self-managing, cluster-based data
repository. All service instances (S) in the cluster see the same consistent
image of the DDS; as a result, any WAN client (C) can communicate with
any service instance. oL L.l L Lo
Prototype hash table “C” language API: All functions return zero on
success, and non-zero values in case of error.
Distributed hash table prototype “storage brick”: A brick contains a

xii

76

79

81

83

84

85

86

94

single-node hash table and RPC-like stubs so that it can be remotely accessed.103

Distributed hash table architecture: Each box in the diagram represents
a software process. In the simplest case, each process runs on its own physical

machine, however there is nothing preventing processes from sharing machines.109

44

45

46

47

48

49

50

ol

52

93

xiii

Hash table Java language API: All methods return an integer, which is

a unique ID that will be passed in as a field of the completion event. This
completion event is delivered to the comp(Q UpcallHandlerIF specified as

the final argument to all methods. The put () and remove () methods return

the old value in addition to updating the current value in the table. 110
Distributed hash table metadata maps: This illustration highlights the

steps taken to discover the set of replica groups which serve as the backing

store for a specific hash table key. The key is used to traverse the DP map

trie and retrieve the name of the key’s replica group. The replica group name

is then used looked up in the RG map to find the group’s current membership.114
Hash table structure: This figure shows the architecture of the distributed

hash table in terms of the programming model described in Part II of this
thesis. (a) shows a key of icons, (b) illustrates the mapping of processes to
machines across the cluster and a two-phase commit composition operator
joining a library to two bricks, and (c) shows the structure of a “brick”
process in terms of queues, thread pools, thread boundaries, and events. . . 118
Throughput scalability: This benchmark shows the linear scaling of through-
put as a function of the number of bricks serving in a distributed hash table;

note that both axis have logarithmic scales. As we added more bricks to the
DDS, we increased the number of clients using the DDS until throughput
saturated. Lo L Lo 120
Graceful degradation of reads: This graph demonstrates that the read
throughput from a distributed hash table remains constant even if the offered

load exceeds the capacity of the hash table. 122
Write imbalance leading to ungraceful degradation: The bottom
curve shows the throughput of a two-brick partition under overload, and

the top two curves show the CPU utilization of those bricks. One brick is
saturated, the other becomes only 30% busy. 123
Throughput vs. read size The X axis shows the size of values read from

the hash table, and the Y axis shows the maximum throughput sustained by

an 8 brick hash table serving these values. 124
Availability and Recovery: This benchmark shows the read throughput

of a 3-brick hash table as a deliberate single-node fault is induced, and after-
wards as recovery is performed. Lo oo 127

Parallelisms: The Parallelisms services uses an inverted index of the Ya-
hoo! web directory (stored in a DDS) to return a list of web pages that are
ontologically related to a user-specified URL. 142
Sanctio Messaging Proxy: The Sanctio messaging proxy service is com-
posed of language translation and instant message protocol translation work-
ers in a base. Sanctio allows unmodified instant messaging clients that speak
different protocols to communicate with each other; Sanctio can also perform
natural language translation on the text of the messages. 143

o4

95

56

Scalable Web Server: The scalable web server consists of a number of
stateless web server front ends, all of which rely on a distributed hash table
to access the served web pages.o Lo oL

Debugging event flow: In (a), we depict a graph of event handlers and the
event flow between them. A hypothetical debugging “tag” is injected into the
event flow graph. In (b), the resulting event flow paths and affected handlers
are highlighted; this highlighted graph would be output by the debugger,
along with timing information. 0L
Demultiplexing: (a) Shows the demultiplexing challenge in our current
code: given an incoming completion event, the event handler thread must
match that completion with the task state associated with the completion.
In (b), we show how we could route completions directly to handler interfaces
wrapped around task state, eliminating demultiplexing altogether, but also
eliminating thread boundaries. In (c), we show how to eliminate demulti-
plexing while preserving thread boundaries.

xiv

145

157

List of Tables

1.1

1.2

10.1

The “service properties”: This table outlines the set of properties that
an Internet service must have in order to be successful.
Cluster attributes: This table describes attributes that clusters have, how
they help to address the service properties, and the challenges that must be
overcome to0 do SO. e e e e e

Examples of Services: This table shows how one could hypothetically
build some common Internet services out of a distributed hash table, a dis-
tributed tree, and a distributed log. oo

XV

12

xvi

Acknowledgements

Where to begin? This dissertation would not have happened if it were not for the
help, feedback, support, and guidance of countless incredible people.

I owe a deep debt of gratitude to Armando Fox, whom I had the great fortune of
working with and befriending for the first 3 years of my graduate student career. He served
as an excellent role model for learning the art and science of research, in particular the skills
of technical writing, speaking, and project selection.

Eric Brewer, my thesis advisor, has demonstrated an unwavering ability to see
the deeper meaning of my own work, leading me towards a path of greater impact and
relevance. He has also taught me the importance of being aware of the process beyond the
research itself, such as being judicious about the selection of your peers, being deliberate
about managing relationships and the perception of your own work, and fostering a sense
of style with everything that you do.

I have had the privilege of working closely with some of the finest faculty and
industrial researchers in the world, including David Culler, Marti Hearst, Joe Hellerstein,
Jim Gray, Randy Katz, Larry Rowe, and Anthony Joseph. The content of this dissertation
would not be as mature, relevant, or accurate without their collective wisdom. Without
exception, they have all been exceptionally generous with their time and their friendship.

My office (445 Soda Hall) was an absolutely ideal work environment. The residents
of this office have been phenomenal: T hope to retain my friendships with Armando, Tan,
Dave, Paul, Yatin, Mike, and Nikita, and I would not hesitate for a second to work with
any of these people again.

Thanks go to all of the members of the Ninja group for being the guinea pigs that
first sampled the fruits of my research. In particular, I'd like to thank Matt Welsh and Rob

von Behren for their insight and encouragement. Many other graduate students at large

xvil

at Berkeley should also be singled out: Drew Roselli, Eric Anderson, and Remzi Arpaci-
Dusseau all kept me honest by showing me the value of meticulousness and objectivity.

The staff in Soda Hall have done a tremendous job of supporting me as a student
and researcher. Eric Fraser and Albert Goto have each gone out of their way to support and
troubleshoot the clusters on which I ran my experiments, and Terry Lessard-Smith, Bob
Miller, Glenda Smith, and Michelle Willard have shielded me from a legion of bureaucrats
wielding red tape.

I would also like to personally thank Sunny, who has showered me with care,
affection, and support throughout the sometimes arduous and stressful process of being a
graduate student, and my parents, who have been unwaveringly supportive throughout my
life.

Finally, acknowledgement and thanks must be given to the many funding agen-
cies that have supported me personally, as well as supporting my research groups. Over
the course of my graduate career, I have benefitted from the support of the Natural Sci-
ences and Engineering Research Council of Canada (NSERC), the Canadian Space Agency,
the Defense Advanced Research Projects Agency (DARPA), the National Science Founda-
tion (NSF), and donations and grants from many corporations, including Intel, Ericsson,

Geoworks, Wink, and Hughes Aircraft.

Part 1

Motivation

Chapter 1

Introduction

Over the past decade, the Internet has evolved from a collection of loosely orga-
nized data repositories and web pages to a rich landscape populated with industrial strength
applications and services. Although this evolution has been rapid, the task of building and
maintaining these services nonetheless remains challenging, primarily because services must
be exceptionally robust, remaining available and performing well in the face of large and
growing traffic demands. Coupled with a lack of suitable reusable building blocks and de-
sign methodologies for service construction, this challenge unfortunately implies that only
organizations with very capable engineering and operations staff can currently successfully
build and maintain new Internet services.

This thesis represents a step towards ameliorating this situation. We address two
sets of challenges: the design and implementation of a programming model, concurrency
model, and I/O substrate specifically geared towards Internet service construction, and
the design and implementation of a storage platform that shields service authors from the
complexities of robust, scalable persistent data management.

In order to best understand the Internet service construction problem, we first

present a historical perspective on the evolution of Internet services, beginning with the

advent of timeshared computing systems.

1.1 A Historical Perspective on Internet Services

A key aspect of Internet services is that they live in the infrastructure, and that
they are shared across many users. The notion of timesharing can be traced back to the
Compatible Time Sharing System (CTSS) operating system for the IBM 7094 mainframe
computer [31]. A timesharing operating system has the ability to very quickly switch the
control of the CPU between a number of concurrently executing programs, giving each the
illusion that they are running on a dedicated, protected processor. As a result, many users
and programs can share constrained and expensive computing resources, amortizing cost
and also increasing the overall efficiency of the computing system.

CTSS lead to the development of the Multics operating system [32], which con-
tributed or matured many of the fundamental mechanisms and abstractions necessary for
robust timesharing operating systems, such as protection and fault containment through
virtualization, and the development of appropriate I/O and communications interfaces for
systems programmers. Even more remarkable, Multics had the foresight to consider the
system as a computing utility, focusing on “remote access, continuous operation analogous
to that of the power companies, [and] a wide range of capacity to allow growth or con-
traction without either system or user reorganization”. In other words, the goal of Multics
was to provide a community computing platform that completely shielded users and their
programs from operational issues.

In the 1970’s a new class of computers, called minicomputers, became popular.

Unlike mainframes, minicomputers were designed to be affordable for small organizations,

such as academic departments. Minicomputers also eschewed the complexity typical of
mainframes, making it possible for individuals in the organizations that owned them to
serve as administrators; comparatively, mainframe vendors typically sold administration
contracts along with the computing hardware.

A new trend began to emerge in the late 1970’s and early 1980’s. Personal com-
puters and desktop workstations became affordable enough so that people could use them
as dedicated, personally owned computing platforms instead of relying on timeshared in-
frastructure computers. This trend had two major implications: the number of deployed
computers in the world exploded, but each owner of such computers became saddled with
the additional complexity of being a system administrator instead being just a user. This
problem still plagues personal computers today; the administration and troubleshooting of
a typical personal computer is complex enough to represent a significant portion of the total
cost of ownership of a PC.!

The second important trend to shape this landscape was the emergence of the
Internet, a global network with uniformly adopted transport protocols and a number of
common infrastructure services. One such infrastructure service is the domain name system
(DNS) [99], which provides translation from human-readable machine names to the more
opaque dotted-quad numeric names (e.g. 128.32.130.48) used by the network protocols
and routers. An initial driving application for the Internet was academic document sharing,
and in order to support this, a file transfer protocol (FTP) [17] and FTP servers were
developed. DNS is an example of a “horizontal” service that is largely transparent to users
and other services. FTP servers are “vertical” applications with which users explicitly
interact using dedicated client software. Both services are infrastructural utilities (i.e., they

are operated and managed by people other than users), and because of growing traffic

! According to the Gartner group, the total cost of ownership of a PC is $10,000.00 per year, 60-80% of
which is attributed to technical support and user training.

demands, both began to suffer from robustness and availability challenges that Multics
escaped.

By the mid-1990’s, many of the hundreds of millions of deployed personal com-
puters and workstations became connected to the Internet. Around the same time, a new
driving application for the Internet emerged: the world-wide web, or WWW [16] provided
a mechanism for delivering rich multimedia content to non-academic users. Soon, the web
evolved from a content delivery mechanism to a service platform, with the emergence ser-
vices such as online banking, travel reservations, news services, and email hosting. The most
popular of these services began to attract traffic at an unprecedented scale; for example,
according to a press release, the Yahoo! service [80] currently delivers over 625 million page
views per day.

Infrastructural services have thus seemingly come full-circle to the days of time-
shared Multics, but with the additional problems associated with immense scale. Modern
Internet services, as with Multics, must provide “remote access, continuous operation anal-
ogous to that of the power companies, [and] a wide range of capacity to allow growth or
contraction”, with potentially very large capacity requirements.

However, there is an important additional distinction between Multics and Internet
services besides scale. Vertical Internet services provide application-specific functionality to
users, and horizontal Internet services provide functionality to applications. The Multics
execution environment, in comparison, was the service. It provided I/O abstractions and
programming models that were targeted to supporting relatively small numbers of inter-
active or batch programs run by humans. This thesis can be viewed as providing pieces
of an execution environment for Internet services, specifically a programming model and a
data storage platform. These pieces of the execution environment are specifically tailored

towards ameliorating the significant challenges associated with providing an infrastructure

page views per day (millions)

Figure 1: Yahoo! traffic scaling: The number of page views per day served by Yahoo!
has been exponentially increasing since June 1996.

utility at scale. In the following section, we explore these challenges in depth.

1.2 Internet Service Challenges and the “Service Properties”

An Internet service faces a host of operational and performance challenges. The
most obvious of these is the amount of traffic that a successful site must handle, and the
rate at which this traffic scales up over time. Figure 1 shows the number of page views per
day that the Yahoo! [80] service must deliver, according to their quarterly financial reports.
The two remarkable features of this graph are the fact that traffic has been exponentially
growing since 1996, and that the site currently must handle 625 million views per day,
resulting in 30,000 web requests per second (given an average of 4 web requests per page
view). A highly successful service must thus have both high performance and scalability of

throughput in order to match its users’ traffic demands.

Another property that services must have is the ability to handle high concurrency.
In [68], a large-scale web client trace showed that the writeback phase of a web request has
a median duration of approximately 3 seconds, due to the slow throughput of the typical
56Kb/s modem last-hop network link. For Yahoo, this means that there are more than
90,000 requests flowing through their service at any given moment. For middleware services
(such as web proxy caches [20, 26]) or services in a composition chain, this concurrency de-
mand can be even higher, depending on the aggregate latency of downstream services. This
high concurrency has significant implications regarding the service’s software architecture
and programming model, as we will show in Part II of the thesis.

Recent network- and application-level studies [37, 59, 68, 87, 88, 108] have shown
the prevalence of extremely high variance (or “bursty”) traffic on the web, as exemplified
in Figure 2b. Although there is still debate over the exact nature of this traffic, most
traces and anecdotal experience supports the fact that large bursts of traffic can occur
at many time scales, from milliseconds up to hours or even days. An extreme example
of a burst can occur during denial of service attacks, which have recently become more
frequent [114, 125]. Because of these bursts, services must be built to support graceful
degradation under overload: the service must either absorb and buffer the burst without
causing throughput to degrade, or excess traffic must be rejected early to avoid livelock [43].

A popular service must remain available as much as possible. Figure 2a shows the
number of web requests per minute generated by a population of UC Berkeley web users, and
Figure 2b shows the number of web requests per 180 seconds received by the UC Berkeley
CS Division web server. From these illustrations, we see that there are clients generating
requests 24 hours per day, and that servers receive requests 24 hours per day. The diurnal
cycle seen in these two figures is typical of services with high geographical locality, but

in more services with world-wide popularity, this cycle is much less pronounced. The fact

800 1600

1200

800

400 1 - -

of HTTP requests per minute

of HTTP requests per 180 seconds

0 T T T 0
04:00 10:00 16:00 22:00 04:00 04:00 10:00 16:00 22:00 04:00
time of day time of day
(a) (b)

Figure 2: HTTP traffic patterns: (a) Illustrates the diurnal traffic pattern of web re-
quests measured from a closed population of 8,000 modem pool users from UC Berkeley in
the Fall of 1996, and (b) shows the number of web requests received every 180 seconds by
the UC Berkeley CS division web server on February 2nd, 2000.

that services must deal with constant traffic means that there can be no planned “service
downtime”; services must remain highly available, even in the face of hardware or software
failures, and also during planned maintenance or upgrades. Being available in the face of
failure implies that the service is fault tolerant.

If a service manages persistent data, e.g., a mail server [34] or an ecommerce
service [1], then depending on the nature of the application, the service may need to keep
that data consistent and durable. The degree of data consistency and durability depends
on the application, but many applications require some degree of atomicity, coherence, and
durability. Furthermore, as a service grows in popularity, the amount of data that the
service must store and access may increase, forcing the service to have scalability of storage
capacity. For example, according to press releases, the Hotmail mail service [34] has 80,000
new accounts registered per day, each of which may use up to 2MB of storage.?

To summarize, the workload presented to an Internet service coupled with its users’

2This is worst-case addition of 160GB of data per day; in practice, most mailboxes use considerably less
than their allowed 2MB.

‘ property ‘ description ‘
data consistency and durability the service must maintain a level of data consis-
tency and durability as appropriate to the given
application
scalability of storage capacity the amount of state that a service manages must

be able to scale up to match the increasing de-
mands of a growing user base

high availibility the service must remain available even in the pres-
ence of partial failures
high concurrency the service must be able to handle large numbers
of simultaneous tasks from its user population
high performance the service, if successful, must be able to handle

a high volume of traffic with acceptable latency

graceful degradation under overload | if transient or long-lived bursts of arrivals exceed
the current capacity of the service, the service
should still maintain high throughput by shedding
or queueing excess load

scalability of throughput the service must be able to scale up to match in-
creasing volumes of offered traffic

Table 1.1: The “service properties”: This table outlines the set of properties that an
Internet service must have in order to be successful.

expectations imply that it must have all of the properties outlined in Table 1.1. There are a
number of additional challenges particular to Internet services that are beyond the scope of
this dissertation, for example the problem of locating services in a wide-area environment
(“service discovery”), or the problem of composing multiple horizontal services together to

produce an interesting, dynamically assembled application (“service composition”).

1.3 On the use of Clusters of Workstations

In this section, we describe how the use of a shared-nothing multicomputer ar-
chitecture known as networks or clusters of workstations (NOW) [4] can help to achieve
some of these properties. A NOW is a collection of possibly heterogeneous uniprocessor or

multiprocessor workstations connected together by a high speed, low latency system area

10

network (SAN). For example, the Millennium cluster at UC Berkeley [23, 29, 41] currently
includes a mix of 28 2-way 500MB 500MHz Pentium-II and 39 4-way 1GB 550Mhz Pentium-
IT based machines, connected by both a myrinet [36, 102] (1.6 Gb/s throughput and 12 us
round-trip latency) and a gigabit Ethernet.

The NOW architecture has a number of interesting attributes that can be exploited
to achieve the properties listed in Table 1.1. Because each node in the cluster is an indepen-
dent failure boundary, it is possible to achieve high availability through the use of replication
across nodes. Given a software architecture that includes failover abilities, the crash of a
single node in the cluster need not interrupt the overall service, as the computation state
and persistent data on that node are replicated elsewhere. The degree of replication and
the rate at which failed components recover (mean time to recovery, or MTTF) affects how
many concurrent failures a service can withstand without affecting availability.

Because a cluster is comprised of a number of independent resources (disks, CPU,
memory, 1/O buses, NICs, etc.), a cluster can support incremental scalability. If a service
runs out of capacity, and if its software architecture is designed correctly, scaling can occur
by adding additional nodes to the service. To achieve linear or superlinear scaling, the
architecture must be able to rebalance data and computation across the cluster after such
growth has occurred. The fact that there are so many independent resources in the cluster
means that parallelism is naturally supported. Internet workloads typically have a large
number of independent tasks, corresponding to requests from independent users; this task
independence simplifies the process of exploiting this resource parallelism, leading to high
service throughput.

A cluster also accomodates the partitioning of computation and data. This parti-
tioning helps to mitigate the concurrency demands of services; for a given degree of service

concurrency, adding additional nodes decreases the per-node concurrency requirements.

11

Clusters have a number of interesting operational attributes as well. A cluster can
be physically situated in an environment that is most conducive to achieving the service
properties. A cluster can be in a physically secure machine room, provided with redun-
dant, uninterruptible power supplies to minimize failures, have controlled heterogeneity (in
the sense that heterogeneity is predetermined and well understood), and have well-trained

system administrators to reduce the chance of operator error.

1.3.1 Complexities of Clusters

Clusters have many sources of heterogeneity. Individual nodes may have different
hardware or software characteristics, resulting in performance or capacity imbalances across
the cluster. Imperfect run-time load balancing or data partitioning can also result in im-
balance, leading to a loss of service performance or scalability. To ameliorate this, software
and administrators must tune the static and dynamic balance of resources and tasks across
the cluster.

When processes communicate with each other across a cluster, there are a number
of different domains and associated domain crossing overheads that their messages may
experience. These domains include methods or procedures within an address space, multiple
address spaces on a single node, multiple processors within a single node, and multiple nodes
across the SAN. In general, the coarser the domain, the more expensive it is to cross. The
layout of software components and the placement and granularity of data partitions within
the cluster must be designed to exploit locality within these domain wherever possible,
otherwise the service may achieve poor performance due to excessive boundary crossings
during communication.

The fact that clusters are comprised of many independent resources necessarily

introduces complexities into the software architecture. In order to achieve availability,

12

‘ Cluster Attribute ‘ Service property Challenge
low latency, high throughput | high performance and | overcoming network partitions, balanc-
SAN scalability ing traffic across the cluster avoid net-
work bottlenecks
nodes as independent failure | high availability detecting failures, restarting failed com-
boundaries ponents, replicating data and/or com-

putation for fault-tolerance and durabil-
ity, maintaining consistency across repli-
cas

independent resources in a | high concurrency, in- | balancing across resource types, pre-
shared-nothing architecture | cremental scalability | venting imbalance due to hardware and

(IO backplanes, disks, CPUs, software heterogeneity, preventing im-
NICs, physical memories, balance due to dynamic differences in
etc.) load or accidental coupling of resources,

administration of the large collection of

resources

Table 1.2: Cluster attributes: This table describes attributes that clusters have, how
they help to address the service properties, and the challenges that must be overcome to do
S0.

data must be replicated across multiple nodes. But, to maintain the overall consistency
of a service, these replicas must be kept consistent with each other. Node, process, and
communication fabric failures make it difficult to achieve replica consistency. To make
matters worse, as the promised consistency becomes stronger, delivering that promised
consistency introduces a tight coupling between the replicas and the resources they use.
This coupling detracts from the parallelism and the scalability of the system that arises
from the independence of the cluster’s resources.

Harmful coupling can occur from sources other than consistency protocols. For
example, if a blocking RPC style of communication is used for inter-node communication,
then that RPC couples two threads together, as the caller does not continue to execute
until the callee returns. If RPC calls are chained across multiple levels, then the degree
and duration of coupling grows with the call depth. To avoid this, careful thought must

be given to the programming model and control structure of services, and appropriate I/O

13

APT’s and mechanisms must be used.

In Table 1.2, we summarize the cluster attributes, and describe how they help
address the service properties and the challenges that must be overcome. All of the chal-
lenges relate to software infrastructure that must be in place to support the service and
programming models that should be used to allow the service to be properly conditioned

with respect to load and balance.

1.4 Contributions

The main contributions of this thesis are as follows:

1. We describe the specification, construction, and evaluation of a programming model
and design framework specifically targeted to the needs of highly concurrent, scalable
Internet services. Our description includes the exploration of the tradeoffs between
threaded and event-driven programming styles, and our programming model presents
a hybrid of these styles that retains the advantages of both, in terms of program
performance and clean structure. Within our model, we identify several archetypical
design patterns and composition operators that are common to Internet services; these
patterns and operators serve to greatly simplify the conceptual design of new services.
Finally, we present the implementation and evaluation of a class library based on this

model and these patterns/operators.

2. We present the design, implementation, and evaluation of a storage platform for scal-
able Internet services that makes use of our programming model. This platform,
called a distributed data structure (DDS), greatly simplifies service construction by
shielding service authors from issues relating to the availability, consistency, recov-

ery, and scalability of persistent data management. Our design picks a “sweet spot”

14

of consistency, providing one-copy equivalence and atomic updates, but avoiding the
complexities of transactions. The evaluation of this storage platform demonstrates
that both throughput and capacity linearly scale; we demonstrate in-core throughput
of 60,000 read operations per second on a 128 CPU cluster, and a storage capacity of

1.28 TB over 128 disks.

3. We present a number of novel Internet services that were implemented using our
programming model and scalable storage platform, including a scalable web server, an
instant messaging proxy gateway, and a collaborative filtering engine for a community

music Jukebox.

1.5 Thesis Map

In the remainder of Part I, we motivate the first two hypotheses by differentiating
between WAN distributed systems and Internet services in a cluster. We also demonstrate
that the service properties of graceful degradation and scalability imply that mechanisms
such as task scheduling, resource management, and concurrency management must be ex-
posed to applications rather than hidden through abstractions or through virtualization.

In Part II, we present a programming model and a design framework for highly
concurrent Internet services. We present detailed performance measurements to highlight
the distinction between event-driven and threaded programming models, and use this to
motivate a hybrid programming model based on “thread boundaries”, in which queues
separate layers of the system. We also describe a number of design patterns that can be
applied to code in order to condition it against load bursts, resource bottlenecks, or failures.

In Part III, we describe a scalable storage subsystem that we built using the

programming model described in Part II. This storage subsystem is called a distributed

15

data structure (DDS), and it provides scalability (both in terms of throughput and capac-
ity), availability, and strict consistency. A distributed data structure has a conventional
single-site data structure interface, but partitions and replicates data across a cluster of
workstations in a manner that is transparent to services that use it. We discuss the design
and implementation of a hash table DDS, we quantify its performance, and we present
several services implemented using it.

Finally, in Part IV of the dissertation, we present related work, and also discuss
several open issues and avenues of future research that we uncovered while exploring our

own work. We conclude with a summary of the contributions of this dissertation.

16

Chapter 2

Towards a Cluster-Based Internet

Service OS

2.1 Dodging the WAN Bullet

Fundamentally, Internet services are distributed systems. Distributed systems face
many significant challenges that must be overcome for them to operate correctly. These
challenges all stem from the fact that a distributed system, by definition, includes multiple
processors, independent failure boundaries, and unreliable networks. In the fully general
case, a distributed system must be able deal with processor failures (including Byzantine
failure [85]), differing execution speeds, multiple implementations of multiple programs
executing within the system, network partitions,’ and high variance in wide-area network
bandwidths, latencies, and reliabilities.

As an example of an Internet service that is a fully general distributed system,

consider the case of the Domain Name Service (DNS) [99]. The DNS system consists of a

L A network partition occurs when a hardware or software failure splits a network into two or more disjoint
subnetworks.

17

root level root level

name daemon name daemon
)

.EDU
name daemon

Internet | /

/@

Stanford.EDU)
name daemon |4 e ¥ F LAN

@ @ RN

¥| Berkeley.EDU | ®4 resolver
name daemon

S[Es

Figure 3: DNS architecture: This figure illustrates the software components, databases,
caches, and network connections that are necessary in order for an application running on
a Berkeley workstation to resolve a Stanford workstation’s DNS name. The labeled arrows
refer to messages exchanged between the software components; these messages are explained
in detail below.

application

number of software processes, databases, and caches that are distributed across the wide-
area, organized in a hierarchy that matches the name system hierarchy (Figure 3).

If an application running on a Berkeley workstation wishes to resolve a Stanford
DNS name, e.g., www.stanford.edu, up to five message exchanges may need to occur
between five different software entities. A library attached to the application first sends
a message to a Berkeley DNS server (message 1). That server consults its cache; if it
doesn’t have www.stanford.edu in the cache, it attempts to contact the name server for

stanford.edu in order to resolve it. However, to contact that name server, it must resolve

18

another DNS record in order to determine the address of this name server. This resolution
process continues up the name hierarchy, checking the local cache at each step, until the
Berkeley DNS server resorts to contacting a root level name server (message 2). Messages
3 and 4 correspond to the Berkeley DNS server traversing down the name hierarchy, until
it finally resolves www.stanford.edu. Once it has done so, it returns the resolved address
to the application’s library (message 5).

Although the application sees the DNS name space as a single, logical database,
this database is actually partitioned among many independent fragments across the wide
area. Furthermore, all name resolutions are done through a series of name servers’ caches.
There is thus a challenging consistency issue with DNS; updates to a local DNS database
fragment are not immediately propagated to other databases or caches, resulting in po-
tentially inconsistent name resolutions, depending on which name server an application
consults. To address this issue, DNS records have expiration times associated with them,
and distributed applications must tolerate inconsistencies within the window bounded by
these expiration times.

DNS also has challenges related to service availability. If any of the DNS servers
in the chain of requests in Figure 3 are unavailable, then the DNS resolution will fail. To
overcome this, DNS stipulates that each DNS server must have at least one replica that can
be used if the primary server is unavailable. Replicas are supposed to be geographically
distributed, reducing the chance of correlated failures by ensuring that they are in indepen-
dent failure boundaries. In reality, many organizations are configured with geographically
proximate DNS server replicas, implying that the failure of a single network link could bring
down DNS service for that entire organization. Also, if a network partition separates an
application from its configured DNS server, then the application will not be able to resolve

any DNS names, even for organizations that are not partitioned away.

19

2.1.1 The CAP Principle

The DNS example serves to demonstrate that there is a relationship between
data consistency, service availability, and the ability to tolerate network partitions. This
relationship is formalized by the CAP Principle [56]:

CAP Principle: A system may have at most two of strong Consistency,

Availability, and tolerance to network Partitions.

By strong consistency (C), the CAP principle means one-copy equivalence of a data
store, even during update. Availability (A) means that the system continues to operate and
be accessible to clients even though individual elements or replicas have failed. Tolerance to
network partitions (P) implies that the system continues to operate and be available even
though elements of the system cannot communicate with each other.

DNS is an example of a system that supports A and P, but not C. In fact, even
without network partitions, clients may see two inconsistent name bindings, depending on
the DNS server or cache through which they resolve a name. Such inconsistency is designed
into the system as a normal mode of operation; a network partition merely increases the
chance that a client will see such an inconsistency.

In reality, C, A, and P are not strictly boolean characteristics, but rather they
exhibit degrees: a system can have weak consistency or partial availability. Accordingly,
a more realistic view of the CAP principle is illustrated in Figure 4; a system can pick
any operating point in the triangle. The vertexes of the triangle represent the tradeoff
described above by the CAP principle. For example, the Bayou distributed database [40]
allows transient inconsistencies, but as a result, it has high availability and can tolerate
network partitions.

Systems are usually composed of multiple components. Each component in the

system can select a different point within the CAP triangle. For example, many databases

20

(A,P)
DNS, web cache

load balance w/
e stale info

internet service ¢ » database

CA) C CP)

Figure 4: The CAP tradeoff: C,A, and P are not boolean characteristics; a system can
be described in terms of weaker consistency or availability. Thus, a given system can choose
any balance between C, A, and P that falls within the illustrated triangle. For example, a
load balancer can operate with stale information during a network partition, but the efficacy
of its load balancing decreases the longer that the network partition lasts.

are connected to the web using a web server front end. The front ends can select the
AP vertex, since they have no data to keep consistent. The database will likely select the
CP vertex, as a database typically becomes unavailable rather than tolerate inconsistencies
during a network partition.

According to Table 1.1, two essential properties of Internet services are data con-
sistency and high availability. In other words, services must have C and A. According to
the CAP theorem, this implies that services will not be able to tolerate network parti-
tions: if a network partition occurs between elements of an Internet service, that service
will necessarily become unavailable, inconsistent, or both unavailable and inconsistent. The
CAP theorem combined with our required service properties therefore imply the following

corollary:

Service Operation corollary: for an Internet service to operate with both
high availability and data consistency under writes, it must be architected to
operate in an environment in which network partitions do not occur.

21

Internet

application application

application

Figure 5: Service architecture: Services are confined to run inside bases, which are
clusters of workstations that are engineered in such a way that the probability of a network
partition is negligible.

2.1.2 Fighting our Battles in a Base

To satisfy the Service Operation corollary, we choose to require that services op-
erate in a well-engineered environment that we call a base. A base consists of a cluster of
workstations, located in a physically secured machine room, powered with redundant, un-
interruptible power supplies, and connected with a redundant network. The network must
have adequate redundancy so that the probability of a network partition is negligible.

Requiring that service run inside a base imposes a helpful structuring on our dis-
tributed system. The base is a boundary in which all of the challenges of distributed systems
are contained, and an environment that is designed obviate (or at least lessen) these chal-
lenges as much as possible. Unlike the scattered architecture of DNS (previously illustrated
in Figure 3), our service architecture has a clear structure (Figure 5). In particular, all

service-specific data is encapsulated inside a single base; this implies that there are no data

22

consistency issues outside of the base. There is also only one kind of network partition: one
which separates clients from services. If such a partition occurs, there is no data consistency
issue, as all replicas of the data are contained inside the base. There is an availability issue,
but it is one that a service cannot eliminate, since it does not control the network leading
from the client to the base. It can reduce the probability of such a partition by having
multiple peering arrangements with different ISPs, however.

Putting all components and replicas of a service in a single base does add a new
challenge: there is significantly more coupling between components in a single base than
components across the wide area (such as a shared power supply, a single physical room,
etc.), which introduces the possibility of correlated failures across the entire service. For
example, if the building in which the base is located is destroyed, services running in the
base will necessarily become unavailable, and data will likely be lost. Some coupling can-
not be eliminated, however many sources of coupling can be ameliorated through careful

engineering. We will return to this issue later in this dissertation.

2.2 The Trail of Cluster-Based Internet Service Platforms

This section describes the path of research that has been incrementally solving
many of the challenges of building base platforms for supporting cluster-based Internet
services. The previous chapter identified the properties that infrastructure services must
have to be successful, and described why clusters can help to provide those properties, but
also outlined significant challenges with cluster environments. The research described in
this section represents a series of steps, each of which abstracts away an additional set of
challenges into a platform or toolkit for building services, and each of which represents an

expansion in the set of applications that can be supported.

23

2.2.1 The Inktomi Search Engine

One of the first driving applications of the Berkeley NOW project [4] was the
Inktomi search engine [35]. Inktomi first demonstrated that the NOW architecture could
be used to build a highly-available, scalable service. It makes heavy use of the myrinet
SAN (achieving low overhead, 12 us latency one-way communication through the active
message [128] user-level network software) as a scalable interconnect. To achieve application
scalability, Inktomi horizontally partitions its search index across the nodes of the cluster;
a user’s search thus results in parallel searches over all cluster nodes, followed by a sort-
merge to aggregate the individual results. Because each Inktomi node is involved with
each search, and since per-node searches are relatively inexpensive, the low overhead of the
communication fabric is essential to achieve acceptable throughput from the system.

If a node fails, the portion of the overall document space on that node becomes
unavailable but the overall service remains uninterrupted. Data consistency is not an issue
for Inktomi, because their document search index is “read mostly” but also because the
data in the index is not replicated. Failures reduce the quality of the service (as fewer hits

are returned), but not its availability or consistency.

2.2.2 TACC

The TACC architecture [55] generalizes many of the ideas behind Inktomi by pro-
viding an extensible programming platform on which people could author services. TACC’s
programming model forces authors to decompose their services into stateless or soft-state
workers; the application logic materializes a Unix pipe-like composition of these workers
in order to service a task. Because workers are stateless or soft-state, if a worker dies,
then tasks that previously would be dispatched to that worker can instead be rerouted to

equivalent instances of that worker on other nodes. TACC fosters scalability by dynami-

24

cally starting workers on additional cluster nodes if the workload warrants it, and by load
balancing incoming tasks across all worker instances of a given type.

Task dispatches in TACC are blocking RPC-like operations; each worker node
sequentially processes incoming tasks off a task queue. TACC thus relies on process-level
parallelism in order to achieve concurrency across workers. As the composition depth grows
in TACC, this concurrency model combined with the use of blocking RPC-style dispatch
leads to an explosion of worker instances, since a worker at the head of a composition chain
appears to be “busy” until a given task flows through the entire chain. However, the fact
that TACC workers are generally very CPU intensive (performing operations such as image
or audio transcoding) means that the overhead associated with this process explosion is

small relative to worker computation.

2.2.3 MultiSpace

TACC has three deficiencies that the MultiSpace [70] service platform hoped to
address. First, the names of TACC workers and their types are based on strings, and thus
cannot be statically type-checked. Second, TACC workers can not be easily “pushed” into
a running cluster platform by external clients, but rather have to be carefully introduced
into the cluster by an administrator. Third, like Inktomi, TACC relies on having stateless
or soft-state workers, thus greatly restricting the application space that it can support.

MultiSpace makes heavy use of the Java programming language and runtime en-
vironment [62] to attempt to address the first two of these deficiencies. MultiSpace uses
Java’s remote method invocation (RMI) facility as a communication primitive across work-
ers. Workers are thus named according to their Java interface (a typed object in Java).
Worker composition is accomplished by chaining together RMI calls across the composed

workers; because of this, composition can be statically type checked. MultiSpace also

25

makes use of Java’s ability to perform dynamic class loading in order to ship bytecode
into MultiSpace single-node execution environments. This mechanism makes it possible to
dynamically “push” workers into a running MultiSpace installation, thereby reconfiguring
existing services or deploying new services.

Experience with the MultiSpace platform revealed a number of serious design flaws
stemming from these new mechanisms. The concurrency model implicit with RMI is thread-
per-task, i.e. a thread is dispatched on the callee to perform the invocation. RMI attempts
to be as transparent as possible, and as a result, service authors have no insight into or
control over such important system characteristics as the number of concurrent RMI invo-
cations that can run, the scheduling of RMI invocations, the number of threads or transport
connections that would be created, or the lifetime of those threads and transport connec-
tions. Furthermore, the blocking-nature of RMI leads to coupling between resources across
nodes, as explained in Section 1.3.1. The net effect of this “overzealous” transparency com-
bined with the RMI-induced coupling is that MultiSpace’s performance severely degrades
as the number of users, services, service composition depth, or nodes in the MultiSpace
scales.

The decision to name workers by their typed interface created several operational
problems as well. Two workers with different semantic behavior cannot share the same
interface, as there is no external way to distinguish them. This implies that different
versions of the same worker cannot coexist, making service evolution difficult. Similarly,
it is difficult to extend, specialize, or otherwise “subclass” a worker, since changing its
interface by definition changes its name, and all people that depend on that worker must
be made aware of the change. Finally, the use of typed interfaces implicitly requires an
RMI-like composition mechanism, which, as we have stated above, introduces a coupling

between the blocking caller and the callee.

26

To address TACC's lack of scalable, persistent state management, MultiSpace pos-
tulates the existence of a consistent, durable storage layer. This storage layer is based on
the notion of exposing conventional data structure APIs such as hash tables or trees to
service authors, but durably and coherently managing the state behind those APIs in a
manner that is transparent to service authors. A prototype distributed hash table was built
for the MultiSpace platform, but that prototype failed to achieve many of the service prop-
erties, in part due to naive design but also due to the use of an inappropriate programming
model (the pervasive use of mmap() and thread-per-task concurrency) that failed to give
the hash table implementation enough control over on-disk state management, in-memory
buffer management, and scheduling over tasks. In Part IIT of this dissertation, we describe

the design, implementation, and evaluation of a more sophisticated distributed hash table.

2.3 A Programming Model for Bases

Experience with MultiSpace demonstrated that a poor choice of programming
model can cause an Internet service to scale poorly, and to exhibit poor performance under
load. In this section, we focus on motivating a programming model that is well suited
to Internet service construction; we will describe this model in detail in Part II of the
dissertation.

Programming languages, models, and abstractions tend to reduce the complexity of
building new systems by using virtualization. Virtualization gives programmers the illusion
that their program’s execution context has isolated access to a set of underlying system
resources, even though there are multiple contexts competing for access to a shared resource.
For example, a thread [5] is an abstraction that allows programmers to reason about the

control flow of their systems in a simple, linear fashion; the thread subsystem virtualizes

27

the processor by alternating the execution of multiple threads based either on timer events
or on scheduling events (such as a thread entering a blocking state to wait for I/O). The use
of the thread abstraction in highly concurrent systems such as Internet services typically
leads to a thread-per-task programming model in which a thread is dispatched to handle
an incoming client request. Using this model, each thread is completely independent and
has no visibility into other threads. No component of the service has a complete view of
the entire system.

As a second example, RPC [19] is a communications abstraction that naturally
complements threaded programming. To the programmer, RPC allows the execution of
a thread to be transparently transferred to a remote address space or machine across a
procedure call; RPC thus can be thought of as another kind of virtualization by which
address space or machine boundaries are hidden. The RPC subsystem automatically blocks
the caller’s thread, transfers marshalled arguments across the address spaces, and either
creates or dispatches a thread to invoke the procedure on the callee. Because this mechanism
is transparent to the programmer, the program itself typically has no visibility into or control
over parameters such as the number of simultaneous contexts that can execute on the caller,
or the order in which procedure calls execute.

Virtualization can greatly simplify programming, since it shields programmers
from details such as scheduling decisions, marshalling complexities, and awareness of con-
currency. However, we believe it is exactly these details that dictate whether or not a service
is robust under scale and whether it can achieve all of the service properties. Services must
be able to handle high throughput and high concurrency; in particular, a given process in
a service may need to handle many thousands of simultaneous tasks. If the service author
used a thread-per-task programming model, this would result in many thousands of threads

per process. Most thread subsystems do not scale well to this number of threads (as we

28

will explicitly demonstrate later). Furthermore, because RPC hides scheduling from the
programmer, a system that relies on it to dispatch tasks across multiple components cannot
easily introspect on the number of tasks flowing through a given component, making load
balancing and admission control extremely difficult.

The simplification afforded by the programming abstractions such as threads and
RPC (and their resulting programming models) can cause tremendous problems when the
system must handle workloads that are typical for Internet services, in particular extremely
high concurrency and high throughput. Under these workloads, resource management and
visibility into resource consumption and scheduling is critical to maintaining the robustness
of the service. The virtualization that is used by these abstractions takes away the system’s
ability to observe resource consumption, and often does not allow the system to perform
any resource management. We therefore claim that the programming model presented
to Internet service authors must explicitly expose mechanisms and resources to the pro-
grammer and to the program. Part II of this dissertation focuses entirely on our proposed
programming model, which is based on asynchronous I/O abstractions, explicit queues, and

message-passing oriented communication between components.

2.4 Hypotheses

This thesis represents the next step in the trail of Internet service platforms out-
lined in Section 2.2. The thesis attempts to explore issues related to the programming
model for Internet services, and also attempts to introduce more sophisticated state man-
agement facilities to cluster-based service platforms. Specifically, the dissertation proposes

the following three hypotheses:

1. There exists a programming model, a set of I/O abstractions, and a design framework

29

that are much better suited to high concurrency, I/O centric scalable Internet services
than the traditional thread-per-task, synchronous I/O model. This better model
(based on event-driven control flow, asynchronous I/O, message passing, and queues)
behaves well as the service is scaled up and naturally imparts the service property of
graceful degradation because of its explicit focus on exposing resources and enabling

resource management and task scheduling.

2. Using this programming model, it is possible to build a scalable storage platform
specifically designed for the needs of Internet services. This storage platform should
contain all of the service properties, and if services relinquish all of their persistent

state management to this platform, then they can easily inherit the service properties.

3. Given these two elements (the Internet service design framework and the scalable
persistent state management platform), it is possible and easy to build a large and

interesting class of Internet services that possess all of the service properties.

Part II of the dissertation addresses Hypothesis 1, by describing and evaluating a
programming model that we have implemented. In Part III, we present the design, imple-
mentation, and evaluation of a storage management platform that has all of the features
and properties stipulated in Hypothesis 2. Finally, in Chapter 8.3, we describe a number of
interesting services that we have implemented using the programming model and storage

management platform; these services validate Hypothesis 3.

30

Part 11

A Programming Model for Highly

Concurrent Servers

31

Chapter 3

The Thread and Event Spectrum

Internet services must expect to receive high throughput, high concurrency work-
loads. To deal with concurrency, programmers to date have primarily considered two pro-
gramming models and structures for their systems: thread-per-task and event-driven.
Thread-per-task programming allows programmers to write straight-line code and rely on
the operating system to overlap computation and I/O by transparently switching across
threads, each of which handles a single task as it flows through the system. When using the
event-driven programming model, programmers manage concurrency explicitly by struc-
turing code as a single-threaded handler that reacts to events (such as non-blocking I/O
completions, application-specific messages, or timer events).

As shown in Figure 6, each task that a service handles can be structurally sep-
arated into a sequence of stages. A task stage consists purely of computation; stages are
separated by high- or variable-latency operations, such as disk I/O, network I/0O, and lock
or mutex acquisition. The computation within a stage is typically small, consisting of tens
of microseconds of protocol parsing or content generation; however, more complex computa-

tion (such as public key operations or image distillation [57]) may last tens of milliseconds.

32

— |
—
— | e

A T .
mutex

_ " network

v

Figure 6: Stages in a Task: A task that enters an Internet service can be separated into
a sequence of stages, each of which consists of pure computation. Stages are separated
by high or variable latency operations such as disk I/O, network I/O, and lock or mutex
acquisition.

The operations that separate stages, however, can be virtually instantaneous, such as for
disk reads that are serviced from a buffer cache, or they may last hundreds of milliseconds,
such as for network reads over the wide area. A system can achieve high concurrency and
high throughput by executing other stages while a particular task is blocked.

In this chapter, we present a detailed performance and structural evaluation of
these two programming models. We will use this evaluation to guide the design of our own
programming framework, which is presented in the following chapter. As a reference model
for our evaluation, we frame our discussion around a hypothetical server that is illustrated
in Figure 7a. This server, which receives A tasks per second from a number of clients,
handles each task with a service latency of L seconds (the result of invoking an external
resource such as a disk or network), but overlaps as many tasks as possible. We denote the
task completion rate of the server as S. A concrete example of such a server would be a

web proxy cache; if a request to the cache misses, there is a large latency while the page is

33

completion rate:
S tasks / sec

N4 e

closed loop — | null computation
implies S = A service # concurrent — P
latency: tasks in server: _— disk/network
L sec A x L tasks (latency L sec)

TR =

W network write
task arrival rate:
A tasks / sec
(a) (b)

Figure 7: Concurrent server model: (a) The server receives A tasks per second, handles
each task with a service latency of L seconds (the result of invoking an external resource
such as a disk or network), and has a service response rate of S tasks per second. The
system is closed loop: each service response causes another tasks to be injected into the
server; thus, S = A in steady state. (b) A task from the programmer’s point of view: a
task consists of two (null) stages separated by three long-latency operations.

fetched over the wide-area network from the authoritative server, but during that time the
task doesn’t consume CPU cycles. For each response that a client receives, it immediately
issues another task to the server; this is therefore a closed-loop system.'

Figure 7b shows the view of the system from the point of view of the programmer;
each task that enters the system has two stages, and three stage boundaries. The task
first must read data from a network connection. A computation stage (which is null in our
implementations) separates the read completion from an L second operation such as a disk
access or a network access. Then, a second computation stage (which again is null in our
implementations) separates the completion of the L second operation from a final network

write operation, which sends the task response to the client.

We have implemented this simple hypothetical server using the three programming

LA closed-loop system is one in which the output signal of a system is fed back into the system’s input.

34

ncompletion rate:
S tasks / sec

thread.sleep(L secs)
concurrent

closed Io;op ‘7’ # ? ‘7’ ‘7’ $t\hreads in server:
implies S‘=A ‘\\T/‘/‘ T threads
e

|~ create()
task arrival rate:
A tasks / sec

(a) (b)

Figure 8: Threaded server: (a) For each task that arrives at the server, a thread is either
dispatched from a statically created pool, or a new thread is created to handle the task. At
any given time, there are a total of T threads executing concurrently, where T' = A x L.
(b) From the programmer’s point of view, the program consists of the logic for a single,
linear task; programmers must worry about synchronization, but not scheduling or state
management.

models that we evaluate in this chapter (thread-per-task, event-driven, and a hybrid model
that we introduce later); we used these implementations to measure the performance char-
acteristics of each model. In our implementations of this server, we simulate the L second

operation either with a thread sleep operation in the case of the thread-per-task or hybrid

server, or with a sleep queue in the case of the event-driven server.

3.1 Threaded Servers

A simple threaded implementation of this server (Figure 8a) uses a single, ded-
icated thread to service the network, and hands off incoming tasks to individual task-
handling threads, which step through all of the stages of processing that task. One handler

thread is created per task. An optimization of this simple scheme creates a pool of several

35

threads in advance and dispatches tasks to threads from this pool, thereby amortizing the
high cost of thread creation and destruction. In steady state, the number of threads 7" that
execute concurrently in the server is S x L. As the per-task latency increases, there is a
corresponding increase in the number of concurrent threads needed to absorb this latency
while maintaining a fixed throughput, and likewise the number of threads scales linearly
with throughput for fixed latency.

From the programmer’s point of view, the program consists of implementing the
logic for a single, linear task. The programmer must use synchronization primitives to
protect shared state from concurrent access, but otherwise, the programmer is not at all
aware of the multiple, concurrent threads in the system. In particular, the programmer
doesn’t worry about scheduling, as the thread scheduler handles this, or per-task state
management, as the compiler transparently places task state on thread stacks in the form
of automatic variables. If tasks are invoked by RPC, then the programmer also has no
control over task admission (i.e., whether or not tasks are admitted into the system or are
dropped), as the RPC subsystem will transparently handle this.

Threads have become the dominant form of expressing concurrency. Thread sup-
port is standardized across most operating systems, and it has become so well established
that it is directly incorporated into modern languages such as Java [62]. Programmers
are comfortable coding in the sequential programming style of threads, and programmer
tools (such as debuggers and thread-safe class libraries) are relatively mature. In addition,
threads allow applications to scale with the number of processors in an SMP system, as
the operating system can schedule threads to execute concurrently on separate processors.
However, thread programming does present a number of correctness and tuning challenges.
Synchronization primitives (such as locks, mutexes, or condition variables) are a common

source of bugs. Lock contention can cause serious performance degradation as the number

36

4500
1:-,! 4000,,,,,—0—1-wayC
2 3500 —=— 1-way Java
%’ g 3000 - —a—4-way C
?_, % 2500 1 - - - - 4-way Java
g s 2000 -
8L
x
«©
£

0

1 10 100 1000 10000
threads executing in server (T)

Figure 9: Threaded server throughput degradation: This benchmark has a very fast
client issuing many concurrent 150-byte tasks over a single TCP connection to a threaded
server as in Figure 8 with L = 50ms. We implemented the server in two languages (C
and Java), and gathered measurements on two machines (a 167MHz UltraSPARC running
Solaris 5.6, and a 4-way 296 MHz UltraSPARC SMP also running Solaris 5.6). The arrival
rate determined the number of concurrent threads; sufficient threads are preallocated for
the load. As the number of concurrent threads T increases, throughput increases until
T > T', after which the throughput of the system degrades substantially.

of threads competing for a lock increases.

Regardless of how well the threaded server is crafted, as the number of threads
in a system grows, operating system overhead (such scheduling and the aggregate memory
footprint of the program) increases, leading to a decrease in the overall performance of
the system. There is typically a maximum number of threads 7" that a given system can
support, beyond which performance degradation occurs. This phenomenon is demonstrated
clearly in Figure 9. In this figure, we show measurements of our implementation of the
threaded server; we implemented the server in two languages (Java and C), and gathered
measurements on two machines (a 4-way 296MHz UltraSPARC SMP running Solaris 5.6,
and a 1-way 167TMHz UltraSPARC also running Solaris 5.6).

For all configurations that we tested, the thread limit 7" was no more than 300

threads. While this degree of multiplexing is large for many applications and time-sharing

7

10000

—e—L = 10ms
—a—L = 50ms

1000 | —&—L =200ms

w
E
>
1)
c
2
o T ;- —tr

2
¥ 100
8 s "

2 . b
g — . L “0
g 10| 2
T
c
)
1 T T T T
0 200 400 600 800 1000

server throughput (S tasks/sec)

Figure 10: Threaded server performance curve: This parametric curve demonstrates
the 1-way SMP Java server implementation’s throughput and end-to-end task latency as the
load on the server is increased. “L” in this graph refers to the per-task latency introduced
by the server, as defined in Figure 7. The numbers next to points on the curves represent
the # of parallel tasks handled by the server for those points. Note that after the system
saturates, additional load drives the server into a regime where both throughput degrades
and latency continues to increase.
systems, it isn’t adequate for the concurrency requirements of an Internet service. There is
a particularly serious implication of this: because load increases at times when the service
is most valued, if load ever exceeds the thread limit, the attainable system throughput will
degrade when the service needs to perform its best. The thread-per-task systems thus do
not exhibit graceful degradation, one of our required service properties.

This effect can be most clearly seen in Figure 10. Each line in this graph was
generated parametrically by varying the number of tasks in the closed-loop pipeline, and
for each value, measuring the average end-to-end latency (i.e. the latency as measured by

the client) and throughput of the 1-way SMP Java implementation of the server. End-to-end

latency is plotted on the X-axis, and throughput is plotted on the Y-axis. The number of

38

tasks in the pipeline determines the load on the server, since more tasks in the pipeline mean
that the server must handle more tasks concurrently. As expected, as the system saturates
under load, throughput reaches a maximum and latency begins to increase. The lack of
graceful degradation can be seen as these parametric curves bend backwards, reaching a
spot where system throughput degrades and end-to-end latency increases. In other words,
once the system has saturated, additional load drives the system into a state of overload
in which throughput degrades. Unfortunately, the programmer is not aware of this state of
overload, as the single-task perspective of threads (and particularly of RPC) doesn’t expose
system-level characteristics such as the number of simultaneously executing tasks, or the

number of tasks that should be admitted into the system.

3.2 Event-Driven Servers

An event-driven implementation of this server uses a single thread and non-blocking
interfaces to I/O subsystems or timer utilities to “juggle” between concurrent tasks, as
shown in Figure 1la. For example, if a task requires a disk read, in a threaded system a
thread will block on the disk read, while in an event-driven system, a non-blocking read
will be issued and a completion event will later be queued for that thread.

From the perspective of the programmer (Figure 11b), an event-driven system is
structured as a single thread that loops continuously, processing events of different types
from an event queue. Each long-latency, operation that would have resulted in a thread
blocking in the threaded server is instead cast as an asynchronous request whose completion
will trigger an event being placed on this queue. There is thus a direct correspondence
between blocking operations in the threaded server and event types in the event-driven

server. The program itself consists of the same stages as in the threaded case, however

39

' completion rate:
~ Stasks /sec

-7, timer queue ‘))
X

closed loop

implies S=A N~ With latency: m
L seconds

| ‘7’ task ID | state
B RIS]
e
NW
S N
task arrival rate: ?\\‘%\\.{\3
A tasks / sec &‘.1%

(a) (b)

Figure 11: Event-driven server: (a) Each task that arrives at the server is placed in a
main event queue. The dedicated thread serving this queue sets an L second timer per
task; the timer is implemented as a queue which is processed by another thread. When a
timer fires, a timer event is placed in the main event queue, causing the main server thread
to generate a response. (b) From the programmer’s perspective, the program has a single
thread of execution that services completion events (NR=network read, NW=network write,
SC=sleep completion) from an event queue. The program must manage all task state in a
table, and dispatches events plus task state to the program’s two stages.

the programmer must dispatch events to stages based on the event type, and based on
knowledge of the previous history of the task associated with this event.

Unlike a threaded server, with an event-driven system, the programmer must ex-
plicitly manage all tasks’ state. Partial state associated with a task must be bundled into
a self-contained object, and stored in a table indexed by a unique identifier associated with
the task. When the program thread pulls an event off of the queue, it associates the event
with its task, retrieves this task’s state, and invokes the correct task stage with the event

and task state as arguments.

Event-driven programming has its own set of inherent challenges. The sequential

40

| —=—1-way Java

5
o
)
3 ’g 4000 - —«—4-way Java
£
= F 3000 -
s
GB 2000+
S
g 1000

0 % ‘ ; ;

1 10 100 1000 10000

tasks in client-server pipeline

Figure 12: Event-driven server throughput: Using the same benchmark setup as in
Figure 9, this figure shows the event-driven server’s throughput as a function of the number
of tasks in the pipeline. The event-driven server has one thread receiving all tasks, and
another thread handling timer events. The throughput flattens in excess of that of the
threaded server as the system saturates, and the throughput does not degrade with increased
concurrent load.

flow of each task is no longer handled by a single thread; rather, one thread processes all
tasks in disjoint stages. This can make debugging difficult, as stack traces no longer repre-
sent the control flow for the processing of a particular task. Events generally cannot take
advantage of SMP systems for performance, unless multiple event-processing threads are
used. Also, event processing threads can block regardless of the I/O mechanisms used. Page
faults and garbage collection are common sources of thread suspension that are generally
unavoidable.

However, because there is only a single thread of execution in the system, event-
driven programming avoids many of the bugs associated with the synchronization of multiple
threads, such as race conditions and deadlocks. In addition, concurrency is explicit in the
event-driven approach, as all tasks are visible to the system programmer (in the form of

task state bundles). The programmer is also able to influence the order in which tasks are

processed by the system; because queues expose all events, programmers can make use of

41

10000

—a—| = 10ms
—a— | = 50ms 2000 2000

1000 H

400 400
100 { 2 100

10{ R T T R EE R

end-to-end task latency (ms)

0 200 400 600 800 1000
server throughput (S tasks/sec)

Figure 13: Event-driven server performance curve: This parametric curve demon-
strates the 1-way SMP Java server implementation’s throughput and end-to-end task la-
tency as the load on the server is increased. The numbers next to points on the curves
represent the # of parallel tasks handled by the server for those points. Note that after the
system saturates, additional load increases the latency of the system, but doesn’t degrade
its throughput.

application-specific knowledge to reorder event processing.

Event-driven systems tend to be robust to load, with little degradation in through-
put as bursts of tasks drive the offered load beyond what the system can sustain. Excess load
is absorbed by the event queue, whereas in a threaded system, excess load causes additional
threads to execute. Figure 12 shows the throughput achieved on an event-driven imple-
mentation of the network service from Figure 11 as a function of the load. The throughput
exceeds that of the threaded server shown in Figure 9, but more importantly, throughput
does not degrade with increased concurrency.

As the number of tasks increases, the server throughput increases until the pipeline
fills and the bottleneck (the CPU in this case) becomes saturated. If the number of tasks in

the pipeline is increased further, the excess tasks are absorbed in the queues of the system,

either in the main event queue of the server, or in the network stack queues associated with

42

the client/server transport connection. The throughput of the server remains constant in
such a situation, although the latency of each task increases. This effect can be more clearly
seen in Figure 13, which shows the parametric curve relating the throughput and latency
of the 1-way SMP Java implementation as load is increased. Note in particular that the
throughput of the system increases until the server saturates. From this point onwards, the
throughput remains essentially constant, while latency increases.

An opportunity that the explicit event queue enables is the ability for the system
to perform admission control. If the system is saturated, the event queue will begin to grow,
increasing task latency. The system can shed load and reduce latency by simply dropping
tasks from this queue, optionally sending error messages back to the sender. Queues in an
event-driven system are thus a useful mechanism which exposes resources and the ability

to impose resource management policies to the programmer and program.

3.3 The Thread and Event Spectrum: a Hybrid Server

We believe that the design space for concurrent servers is not limited to just
threaded and event-driven systems, but rather that there is a spectrum between these
extremes, and it is possible to build hybrid systems that can exploit the advantages of
both programming models. For example, a hybrid system can expose a threaded program-
ming style to programmers, while simultaneously exposing an event queue, and limiting the
number of concurrently executing threads so as to prevent performance degradation. The
simplest example of a hybrid thread and event server is shown in Figure 14. It limits the
number of concurrent threads running in the system to no more than T threads in a pre-
allocated thread pool, and buffers incoming tasks in an event queue from which the thread

pool feeds.

43

completion rate:
Stasks/sec

thread.sleep(L secs)
concurrent

closedfloop ? ? ? .7’ ‘?’ \th3$’stir?r:z(ri\;er:
implies $=A '\’\T//‘

(i1 e

[
] S——— event queue to

A AR absorb bursts
of tasks

! task arrival rate:
A tasks / sec

Figure 14: A hybrid thread and event system: This server uses a constant-size thread
pool of T threads to service tasks with an arrival rate of A from an incoming task queue;
each task experiences a service latency of L seconds. If the number of tasks received by
the hybrid server exceeds the size of the thread pool, the excess tasks are buffered by the
incoming task queue.

Returning to our example service, the concurrency demand on the system is A X
L, which is serviced by the T threads in the pool. Within the operating regime where
A X L <T <T', the hybrid server performs as well as an event-driven server, as shown in
Figure 15(a). However, if A x L > T, then it will be impossible to service the concurrency
demand without creating more than 7" threads, as shown in Figure 15(b). If the size of
the thread pool exceeds T, throughput degrades regardless of whether the thread pool is
as large as the concurrency load. Therefore, T' should be set to never exceed T, and if
A > T/L, then the excess tasks will accumulate in the task queue, which absorbs bursts
but increases the latency to process each task. In this case, users experiencing this higher
latency will presumably back off until the task arrival rate slows to A =S =T/L.

Figure 15(c) shows the performance of our Java implementation of this hybrid

server, running on the 1-way Solaris machine, for various values of L. As as L increases, the

44

A AL T A T AL
H : -
£ A=S 3 A
=1 L
3 2
£ 2
£ S
simultaneous threads (T) # simultaneous threads (T)
(b)
(a)
1000 ——L=10ms
—=—|L=50ms
800 1 —a— L.=400ms 5
- as
8 6001 - - - - /- S R-- - > 3
£ 3 <
=) °w
3 E f,
g 4001 - - - - - - - SN - T8
to
200 3
0 : ‘ ‘ 0 ‘ ‘ ‘
1 10 100 1000 10000 1 10 100 1000 10000
simultaneous threads (T) # tasksin client-server pipeline

(© (@)

Figure 15: Throughput of the hybrid event and thread system: (a) and (b) illustrate
the theoretical performance of the hybrid server, where T” is larger or smaller than the
concurrency demand Ax L. (c) shows measurements of the benchmark presented in Figure 9,
augmented by placing a queue in front of the thread pool, for different values of L and T
(d) shows the throughput of the hybrid server when T' = T”, which is the optimal operating
point of the server. Here, L. = 50ms. The middle plateau in (d) corresponds to the point
where the pipeline has filled and convoys are beginning to form in the server. The right-
hand plateau in (d) signifies that the convoys in all stages of the pipeline have merged. Note
that the z-axis of (a) and (b) are on a linear scale, while (¢) and (d) are on logarithmic

scales.

45

10000

—a—| =10ms 1000 1000

1000 - ——L =50ms

no
—
(=]

100 |

—_
o
L
n

end-to-end task latency (ms)
|
L

1 T T T T T T
0 100 200 300 400 500 600 700
server throughput (S tasks/sec)

Figure 16: Hybrid server performance curve: This parametric curve demonstrates the
1-way SMP Java server implementation’s throughput and end-to-end task latency as the
load on the server is increased. The numbers next to points on the curves represent the #
of parallel tasks handled by the server for those points. this hybrid server exhibits the same
graceful degradation under overload as the event-driven server, since the fixed-size thread
pool limits the maximum number of concurrently executing threads. After the system’s
throughput has saturated, additional load is absorbed on the queue, increasing latency but
not degrading throughput.

hybrid system eventually becomes unable to meet the concurrency demand A x L without
exceeding T". However, because tasks are buffered by the incoming queue, throughput will
not degrade as long as the size of the thread pool is chosen to be less than T, as shown in
Figure 15(d).

In Figure 16, we illustrate that the hybrid server has the same graceful degradation
property as the event-driven server. As the load on the hybrid server is increased, the
server eventually saturates; at this point, either the CPU has saturated, or all threads in
the thread pool have been dispatched. As load increases past saturation, additional load

becomes absorbed on the queue. Latency increases at this point, but because the maximum

number of concurrent threads is limited by the thread pool, throughput doesn’t degrade.

46
3.4 Summary

In this chapter, we explored the distinction between threaded and event-driven
programming models for high-concurrency servers. We quantitatively demonstrated that
event-driven servers have as good or better throughput than threaded servers. Furthermore,
as the degree of concurrency scales, event-driven servers exhibit graceful degradation; the
server’s event queues absorb bursts of load, resulting in an increase in latency without
a degradation of throughput. Next, we introduced a hybrid model that uses admission
control and an event queue to induce graceful degradation on a threaded server. In the
following chapter, we generalize this notion of inducing good behavior by describing how
to “condition” a service against load, concurrent, failure, and performance bottlenecks by

applying several design transformations.

47

Chapter 4

A Design Framework for

Well-Conditioned Systems

The logic of an Internet service is only a piece of its overall design complexity. In
addition to functioning properly, a service must be designed to be operationally robust. A
service is typically composed of a number of components, each of which may be deployed
and replicated across multiple nodes in a cluster. The service’s design must ensure that
enough resources are provisioned to each individual component to satisfy its concurrency
requirements and resource demands. Components must be adequately replicated to ensure
that the service can provide enough throughput, but also to ensure that the service can
withstand failures without becoming unavailable. The service also must be able to gracefully
handle temporary bursts during which the offered load exceeds the capacity of the service.

We call the process of achieving this operational robustness conditioning the
service. A necessary (but not sufficient) step in conditioning is selecting an appropriate
programming model and concurrency strategy that allows the service author and the ser-

vice’s execution environment to observe and manage constrained resources such as threads

48

H-
-

| | - |

T LA = =

B L —> —>
]
23
K ¥ <
(a) Wrap (b) Pipeline (c) Combine (d) Replicate

Figure 17: The Four Design Patterns: The four design patterns, wrap, pipeline,
combine, and replicate, can be applied to stages of a service to condition it against load,
failures, and limited or bottleneck resources.

and tasks being processed by the system. Additionally, an overall design framework must
be considered that allows the service author to reason about the performance of individual

components, but also to reason about the composition of the components and the perfor-

mance and availability of the resulting service.

4.1 The Four Design Patterns

In this section, we present a design framework that was devised to provide a method
for reasoning about service design, but also a set of steps for functionally decomposing a
service into components that can be conditioned individually. According to this design
framework, services have the task and stage abstraction previously illustrated in Figure
6. Given a request from a wide-area client, the service processes that request through
a sequence of logically distinct stages, each of which is separated by a high- or variable-
latency operation. For example, a web server might have three stages: reading and parsing
an HTTP request from a browser, retrieving the requested file from the file system, and

returning a formatted response to the browser. We impose the constraint that all data

49

sharing between these stages is done using pass-by-value semantics, for example through
the exchange of messages containing the data to be shared. This constraint acts to decouple
the stages, allowing them to be isolated from each other and perhaps be physically separated
across address spaces or physical machine boundaries.

Our framework offers four design patterns that authors and the service infras-
tructure can apply to compose and condition a service’s stages (Figure 17):

Wrap: The wrap pattern places a queue in front of a stage, and assigns a bounded
number of threads to the stage in order to process tasks that arrive on its queue; the hybrid
server previously discussed in Section 3.3 is an example of a wrapped stage. The queue
serves to condition the stage to load; excess work that cannot be absorbed by the stage’s
threads is buffered in the queue, increasing latency through the stage. This queue also serves
to expose scheduling and admission control mechanisms to the stage: because the queue is
explicitly exposed to the stage, it can decide the order in which to process tasks, and it can
also choose to drop tasks in the case of excessive or long-lasting overload. Because threads
are dedicated to the stage, the wrap pattern allows the stage to execute independently of
other stages. Wrapping also introduces a thread boundary between stages (Figure 18):
because chained stages communicate with message passing, a thread from one stage cannot
directly execute the code of another stage. Thread boundaries between stages thus serve to
introduce a rigid layering on the control flow across stages of a program; in Section 5.2.3
we will illustrate how thread boundaries can improve program structure, and as a result,
program efficiency.

Pipeline: The pipeline pattern takes a wrapped stage, and splits it into two
pipelined, wrapped stages. Pipelining further decouples a stage, and allows for increased
throughput through functional parallelism across processors or cluster nodes. Pipelining

permits optimizations such as having a single thread repeatedly execute the same code

50

thread boundary

layer N+1

g -

b

thread boundary

B
B
B

»

[~AP
~AP

layer N

RN

thread boundary

Figure 18: Using Wrap for Thread Boundaries: The Wrap pattern introduces a “thread
boundary” between stages. Because composition across wrapped stages is done through
message passing on queues, threads from one stage cannot directly call code in a wrapped
stage. This thread boundary imposes a strict layering on the control flow of the program.

while processing many tasks from a queue, thereby increasing instruction cache locality.
Many stages have a natural width to them; for example, because disks can generally only
handle about 40-50 concurrent requests before saturating, there is no need to supply a stage
that interacts with a disk with more than 40-50 threads. Pipelining allows stages with small
widths to be extracted from larger stages, resulting in an overall conservation of threads.

Combine: The combine pattern is the logical inverse of the pipeline pattern.
Given two previously independent, wrapped stages, the combine operator fuses the code of
the two stages into a single, wrapped stage. Combine permits resource sharing and fate
sharing between these previously independent stages.

Replicate: Given a wrapped stage, the replicate pattern duplicates that stage
on a number of independent processors or cluster nodes. Replication is used to eliminate
bottlenecks; by replicating a stage, the resources that can be applied to its bottleneck and
therefore its width are augmented, hopefully increasing the throughput of the stage. Repli-

cation also duplicates the stage’s functionality across multiple failure boundaries, making

o1

it possible to retain availability across failures. However, if a stage manages state, then

replication introduces distributed state consistency issues.

4.2 Composition Operators

To design a service given the four patterns of the previous section, an author must
first decompose the service into stages, apply the appropriate design patterns to the stages,
and then compose the resulting conditioned stages together into a graph. Composition
entails “connecting” the output messages from one source stage into the input queue of one
or more destination stages. Because the source and destination could reside in different
address spaces or one physically distinct machines, this connection may entail network
communication and the marshalling of the message content. Whereas the application of
design patterns dictates the layout of the code into stages of a service, the placement of
composition operators determines the data flow across these stages.

There are many different mechanisms by which this composition could be effected.
For example, two stages could be directly composed together using a best-effort unicast
message delivery (e.g. UDP [21]). Alternatively, one source and many destinations could
be composed together using a reliable broadcast or multicast of the message. There are five
primary composition operators that we identify (Figure 19):

Direct composition: this composition operator connects the output messages
of the source stage into the input queue of a single destination stage. If the two stages
span an address space or machine boundary, the operator must marshall the messages and
dispatch them using IPC or network connections. There are a number of variants of this
operator, such as a best-effort operator which may drop messages, a reliable operator which

transparently retransmits messages to achieve at-most-once delivery semantics, and a flow-

52

e

b

A
4 — [T1

shos] B¢ B

3

(a) compose (b) load balance (c) aggregate
A

) > (B) E mp —>(2)— E
V.

(d) broadcast (e) two-phase commit

Figure 19: Composition Operators: Services are constructed by composing stages to-
gether into a directed graph. Composition can be done using a number of semantically
different operators, including the four operators shown in this figure. Solid arrows repre-
sent data flow, and dashed arrows represent the flow of metadata or control information.
controlled operator which exerts backpressure on the source to prevent the destination stage
from being swamped.

Load balanced composition: this composition operator load balances the out-
put messages of a single source stage across the input queues of a set of destination stages.
In order to perform this load balancing, load information must flow back from the destina-
tion stages into the source stage. It is possible to perform load balancing by only looking
at the lengths of queues of the destination stages, but this assumes that queue length is an
appropriate metric of load.

Aggregation composition: an aggregation operator merges the output messages

of a set of source stages into the input queue of a single destination stage. The operator

may impose one of a number of merging disciplines, including FIFO, round-robin, or a

93

priority-based scheme.

Broadcast composition: a broadcast operator accepts messages from a single
source stage and delivers them to all input queues of a set of destination stages. This
broadcast may be reliable or unreliable, ordered or unordered, and it may make use of an
efficient multicast-based transport, or it may rely on a broadcast mechanism built into the
underlying network.

Two-phase commit composition: a two-phase commit operator functions sim-
ilarly to a broadcast operator, but it performs a two-phase commit in order to atomically
deliver the input message to either all output stages or none. This operator is useful in
order to keep replicated stages perfectly consistent.

It is possible to create additional, more complex operators through the composition
of these basic operators. For example, if an aggregation operator is composed with a load
balancing operator, the result is equivalent to a distributed queue as described in [10].
However, the naive composition of these two operators would result in a bottleneck in the
aggregation stage; a real distributed queue would only perform a virtual aggregation, instead
directly sending data from source stages to destination stages, bypassing the aggregation

stage altogether.

4.3 Constructing a Conditioned Service

Given the design patterns of Section 4.1 and the composition operators presented
in the previous section, the process of assembling a well-conditioned service can now be de-
scribed in terms of identifying the service’s stages, judiciously applying the design patterns,
and composing the resulting stages together in a graph using the composition operators.

In this section, we walk through this process, using a service constructed with vSpace [27]

54

W1 | w2 || w3 IIE W1 —>©—>IIE w2 —»@—»llE w3

(a) the service logic (b) after applying wrap, pipeline,
and direct composition

iEp W1 —»@; ‘/\AIIE w3
_ EEp W2 —»@; __
i Wi mEp- \W3

EEp W2 —»@3 i
2 W1 —»@3/1 E-- W3

(c) after applying replicate, and load-balanced composition

nue

Figure 20: A vSpace Service: A vSpace service is a composition of workers. In (a), the
service logic is broken into 3 stages. In (b), the wrap operator is used to convert each stage
into a conditioned vSpace “worker”; direct composition is used to form the workers into a
pipeline. In (c), each worker is replicated, and the pipeline composition is load-balanced
across replicas.
service platform and programming model as a reference example. vSpace makes exten-
sive use of the previously presented design patterns: vSpace services are constructed as a
composition of “workers”, each of which is equivalent to a wrapped stage as described by
the design patterns. vSpace itself provides load-balancing, automatic failover, restart, and
versioning of services and workers, shielding service authors from these complexities.
Logically, a vSpace service can be described as a graph of computational operations
on an input task. For example, a natural language translation service could be described as
a sequence of three computations (Figure 20a): speech-to-text conversion, text translation,
and then text-to-speech conversion. A naive first step towards designing a service would be
to create a single piece of code with these three operators directly fused together; this would

result in a single-staged service. To condition this single stage to load, the wrap pattern

could be applied to add a fixed-size, dedicated thread pool and queue to the stage. The

95

presence of this queue means that the service can now smoothly handle bursts of tasks that
exceed its throughput capacity. This also implies that the current load being experienced
by the service can be inferred from the length of its queue.

This service can exploit parallelism across tasks (through concurrently executing
threads), but it cannot easily exploit parallelism within a task. To do this, the pipeline
pattern should be applied, resulting in three wrapped stages directly composed together
(Figure 20b). The three stages can reside on different processors, exploiting functional par-
allelism within the service. The use of pipelining also means that the thread pools for each
stage can now be independently sized, minimizing the overall number of threads allocated to
the service. Pipelining shortens the code path executed by any given thread by constraining
threads to execute only within their assigned stage. This has the opportunity for increasing
the instruction cache locality of processors in the system, but only if a scheduling policy is
used that executes multiple tasks within a stage before context switching to a thread from
another stage.

The pipelined, wrapped service is susceptible to failure, because if any of the three
stages fails, the service will become unavailable. It also cannot scale: if any stage becomes
saturated, the overall service will saturate with it. To add fault-tolerance and the ability to
scale, the replicate pattern can be applied to each stage. Because the stages are separated,
each stage can be independently replicated; the degree to which each stage is replicated can
depend on that stage’s probability of failure, and that stage’s resource demands. In order
to route tasks to replicas, the direct composition that was used to produce the pipelined
service needs to be replaced with a load-balancing composition operator. Note that the load
balancing operator can use the queue lengths of the destination replicas as good indicators
of their relative load. The resulting service is shown in Figure 20c.

The programming model offered by the vSpace platform requires authors to ex-

o6

plicitly decompose their services into stages (dubbed workers). Programmatically, vSpace
authors subclass a vSpaceWorker class in order to create a new worker. Upon instantiation,
vSpace itself transparently applies the wrap pattern to a worker by associating a dedicated
thread pool and task queue with it. The programming model also forces authors to estab-
lish the pipeline for their workers; the pipeline is implicitly defined by the closure of task
dispatches emitted by the initial worker.

Each node in the cluster has a vSpace execution environment executing on it.
Nodes cooperate with each other in order to determine automatically how many replicas of a
worker should execute (based on the currently experienced load by replicas, and the available
resources within the cluster). Each vSpace environment load balances locally dispatched
tasks across all available replicas. Thus, the vSpace execution environment transparently
applies the wrap and replicate patterns on a service, and also transparently introduces
the load-balanced composition operator between workers. Service authors must decompose
their services into stages and implicitly define how the pipeline pattern is applied to these
stages; the remaining design patterns and composition operators are embedded inside the

vSpace platform itself.

4.4 Putting It All Together

In this section, we present a detailed examination of the effects of applying the
design patterns to an example service. We start with a threaded implementation of a simple
service, and then successively apply the wrap, pipeline, and replicate patterns, showing the
effect on both the architecture and the performance of the resulting services. All perfor-
mance benchmarks were gathered on a cluster of SMPs, each of which has two 500 MHz

CPUs, 250 MB of memory, and a disk with 15 MB/s sequential write capability. All nodes

o7

are connected with a 100 Mb/s shared Ethernet. We used IBM’s JDK 118 with kernel
threads for the purposes of this benchmark.

Our simple test service is called the “SignServer”; it was designed to represent a
service that performs both CPU and I/O intensive operations. SignServer is a networked
service that receives 5KB tasks from clients, and performs the following operations on each

task:

1. MD5 hash #1: an MD5 hash is computed over the arriving packet. This operation is
computationally intensive: on our benchmark machines, each MD5 hash computation

takes 250 microseconds;

2. Disk write: after hash #1 is computed, 128 bytes are written to the disk. Disk
writes are structured in such a way as to result in sequential writes. On our unloaded
benchmark machines, we measured the latency of such a single disk write as 140

microseconds.

3. MD5 hash #2: after the disk write has completed, we then compute a second MD5

hash over the input packet.

4. Writeback: finally, after the second MD5 hash has been computed, the results of

the MD5 hashes are written over the network to the originating client.

Our experimental setup is based on the concurrent server model depicted in Fig-
ure 7. To gather our measurements, we set up a closed-loop pipeline of requests between
client nodes and servers, and varied the number of tasks in the closed-loop pipeline.

The source code for all server implementations is included in Appendix A.

o8

=
=]
E
E
network
channels
l hash2
disk write @
. S B S—— P -
Client “ E E hash1 disk
& B Ed B3 ES
) < E <) :
Client =__ ? ?
Client E__ ?
%“““ 1 =
B]
SignService

Figure 21: Threaded SignServer Architecture: This diagram illustrates the architec-
ture of the thread-per-task implementation of the SignServer.

4.4.1 The Threaded SignServer

In Figure 21, we show the architecture of our initial thread-per-task implementa-
tion of this service. Each arriving task is dispatched to a thread from a thread pool. The
dispatched thread sequentially shepherds its task through the first three operations (hash
#1, disk write, and hash #2). The thread therefore is actively performing computation
during hash #1 and hash #2, but is blocked during the disk write. After completing these
three operations, the thread drops a response packet into the network channel to the client,
and then rejoins its thread pool to await a new task.

In Figure 22, we show the performance of the threaded server. Figure 22(a) shows
that the throughput of the server increases with the number of simultaneous tasks, until
it reaches a maximum throughput of 750 requests/s for 270 tasks. For greater numbers
of simultaneous tasks, throughput degrades. Similarly, latency increases linearly until 270

simultaneous tasks, after which it increases superlinearly. In Figure 22(b), we show a

99

800 800 700
CT00 N 700 600
P600 - AN et 600
= throughput = 500
5004 e 500 g % 400
= g £
5404 -/ 4 400 & =
£ s 2 300
3001 e 300 2 3
3 3 = 200
R e 200
" q00 { - - MO i 100 100

0 : : : : 0 0 \ \ \
0 100 200 300 400 500 0 200 400 600 800
tasks in pipeline Throughput (tasks/s)
(a) (b)

Figure 22: Threaded SignServer Performance: In (a), we show the throughput and
latency of the thread-per-task SignServer as a function of the number of simultaneous tasks
in the pipeline. In (b), we show a parametric curve showing the relationship between
throughput and latency as the number of tasks in the pipeline is varied. The value of the
parameter (# of simultaneous tasks) is displayed next to a number of points on the curve.
parametric curve of throughput versus latency as a function of the number of simultaneous

tasks. We see that throughput increases until the server saturates, but then throughput

degrades while latency continues to increase.

4.4.2 The Wrapped SignServer

The throughput degradation exhibited by the thread-per-task implementation is
identical in nature to that exhibited by the example threaded server in Section 3.1. Increas-
ing load on the server causes additional threads to executed; once too many threads are
active b, the overhead associated with the threads (such as context switching, scheduling,
and memory footprint) causes the throughput of the server to degrade.

The “wrap” design pattern is meant to condition a service against load. In Fig-
ure 23, we illustrate the architecture of an event-driven version of the server. Instead of
dispatching threads to handle incoming tasks, tasks are placed on a queue; a single thread

picks up tasks from this queue and either performs one of the hash functions on the task,

60

B @
network : e @

channels hash2
l [I]]]]]]]]] hash
;
Client | E I: '
SRR
) < @ |E < ?
Client = ?
@ =
i |2 - | B
ien -
disk write @
[] disk
@ W(SignService)

Figure 23: Wrapped SignServer Architecture: This diagram illustrates the architecture
of a single-threaded, wrapped implementation of the SignServer. Incoming tasks (1) are
placed on the single server thread’s queue. The thread dequeues tasks, applying hash
function #1 (2) and then issuing an asynchronous disk write (3). The disk write completions
flow back onto the main queue. The single server thread dequeues completions, and applies
hash function #2 (4). After this hash has completed, response packets are enqueued on
network channels destined for the originating client (5).

1200 800 700
- 1000 A T 700 600 f - - - - -
> + 600
% 800 lso@ @01 e
£ throughput £ Egood
56004 - ow - 400 & Y
(=3 c S 3004 - - - e N e
= 1300 & 2
S 4004 et S s 200
3 e 9
£ + 200
B 2003 g 1100 100 4 - - -

0 . . . 0 0
0 200 400 600 800 0 200 400 600 800 1000 1200
tasks in pipeline Throughput (tasks/s)
(a) (b)

Figure 24: Wrapped SignServer Performance: In (a), we show the throughput and
latency of the wrapped SignServer as a function of the number of simultaneous tasks in the
pipeline. In (b), we show a parametric curve showing the relationship between throughput
and latency as the number of tasks in the pipeline is varied. The value of the parameter
(# of simultaneous tasks) is displayed next to a number of points on the curve.

61

or initiates the asynchronous disk write for the task. This queue/thread combination is the

¢

result of applying the “wrap” pattern with a minimally sized thread pool (i.e. a pool of size
one).

In Figure 24, we show the performance of the wrapped server implementation.
Figure 24(a) shows that the throughput of the wrapped server increases with load, until it
saturates at approximately 1000 requests/s, which is faster than the saturated thread-per-
task server. Unlike the threaded server, additional load does not cause the performance of
the server to degrade; the wrap pattern has successfully conditioned the server against load.
The latency of the wrapped server increases linearly with additional load. In Figure 24(b),
we show the parametric performance curve of throughput versus latency as a function

of load; this curve clearly illustrates that after the server has saturated, additional load

increases latency but does not degrade throughput.

4.4.3 The Wrapped, Pipelined SignServer

The wrapped server has only a single thread that performs both hash functions,
even though the node on which the server runs has two processors. Although the second
processor is partially utilized by handling network and disk traffic, it could be further
utilized by having a second service thread performing the hash computation.

In Figure 25, we show the result of applying the pipeline design pattern to the
wrapped SignServer implementation. Instead of having one service queue that feeds a
single thread, the pipelined implementation has two queues and two threads. The first of
these threads pulls tasks received from the network off of its queue, and applies hash #1
to them. This thread then issues an asynchronous disk write, and then returns to its own
queue to service the next task. The completion from the disk write flows into the second

threads’ queue; this second thread dequeues completions, applies hash #2, and then places

62

network
channels ‘}’ . .
disk write
l ([;
@ (i disk
< = I < A
Client H | I
N —
Client | E G
i D S
Clent = S hash1 @
% 1 s
[H 1]
@ WP(SignService)

Figure 25: Wrapped, Pipelined SignServer Architecture: This diagram illustrates the
architecture of the wrapped, pipelined SignServer. Incoming tasks are placed on a queue
(1). A thread dequeues tasks, applies hash #1 to them (2), and then issues an asynchronous
disk write. The write completions (3) flow onto a second queue. A second thread dequeues
completions, applies hash #2 to them (4), and then enqueues a response into a network

Ahcaivanal Aandicnad Lav tha Avlicivadlivm Alland: (RN

1400

1200

1000 + - - -

throughput

o o
o o
o o

latency

N
o
o

Throughput (tasks/s)

n
o
o

o

200 400

o

600

tasks in pipeline

(@)

Latency (ms)

Latency (ms)
—_ n w S o [«2]
o o o o o o
o o o o o o

o

400 600 800 1000 1200 1400
Throughput (tasks/s)

200

o

(b)

Figure 26: Wrapped, Pipelined SignServer Performance: In (a), we show the
throughput and latency of the wrapped, pipelined SignServer as a function of the num-
ber of simultaneous tasks in the pipeline. In (b), we show a parametric curve showing
the relationship between throughput and latency as the number of tasks in the pipeline is
varied. The value of the parameter (# of simultaneous tasks) is displayed next to a number

of points on the curve.

63

a response packet in an outgoing network channel destined for the originating client. Thus,
in this pipelined implementation, the server threads can execute the two hash stages in
parallel on the server node’s two CPUs.

The performance of the wrapped, pipelined server is shown in Figure 26. In (a), we
show that the throughput of the server increases with load until the server saturates. The
saturated throughput is 1200 requests/s; by pipelining the hash function computations,
we successfully increased the maximum throughput of the server. In (b), we show the
parametric performance curve; like the wrapped server, this curve clearly demonstrates
that applying additional load to the server after it has saturated increases latency but does

not decrease throughput.

4.4.4 The Wrapped, Pipelined, Replicated SignServer

The wrapped, pipelined server successfully saturated both CPUs of the server’s
2-way SMP. To increase the throughput of the server beyond that which can be achieved
on this 2-way SMP, we must apply the replicate pattern to duplicate the server on more
than one node. In Figure 27, we show the results of such replicate. Instead of sending tasks
to a single server, clients now spread tasks across multiple servers. Our implementation
of this balances tasks across two servers. We achieve load balancing across the servers
by maintaining separate closed-loop pipelines from each client to each server; because the
pipelines are all disjoint, in steady state each client will generate load at the same rate that
completions arrive from the server.

The performance of the wrapped, pipelined, replicated server is shown in Figure 26.
As before, in (a) we show that the throughput of the server increases with load until the
server saturates. The saturated throughput is 1800 requests/s; by replicating the server,

computations, we successfully increased the maximum throughput of the server. Note that

64

WP(SignService) WP(SignService)

Client Client Client

Figure 27: Wrapped, Pipelined, Replicated SignServer Architecture: This diagram
illustrates the architecture of the wrapped, pipelined, replicated SignServer. Two instances
of a wrapped, pipelined server are run on different nodes; each client spreads its tasks across
the two server instances.

600
% 1600 - 500
2 = =
g E E 400
-— > >
a g & 300 1
= 2 2
] s = 200
= 100 -

0 T T T
0 500 1000 1500 2000
tasks in pipeline Throughput (tasks/s)

(a) (b)

Figure 28: Wrapped, Pipelined, Replicated SignServer Performance: In (a), we
show the throughput and latency of the wrapped, pipelined, replicated SignServer as a
function of the number of simultaneous tasks in the pipeline. In (b), we show a parametric
curve showing the relationship between throughput and latency as the number of tasks in
the pipeline is varied. The value of the parameter (# of simultaneous tasks) is displayed
next to a number of points on the curve.

65

2000
1800 -
1600 .-

1400 1\ |- \/\-
1200
1000 | & -
800
600 -
400
200

Throughput (tasks/s)

Figure 29: Fault Tolerance in the Wrapped, Pipelined, Replicated SignServer:
This chart shows the throughput of the replicated server over time. After 37 seconds, we
deliberately crashed one of the two servers. The clients detected this crash, and began
routing all tasks to the surviving server; because of this, the system continued to operate,
although at a diminished capacity.
even though we added a second server, the maximum throughput did not double. At 1800
requests/s, the total load on the network was 72 Mb/s, causing the network to saturate and
become the bottleneck of the system. In (b), we show the parametric performance curve;
once again, this curve clearly demonstrates that applying additional load to the server after
it has saturated increases latency but does not decrease throughput.

In addition to increasing the capacity of the system, the replicate pattern also
introduces redundancy to the system. Because there are two SignServer instances running

on two different nodes, if one node fails, the system can continue to execute (but at lower

capacity). Figure 29 demonstrates this fault-tolerance ability.

0 500 1000 1500 2000
Throughput (tasks/s)

Figure 30: Performance Comparison between Servers: This graph shows the para-
metric curves of throughput version latency as a function of load, for all four server imple-
mentations. SS = thread-per-task SignServer. W(SS) = wrapped SignServer. WP(SS) =
wrapped, pipelined SignServer. WPR(SS) = wrapped, pipelined, replicated SignServer.

4.4.5 Summary

In Figure 30, we compare the parametric performance curves for all four server
implementations. The most obvious feature of this graph is that the application of each
additional design pattern increased the throughput capacity of the system. Wrap elimi-
nated the overhead of large numbers of threads, pipeline added functional parallelism of
hash computations across two CPUs, and replicate added data parallelism of tasks across
cluster nodes.

In addition, wrap successfully conditioned the server against load, resulting in
graceful degradation when excess load is generated. Finally, replicate caused the system

to be fault-tolerant.

67

Chapter 5

The I/0O Core

We have implemented a Java-based programming library (called the I/O core)
that makes it simple for both service authors and the service’s execution environment to
apply the design framework of the previous chapter to pieces of code. The I/O core provides
a set of uniform abstractions for interacting with disks, network peers, and queues, as
well as for generating events and composing together software modules that are built with
the design framework in mind. All network communication and disk I/O provided by
the library exports a non-blocking, asynchronous event-driven style of programming. This
event-driven style nicely matches the task-driven composition of stages, and as seen in
Section 3.2, facilitates scaling to many thousands of concurrent tasks, including network
connections and disk interactions. In this chapter, we present the design, implementation,

and performance of the I/O core.

5.1 Interface Design

The I/O core is largely defined by its programmatic interfaces. The design of these

interfaces was extremely subtle, as they influenced the programming model and structure

68

of both the I/O core but also the structure and performance of systems built on top of it,
as we will later show. We heavily exploited the object-orientedness and strong typing of
Java [62] in our API design. For example, all of the interfaces discussed below are Java
interface types, and are declared independently of their implementation, which allowed
us to experiment with a number of semantically equivalent but structurally different imple-
mentations of the I/O core. There are several major abstractions defined in the I/O core
interface; we discuss each in turn.

Memory regions: A MemRegionIF interface abstracts away =
the behavior of a memory region or data element. Through this inter- MemRegionIF
face, regions of memory can be copied, created, or updated. All events and messages used
in the I/O core are wrapped behind this interface. Having this abstraction allows several
different memory management styles to be used, including the garbage collected byte ar-
rays that are naturally supported by Java, but also user-managed pinned physical memory
regions such as those required by the Via user-level network [24].

Event handlers: Events and messages can be directed to
one of a number of types of components, as we will describe below. $
The ability to receive an event is abstracted behind an event handler UpcaliHandlerlF

interface called UpcallHandlerIF.! This event handler interface allows both single events

and batches or arrays of events to be passed in to the handler.

Sinks: A SinkIF interface is an abstraction for performing *
writes to an I/O destination. Callers can synchronously or asyn- -
chronously drop data elements into a sink. Elements are serialized =

SinkIF

in the sink and drain to an I/O device in the background. When an

element has drained, the sink generates a completion event (directed to a caller-specified

!The name UpcallHandlerIF is a misnomer, as more than just upcalls are represented by this interface.
All event handlers extend UpcallHandlerIF.

69

UpcallHandlerIF) in order to notify the caller that the element has reached the device.
Currently, we have implemented both disk and network extensions of the basic sink inter-
face. A disk sink sequentially writes data into a raw disk segment or file, and a network

sink provides best-effort packet delivery to a peer.

Sources: A source is the logical opposite of a sink; ﬁ ﬁ
it is an I/O device that “spontaneously” emits data that is disk net
file peer

wrapped in a MemRegionIF and directed to an application- Sources

specified UpcallHandlerIF. Currently, network peers and disk files are examples of sources.
An event is emitted when a packet arrives from a network peer, and an event is emitted
when a disk read completes (although a caller had to request this data originally, so a disk
completion is not really spontaneously emitted).

Thread pools: A thread pool is an abstraction that provides

concurrency to otherwise blocking operations. The thread pool interface ???

Thread
Pool

permits the caller to dispatch a thread from the pool to a caller-specified
method. If there are no more threads left in the pool, this dispatch request is queued up for
later dispatch. Many thread pool implementations are possible, including fixed-sized thread
pools and adaptive thread pools that grow and shrink according to currently experienced
demand). A thread pool is one of the two abstractions that are needed to apply the wrap
pattern to a task stage.

Queues: A queue provides a generic mechanism for buffering

events. The queue interface extends UpcallHandlerIF, and thus is l II
Queue

a composable element that can be used to receive completions from
sinks and events emitted from sources. The interface also supports a number of styles of
notification; a caller can use polling, timed waiting (similar to the UNIX select () system

call), or blocking in order to receive elements from a queue. The queueing discipline used

70

is hidden inside the queue implementation, although a default FIFO queue is provided
to service authors. Queues can also be composed in a chain with other event handling
interfaces; when composed, events that end up in the queue will be automatically forwarded

to the next event handler in the chain.

5.1.1 Pitfalls

There are many subtleties in the specific design details of the I/O core’s interfaces:
to get them correct, we needed to go through six iterations of the interface design process.
In this section, we present a few of the more important design decisions that we uncovered.

Because all of the interfaces in the I/O core are non-blocking interfaces, there is a
disjunction between the context in which an I/O request was issued from that in which it
completes. To overcome this, some demultiplexing information must be kept by the system
to associate I/O completions with the tasks for which the I/O was generated. In the first
few versions of this interface, the I/O core didn’t provide any information to the receiver of a
completion event beyond the event type and data content itself. This forced callers to peek
inside the data payload in order to determine appropriate demultiplexing of completions,
which is of course awkward. The next version of the interface returned a unique ID to the
caller on every I/O dispatch, and passed the same ID to the receiver of completion events;
by matching up these ID’s, the receiver could thus pair requests with completions, thereby
performing this demultiplexing.

However, even this proved to be limiting; if multiple applications wanted to share
an I/O channel, then they needed to have a shared demultiplexing table in which to store
these ID’s, otherwise completions could not be routed to their appropriate application.
While it was possible to build such a shared table, it forced applications to be aware of

each other. To overcome this, the final version of the interface allowed callers to specify a

71

completion handler for every I/O request that was issued, instead of specifying a completion
handler for an I/O channel. By doing so, completions are naturally routed to their correct
application.

A related demultiplexing issue arose for network I/O. Early versions of the I/O
core had a limited namespace for network peers; multiple applications running on a single
host would need to share the same network peer name, and thus demultiplexing messages
to multiple receivers on the same host required introspection in the data payload. To
overcome this, the final version of the interface allowed applications to register port numbers
to completion handler interfaces; senders specify a port number as well as a peer name when
dispatching a message, allowing message reception events to be immediately demultiplexed
to the appropriate application event handler.

Deciding upon a name space for network peers was challenging as well. One goal
of the I/O core was to allow for the possibility of multiple, independent transport layers
underneath a common network sink and source API, but each transport would likely have
a different name space. To overcome this, the abstract network source and sink API has
a flat, string-based name space. The underlying transport implementation is required to
parse whatever structure is necessary out of these flat names; for example, our TCP-based
transport layer expects names of the format hostname:portnum. We further assert that
no code should statically declare any peer names, but rather should read names out of a
configuration file. This file can be modified in order to switch transports, and thus can be
constructed to contain appropriately structured network names.

An asynchronous interface, by nature, allows callers to inject multiple requests
into the system before any completions occur. This introduces the design decision of the
order in which requests are issued to the underlying I/O device, and the order in which

request completions are returned to the application. For both network and disk writes,

72

| tot

/0 110
requests completions
v ¥ 1 1

QueuelF, SinkIF, MemRegionlF,
UpcallHandlerlF, ThreadPoollF

— common interface layer

NetworkIF + DiskIF + .)
NetworkWriterlF | DiskWriterlF | "etwerk/disk absiraction layer
TCP TcP file raw
thread JNI VIA system | disk [device specific layer
pool select ()

Figure 31: I/O core structure: The I/O core has three layers to it: the common interface
layer defines abstractions such as sinks, queues, and event handlers. The network/disk
abstraction layer consists of source and sink interface extensions that are specific to networks
and disks (e.g., defining the ability to open a connection to a network peer). The device
specific layer consists of implementations of the network /disk abstraction layer for particular
devices, such as a Via user-level network stack or a raw disk.

we decided to maintain a strict sequential order in the requests, ensuring that requests
are delivered to the underlying device in the order that they were received in. This strict
ordering is important for applications that must control order to maintain consistency; for
example, file system metadata writes must be ordered to ensure the consistency. However,
we decided to allow reads to be satisfied out-of-order (this is obviously only relevant for disk
I/0, since network reads can only finish when packets arrive). By allowing this, multiple

disk reads could be issued to the disk device driver simultaneously, allowing it to more

optimally schedule disk seeks.

5.1.2 Code Structure

The interfaces and implementation of the I/O core is structured as three layers,

as presented in Figure 31. We discuss each in turn.

73

Common interface layer: This layer presents all of the interfaces previously
discussed in Section 5.1. These interface definitions include sinks, queues, events, event
handlers, and thread pools. An application that uses the I/O core will predominantly make
use of this layer, since code that uses it is independent of particular I/O devices and device
classes (such as storage subsystems or network peers). Abstractly, such code processes
events, but doesn’t necessarily care where those events came from. This implies that the
source of these events could be established dynamically; this would make it very simple to
seamlessly add mechanisms like network-backed paging or storage access, for example.

Network/disk abstraction layer: This layer extends the SinkIF interface in
the common interface layer to add semantics that are particular to a specific device class,
such as a network or a storage subsystem. In addition, it defines source interfaces for these
device classes, allowing callers to request disk blocks, or establish connections to a named
network peer. These extensions and source definitions are still abstract, in that they have
no implementation, and do not define any semantics particular to any particular network
transport or storage device. Only a small amount of application code is expected to interact
with this layer; this code will typically be used to establish event bindings between the rest
of the application and particular I/O device classes, for instance setting up a network packet
reception channel between a particular named peer and an event handler.

Device specific layer: This layer consists of device-specific implementations of
the network/disk abstraction layer interfaces. Currently, we have implemented 4 device-
specific implementations. The first three are extensions of the basic network interfaces; one
uses the underlying blocking TCP stack APIs presented by the OS, a second uses the Java
Native Interface (JNI) [122] in order to access the non-blocking select () system call but
also uses the TCP stack, and the third uses the Jaguar [132] mechanism to access a Via

network implementation running on top of Myrinet [102]. The fourth extension implements

74

the storage interfaces on top of the standard file-system interface presented by the OS. A
hypothetical (but currently unimplemented) fifth extension is shown in Figure 31, namely
a raw disk extension to the storage interfaces. Application code should be completely
unaware of these device-specific interfaces, with the possible exception of needing to pass
correct arguments to class constructors at application initialization time.

A great success of the I/O core is that we were able to implement all of these
different device-specific extensions without requiring changes to the network/disk abstrac-
tion layer, the common interface layer, or applications that were using the I/O core. In
particular, we were able to seamlessly introduce the JNI select () version of the network
interfaces, resulting in a significant performance and concurrency scaling increase with no

change to applications.

5.2 Disentangling Control Flow

The I/O core interfaces define event sources and sinks that can be composed
together into an event flow graph to define an application. Queues, sinks, and sources all
support an interface that allows callers to direct events or completions generated by these
components to event handler interfaces of their choice. Sinks, queues, and application code
can implement this event handler interface; it is thus possible to establish an event graph
(either statically or dynamically), and then have a long sequence of events automatically
flow through this graph, as exemplified by Figure 32.

A significant design decision related to these event flow graphs is that of picking
a control flow model for deciding when and under which execution context events will
flow from component to component. For example, it is possible to associate threads only

with application code, and have the application poll queues to determine whether events

75

—{appcode } %

[|
[|
| *
disk disk net
file | file peer

Figure 32: Example I/O core event flow graph: In this example I/O core application,
data flows from a disk file source into a queue, and from a network peer source into another
queue. Data from these two queues is aggregated into a third queue, which also receives
completion events from a disk file sink. Events from this aggregation queue flow into an
application-defined UpcallHandlerIF event handler, which processes them, and generates
data to be sent to the disk file sink.

are available; in such a scheme, polling a high-level queue would automatically trigger
polls to any other queues further down the flow graph. Alternatively, it is possible to
associate threads only with queues and sources, resulting in events percolating upwards
through the flow graph, eventually causing an upcall into an application-specific event
handler. We experimented with three different control flow designs with the I/O core, each
of which is presented in the following sections. As we will discuss, we discovered that these

design decisions had very significant implications on application throughput, latency, code

structure, code simplicity, and reliability.

76

(a) (b)

Figure 33: Polling-based control flow: (a) Illustrates a hypothetical composition of
elements in an I/O core graph. Only upwards flowing composition is shown, i.e. the flow of
completions or data upwards through a layered system. (b) Shows two threads polling for
completions on the top-most layer, and the cascade of downward polls that this triggers.
The in-degree of each node is labelled, and represents the number of times that node is
polled by the two threads.

5.2.1 Polling

Our first attempt at solving this control-flow problem was to base all event flow on
polling. In this model, an event is queued inside the component that it is initially delivered
to, whether the component is a source, a queue, or the completion path from a sink. If a
downstream component is composed with an upstream component, then the downstream
component must poll the upstream component in order to pull enqueued events from it.
Thus, if a long composition path is built, polling the component that is furthest downstream
will cause a “ripple” of polls up the composition path. This composition strategy was chosen
because our first implementation of several sources, including a Via network source, required
callers to poll them for completions and data delivery.

In Figure 33a, we show a hypothetical composition graph of elements. This graph

is meant to represent a layered system, in which completions and arrivals from I/O elements

77

flow upwards through the layers of the system. In Figure 33b, the graph of poll operations
that result when two independent threads poll the two top-level elements is shown. There
are a number of very important characteristics of this poll graph that had significant per-
formance and software engineering implications.

Firstly, note that the two thread contexts ended up duplicating effort. The in-
degree of each node in the poll graph (labelled on the node) represents the number of times
that node was polled. Some elements are polled more than once, even up to four times
for one of the bottom-layer elements. This duplication of effort happens for two separate
reasons. The first is that nodes in Figure 33a may have more than one parent (i.e. the
graph is not a tree). Because of this, a traversal of the graph in Figure 33b may visit a
given node more than once. The second reason for the duplication of effort is that the two
threads are unaware of each other’s presence, and thus even though the first thread may
have recently polled a node, the second thread may poll it again if that node is also in its
poll graph. This duplicated effort has performance implications; polls on empty queues are
wasted CPU cycles, and the duplication of effort results in an amplification of these wasted
CPU cycles.

A second implication of the poll graph is that multiple threads may be simulta-
neously polling elements of the graph, and that multiple threads may be simultaneously
executing in application-defined event handlers. Because of this, all elements of the com-
position graph and all application-defined event handlers must employ mutexes or locks to
prevent race conditions. This introduces significant complexity; building reentrant code is
known to be error prone [115].

Another implication relates to the fact that a given node in Figure 33a may have
more than one parent. Logically, this means that the node is being multiplexed by more

than one caller. This means that events and completions flowing from this multiplexed node

78

must be demultiplexed across the downstream nodes. Unfortunately, because downstream
nodes do the polling, the demultiplexing must be done at the time that the poll happens,
and in the thread context of the downstream node. This is adds even more complexity, as
it implies that the poller must examine events on the polled queue, and decide which of
those events are appropriate to pull.

Experience with this poll-based model showed that its performance was extremely
poor, and worse, degraded as the number of elements or polling threads increased. Fur-
thermore, the design of an application that uses this model is complicated by the need to
decide upon an appropriate polling rate. The best possible polling rate is a function of
the hardware speed, operating system overhead, graph structure, and number of concurrent
application threads. As such, this polling rate cannot be easily determined, introducing

either “voodoo constants” or a very difficult adaptation problem.

5.2.2 Unstructured Upcalls

Our second attempt at building a control-flow model inverts the control-flow graph
of Figure 33b by replacing upstream-flowing polls with downstream-flowing “upcalls”. In
this model (illustrated in Figure 34), thread contexts live in I/O sources. When an I/O
completion event or a data arrival happens, a thread context is emitted from the source
(the lowest-level elements in Figure 34b) and pushes the data upwards (i.e. downstream)
through the composition graph. Multiple thread contexts may emerge from a single I/O
source, and multiple I/O sources may emit threads simultaneously.

An additional wrinkle introduced in Figure 34b is that the thread context used to
deliver an upcall can be diverted by the callee in order to do other work, such as performing
a downcall to dispatch additional work. For example, consider the case of a disk buffer

cache. A read miss on a buffer cache will cause a disk read to be issued to a disk source.

79

(a) (b)

Figure 34: Unstructured upcall-based control flow: (a) The same composition graph
as in the previous figure. (b) Shows two thread contexts pushing events upwards through
the composition graph, but also shows I/O request downcalls, and the resulting “spaghetti”
control flow. The labels next to edges show the order of control transfer across the elements
in the graph.

When the read completes, an upcall will be issued into the buffer cache; if the buffer cache
performs prefetching, it may want to immediately issue another read request. In this case,
the thread context used to deliver the read completion upcall to the buffer cache is diverted
downwards to dispatch a prefetch read. After this diversion, the thread context returns to
the buffer cache, which then likely dispatches an upcall to the application to deliver a buffer
cache read completion.

This upcall-based model eliminates the terrible inefficiency of the poll-based model,
because work is only performed when events arrive. There is no speculative polling: threads
are emitted by sources only when completions or data arrivals occur. However, like the
upcall-based model, multiple threads may simultaneously enter a given node in the graph,
and thus queues and application-defined event handlers need to use mutexes or locks in order
to be reentrant. A subtle implication of this is that unless nodes are treated as monitors (in

that the mutex or lock is released if a thread temporarily diverts outside of the monitor),

it is possible for the system to deadlock by having the paths of two threads overlap.

80

The problem of demultiplexing events across downstream elements is simplified
by this upcall-based model as well. Because this model is “push” oriented, the thread
context that delivers events can examine an event before delivering it, and at that point
can decide upon the appropriate downstream branch to take in the composition graph. The
“push” threads route events to downstream branches, whereas in the poll-based model,
“pull” threads need to perform a selection-search on events residing in upstream nodes.
Furthermore, the ability for callers to specify an UpcallHandlerIF completion handler for
each event (as discussed in Section 5.1.1) eliminates the routing decision; demultiplexing
information is provided by downstream nodes when they originally dispatch I/O requests.

Experience with this model uncovered a major complication. Because of the ability
of upcall handlers to divert control flow, it became extremely difficult to predict the sequence
of nodes in the composition graph that a given upcall thread would visit. Furthermore, it
was possible for threads to enter into cycles in the composition graph by having a downwards
diversion trigger an upcall. Even with relatively simple composition graphs, a thread-aware
debugger revealed that many threads in the system would have call-depths of over 30 or 40
nodes, and that they had followed many cycles.

In addition to increasing the chance of deadlock for those nodes that weren’t built
as monitors, this had the effect of depleting the thread pools that were driving upcalls out
of I/O sources. In fact, in one situation, the thread pools were emptied, and a deadlock
occurred because a poorly written upcall handler was blocking one thread while waiting for
a completion from another. Another side effect of this spaghetti-like control flow graph was

an increase in the probability that an individual thread’s stack would overflow.

81

@ O
e

(a) (b)

Figure 35: Structured upcall-based control flow: (a) The same composition graph as
in the previous two figures. (b) Shows a structured upcall-based graph, in which queues are
used to impose thread boundaries between layers, thereby disentangling control flow, but
also eliminating the need for mutexes.

5.2.3 Structured Upcalls

Our final control-flow model for the I/O core retains the upcall-based control flow
of the previous model, but also imposes additional structure on the system that eliminates
spaghetti-like control flows. As shown in Figure 35, this model uses queues to introduce
thread boundaries between layers of the system. Upcalls between elements in the graph are
placed in downstream queues, meaning that the thread context issuing the upcall returns
immediately. Each layer in the system (more specifically, each thread boundary’s queue)
has its own thread context associated with it that permanently blocks on its queue, draining
events and pushing upcalls downstream as needed.

Because the thread boundaries prevent thread contexts from propagating across
layers, cycles in threads’ call graphs are completely eliminated. This structuring also pre-
vents threads’ call chains from growing long; instead, a thread receives an event from its
queue, and processes it by passing it into event handling code. (Note that multiple event

handlers may share a queue, as shown in Figure 35b.) If that event handling code wants

82

to generate an additional upcall, it is placed in a downstream queue, and the thread imme-
diately returns to the upstream caller, instead of being diverted to the downstream upcall
handler.

There is an additional benefit to this structured upcall model; because a single
thread pulls events from a thread boundary queue, as long as each event handler is fed by
a single thread boundary then there can only be a single thread context entering a given
event handler at a time. This completely eliminates the need for mutexes or locks, also
eliminating the possibility of deadlock or race conditions due to thread synchronization.

The structured upcall model can also experience better processor instruction cache
performance than the other models. If the thread pulling events from the thread boundary
handles many events before a context switch occurs, then the instructions executed by that
thread are likely to be loaded into the instruction cache when the first event is handled.
The thread then will execute with a warm instruction cache for subsequent events.

A disadvantage of the structured upcall model is that an event flowing through the
graph experiences several thread context switches throughout its lifetime. These context
switches can add to the latency of event delivery through the system, as can the time the
event spends behind other events in a thread boundary queue. This model thus trades
latency for both throughput and simplicity.

Overall, the structured upcall model solves nearly all of the problems encountered
by the poll-based model and the unstructured upcall model. Race conditions are eliminated,
the upcall-based nature of the model simplifies demultiplexing, the introduction of thread
boundary eliminates spaghetti-like thread call chains, and the overall system is efficient,
performing work only when there is useful work to be done (rather than wasting cycles on

speculative polling).

83

100

Throughput
(Mb/s)
S

'y
I

O. 1 T T T T
1 10 100 1000 10000 100000

Payload size (bytes)

Figure 36: Network throughput: This benchmark shows the measured throughput of
the client-server pipeline as a function of packet size. Both request and reply packets were
taken into account to calculate the total throughput. The Ethernet saturated (reaching 85
Mb/s) at a 2000 byte packet size.

5.3 I/O Core Performance

In this section, we present the results of several microbenchmarks that explore the
performance of both the network and disk channels in the I/O core. All benchmarks are
performed on 500MHz dual Pentium SMPs with 256 MB of RAM and 100 Mb/s Ethernet
cards, running Linux 2.2.13 and the IBM JDK v1.1.8 (which uses kernel threads). The
network tests use the threadpool-based TCP network extension in the I/O core device-

specific layer.

5.3.1 Network Performance

Our network performance benchmark consists of a client and server process, each
running on a different node on the 100 Mb/s Ethernet. The client process opens a network
sink to the server, and drops packets of a configured size into the sink. For each packet

that the server receives, it sends a reply packet of the same size back to the client. The

84

100000
> 10000
2%
T
s g 1000
o8
s 0
T 9 100 4
g2
€ 1
1 T T T

1 10 100 1000 10000 100000
Payload size (bytes)

Figure 37: Network latency: This benchmark shows the roundtrip latency of a message
as a function of its size. Latency increases with message size, from a minimum of 650 us.
client sends a new packet for every reply that it receives, thereby establishing a closed-loop
pipeline between the itself and the server. We gathered two separate benchmarks: the
first measured network latency, and had only a single packet in the client-server pipeline.
The second measured network throughput, and filled the pipeline with enough packets to
reach maximum measured throughput. Both benchmarks were repeated several times with
a number of different packet sizes.

In Figure 36, the network throughput benchmark results are shown. This graph
shows that network throughput increases linearly with payload size until the 100 Mb/s
Ethernet saturates, reaching a maximum 85 Mb/s for packets that are 2000 bytes or larger.
For packet sizes less than 2000 bytes, the overhead of interaction with the TCP stack and
the JDK’s TCP class libraries is the throughput bottleneck of the system, while for packet
sizes greater than 2000 bytes, the Ethernet itself saturates and becomes the bottleneck.

In Figure 37, we show the roundtrip latency of the system as a function of message
size. As the graph shows, the minimum latency of the system is 650 microseconds for

messages that have less than 50 bytes of payload. Latency gradually increases with message

85

Latency per 4KB block (ms)

O T T T
0 5 10 15 20

concurrent readers

Figure 38: Disk latency, random reads, cache miss: This graph shows the latency of
reading a random disk block through the I/O core during a file system cache miss, thus
incurring a disk seek. This latency number is graphed as a function of the number of
concurrent read requests issued to the disk source.

size; for messages less than 2000 bytes, the overhead of interacting with the TCP stack and
copying bytes from the network card dominates the end-to-end latency. Beyond messages

of 2000 bytes, latency increases linearly with message size; at this point, the throughput of

the network has become the bottleneck in the system.

5.3.2 Disk Performance

To measure disk performance, we wrote a benchmark client that opens up a disk
source from a multi-gigabyte file, and issues random read requests to that source. We
measured three different characteristics: the latency to perform a read from a disk block
that is not in the file system cache (thus incurring a disk seek and block transfer), the latency
to perform a read from a disk block that is in the file system cache (thus measuring the
latency overhead of the I/O core), and the throughput of the I/O core for both sequential
and random reads and writes.

In Figure 38, we show the latency of reading a random 4 KB disk block through

86

03
£
= 0.25 |
4
3
5 0.2
m
X 0.15 -
o
2 0.1]
>
e
© 0.05 4
«©
|
0 T T T
0 5 10 15 20

concurrent readers

Figure 39: Disk latency, random reads, cache hit: This graph shows the latency of
reading a random disk block from the file system cache as a function of the number of
concurrent readers.
the I/O core when incurring a file system cache miss and disk seek; this latency is plotted as
a function of the number of concurrent read requests issued to the underlying I/O core disk
source. For a single read request, the latency is 10ms, which roughly corresponds to the
seek time of the disk. As the number of concurrent read requests grows, this latency grows
sublinearly; this sublinear growth is due to the greater efficiency obtained by the elevator
scheduling algorithm in the disk device driver as the number of concurrent requests grows.
Figure 39 shows the latency of random 4 KB reads under file system cache hits, as
a function of the number of concurrent readers. For a single reader, the measured latency
is 96 microseconds, resulting in a bandwidth of 41 MB/s. Latency increases linearly with
the number of concurrent readers; for 15 readers, the measured latency is 237 microseconds,
corresponding to a read bandwidth of 262 MB/s. At this point, the bottleneck of the system
is the copying of data from the file system buffer cache into the JVM, and garbage collection
within the JVM.

We also measured the throughput of the I/O core disk sources and sinks. To

87

measure throughput, we opened a closed-loop pipeline of 4 KB read or write requests, and
increased the number of requests in the pipeline until throughput saturated. All throughput
benchmarks were done against a large enough file so that all requests missed in the file
system cache. For sequential disk reads, we achieved 11 MB/s throughput; sequential disk
writes saturated at 8 MB/s. We measured the maximum throughput of the disk at 12 MB/s
using a tuned C program. Disk writes obtained less throughput than disk reads because of
the design decision (described in Section 5.1.1) to issue only a single write at a time from a
disk sink, but to allow multiple simultaneous read requests to be issued from a disk source.

For random disk read and writes, the throughput of the I/O core saturated at
2.1 MB/s and 1.8 MB/s, respectively. The high latency of performing disk seeks was the
bottleneck in this benchmark, resulting in much lower throughput than in the sequential

read and write case.

5.4 Experience

We have gathered over a year of experience using the I/O core as a foundation for
many different cluster-based and wide-area infrastructure services (some of which we will
mention in the following section). This experience has lent us considerable insight into the
efficacy of its design and its interfaces.

An interesting surprise that emerged from the I/O core is that its message-passing
oriented, asynchronous interfaces have the convenient property that local, cross-JVM, and
cross-machine event delivery all have exactly the same interface (UpcallHandlerIF or
SinkIF) and the same semantics. The asynchronous interface imparts the correct expec-
tations on programmers, namely that the operation behind the interface may have some

finite latency associated with it, and that operation may fail or time out, returning an error

88

condition instead of a successful completion. Because the interface and semantics are the
same in all three cases, it is possible to change the routing of events between these cases
at run-time. Such a change would have obvious performance implications, but also subtle
availability implications, since in local event delivery, both the source and destination are
within a single failure boundary, while for cross-JVM or cross-machine delivery, they span
failure boundaries.

The layering of the I/O core was extremely successful, in that we were able to
implement three network device layers that use very different mechanisms, while retaining
the higher-level interface abstractions. Similarly, the structured upcall control flow model
was very successful for building robust, layered systems on top of the I/O core. One aspect
of the Java programming language that made this layering very successful was its garbage
collection. Because of the garbage collector, low level layers in the system could allocate
memory regions, embed references to them in events, and pass the events upwards through
the application stack. After passing an event upwards, a layer can immediately forget about
it, relying on the garbage collector to eventually deallocate the embedded memory region.
If the system didn’t have a garbage collector, then either reference counting on events would
need to be used to determine when to free the embedded memory region, or the layers would
need to coordinate with each other to send the event back down to the allocator for it to
free it, which would greatly complicate layering and compromise modularity.

Another benefit of the Java language was its type system, particularly the existence
of strongly typed interfaces and inheritance. The strongly typed interfaces made it very
easy to declare the high-level abstract interfaces to the I/O core (such as SinkIF), and
to maintain those interfaces in lower-level device-specific layers. The strong typing and
inheritance also imparted elegance and an economy of mechanism to the event hierarchy

defined by the I/0O core.

89

The decision to wrap all memory regions with an abstract memory interface
MemRegionIF ended up being poor. The original motivation for this was to permit low-level
device-specific implementations (such as the Via network layer) to perform their own mem-
ory management, such as to allow pinned physical memory regions. However, the decision
to use pinned memory regions effectively prevents the system from using garbage collection,
since the device-specific memory manager is responsible for unpinning memory regions and
recycling them when they are no longer needed. Losing the ability to do garbage collection
complicates the layer of the system, as previously discussed. Because of this, we ended
up copying data from the Via network layer’s memory regions into a generic Java memory
region to allow garbage collection to occur. In the end, the MemRegionIF thus became a
“latency engine”, adding extra access costs without providing truly useful functionality.

Another design decision was to use a single interface (UpcallHandlerIF) to ab-
stract away all event handlers in the system. This design decision was exceptionally suc-
cessful at allowing interposition and dynamic extension of the system, since interposed or
extended layers have the same interface as the original layers of the system. However,
the cost of this decision was that much type information is lost through this interface;
UpcallHandlerIF declares a single method, which is the delivery of an abstract event class.
To recover type information, introspection needed to be done to determine the specific
class of the event delivered through this interface. Fortunately, this kind of introspection
is extremely cheap in Java. The resulting code structure is familiar to event-driven sys-
tem programmers, specifically an event loop with a “switch” statement that determines the
appropriate action for a given event type.

Another implication of the narrow UpcallHandlerIF event delivery interface is
that it is impossible for the caller of this interface to determine whether the event handler

will enqueue the event and immediately return, or “borrow” the caller’s thread context to

90

do other work. Thus, if an untrusted piece of code is called through this interface, it is
possible for that code to steal threads from the callee, effectively performing a denial of
service attack. Fortunately, the design patterns show us the way to solving this problem.
If a programmer wishes to use an untrusted piece of code through such an interface, the
programmer can simply apply the “wrap” design pattern to dedicate a queue and a thread
pool to the untrusted code. Because queues implement the UpcallHandlerIF interface, the
wrap operation preserves the interface of the wrapped code, but conditions it by dedicating
a pool of thread contexts to the code. Thus, the caller’s code doesn’t need to change
at all; wrapping is a completely transparent operation from the perspective of program
code, specifically because of the decision to use the narrow UpcallHandlerIF for all event

handlers.

5.4.1 Impact

The I/O core has had significant impact both within Berkeley and at other insti-
tutions. Within Berkeley, the I/O core is the foundation for the current version of the Ninja
project [71]. More specifically, the I/O core is being used as the programming model and I/O
substrate for the vSpace [27] service platform and the distributed data structure (DDS) [69]
storage platform. In addition, other projects within Berkeley have adopted the I/O core
as their foundation, including the Telegraph segment-based storage manager, [74], some
components of the OceanStore [18] wide-area data storage utility, and a highly-concurrent
single-node Btree implementation. Outside of Berkeley, the I/O core API’s have influenced
the design process of Sun’s upcoming Java high-performance I/O extensions, and they have
influenced the design of the one.world pervasive computing architecture project [72] at the

University of Washington.

Part 111

Distributed Data Structures

91

92

Chapter 6

A Storage Management Layer for

Internet Services

It is challenging for a service to achieve all of the service properties outlined in
Section 1.2, especially when it must manage large amounts of persistent state, as this state
must remain available and consistent even if individual disks, processes, or processors crash.
Unfortunately, the consequences of failing to achieve the properties are harsh, including
lost data, angry users, and perhaps financial liability. Even worse, there appear to be
few reusable Internet service construction platforms (or data management platforms) that
successfully provide all of the properties.

As previously mentioned, many projects and products propose using software plat-
forms on clusters to address these challenges and to simplify Internet service construction
[2, 4, 15, 55]. For example, the TACC platform [55] masks node failures by automatically
restarting failed software components on new nodes, and it routes requests to the least-
loaded of equivalent software components in order to perform load-balancing. However,

TACC assumes that all shared state in the system can be reconstructed if lost and that

93

it does not need to be kept persistent or consistent. Similarly, the Rivers I/O processing
platform [10] implicitly load balances across I/O multiplexing operators by allowing them
to “pull” data towards themselves at their own speed, but Rivers does not deal with data
persistence or fault tolerance. Fundamentally, none of these cluster toolkits provide support
or abstractions for fault-tolerant, distributed, scalable data storage, and as a result, none
of them support the family of applications that require explicit support for persistent data.

Platforms that do support persistent state management typically rely on commer-
cial databases or distributed file systems for persistent data management, or they do not
address data management at all, forcing service authors to implement their own service-
specific data management layer. We argue that databases and file systems have not been
designed with Internet service workloads, the service properties, and cluster environments
specifically in mind, and as a result, they fail to provide the right scaling, consistency, or
availability guarantees that services require.

In this part of the thesis, we bring scalable, available, and consistent data manage-
ment capabilities to cluster platforms by designing and implementing a reusable, cluster-
based storage layer, called a distributed data structure (DDS), specifically designed for the
needs of Internet services. A DDS presents a conventional single site in-memory data
structure interface to applications, and durably manages the data behind this interface by
distributing and replicating it across the cluster. Services inherit the aforementioned ser-
vice properties by using a DDS to store and manage all persistent service state, shielding
service authors from the complexities of scalable, available, persistent data storage, thus
simplifying the process of implementing new Internet services.

In this chapter, we present an overview of distributed data structures, describing
their design relative to that of relational databases and file systems, and describing the

assumptions that we made about their operating environment and the types of failures that

94

c—— — —1%¢

c— ——1%¢
/ Q

c— C

cluster

Figure 40: High-level view of a DDS: A DDS is a self-managing, cluster-based data
repository. All service instances (S) in the cluster see the same consistent image of the
DDS; as a result, any WAN client (C) can communicate with any service instance.

we expect and can handle. We also describe an early prototype of a distributed hash table;
although this prototype failed to provide most of the service properties, through its failure
we gained valuable insight into the design space of DDS’s.

In the following chapter, we describe the design, architecture, and implementa-
tion of a much more successful distributed hash table, built in Java. We used this second
implementation of a distributed hash table as a mechanism for exploring the programming
framework and I/O core described in Part II. From this perspective, we evaluate its per-
formance, scalability and availability, its ability to simplify service construction, and the
effectiveness of the programming framework for this large system. We also present op-
erational experience that we gained from running the distributed hash table over several

months.

6.1 DDS Overview

A distributed data structure (DDS) is a self-managing storage layer designed to
run on a cluster of workstations [4] and to handle Internet service workloads. A DDS

has all of the previously mentioned service properties: high throughput, high concurrency,

95

availability, incremental scalability, and strict consistency of its data. Service authors see
the interface to a DDS as a conventional data structure, such as a hash table, a tree, or a
log. Behind this interface, the DDS platform hides all of the mechanisms used to access,
partition, replicate, scale, and recover data. Because these complex mechanisms are hidden
behind the simple DDS interface, authors only need to worry about service-specific logic
when implementing a new service. All of the difficult issues of managing persistent state
are transparently handled by the DDS platform.

Figure 40 shows a high-level illustration of a DDS. All cluster nodes have access
to the DDS and see the same consistent image of the DDS. As long as services keep all
persistent state in the DDS, any service instance in the cluster can handle requests from
any client, although we expect clients will have affinity to particular service instances to
allow session state to accumulate. This assumes that session state is “soft-state” and can be
recovered by a new service instance if the old service instance handling a particular client
fails.

Given a small set of DDS types (such as a hash table, a tree, and an administrative
log), authors will be able to build a large class of interesting and sophisticated services.
We believe that an adequate set of structures consists of a distributed, append-only log
(that provides guarantees about the ordering of writes), a distributed hash table, and some
form of distributed tree. Logging is a common operation in many services, and includes
both informational logging, and the style of logging done to provide ACID semantics in
transactional systems. A hash table is a generic, fast storage primitive that has proven
itself to be invaluable in many existing services. Finally, a tree provides an ordered index
into data, and facilitates range queries. For this dissertation, we have focused solely on the
implementation of a distributed hash table.

The idea of having a storage layer to manage durable state is not new, of course;

96

databases and file systems have done this for many decades. The novel aspects of a DDS
are the level of abstraction that it presents to service authors, the consistency model it
supports, the concurrency and throughput demands that it presupposes, and its many design
and implementation choices that are made based on its expected runtime environment and
the types of failures that it should withstand. A direct comparison between databases,

distributed file systems, and DDS’s helps to show this.

6.1.1 Relational database management systems (RDBMS)

An RDBMS offers extremely strong durability and consistency guarantees, namely
ACID properties derived from the use of transactions [66], but these ACID properties can
come at high cost in terms of complexity and overhead. As a result, Internet services that
rely on RDBMS backends typically go to great lengths to reduce the workload presented to
the RDBMS, using techniques such as query caching in front ends [55, 81, 119]. RDBMS’s
offer a high degree of data independence, which is a powerful abstraction that adds addi-
tional complexity and performance overhead.

The many layers of most RDBMS’s (such as SQL parsing, query optimization,
access path selection, etc.) permit users to decouple the logical structure of their data from
its physical layout. This decoupling allows users to construct and dynamically issue queries
over the data that are limited only by what can be expressed in the SQL language, but
data independence can make parallelization (and therefore scaling) hard in the general case.
From the perspective of the service properties, an RDBMS always chooses consistency over
availability: if there are media or processor failures, an RDBMS can become unavailable

until the failure is resolved, which is unacceptable for Internet services.

97

6.1.2 Distributed file systems

Most Internet web caches [26, 53] and web servers [109] use file systems in order
to store their persistent data. They either use local file systems, in which case scaling of
storage capacity must be handled within the service logic, or they rely on distributed file
systems.

Distributed file systems have less strictly defined consistency models than an
RDBMS. Some file systems (e.g., NFS [113]) have weak consistency guarantees, while oth-
ers (such as Frangipani [126] or AFS [48]) guarantee a coherent filesystem image across all
clients, with locking typically done at the granularity of files. The scalability of distributed
file systems similarly varies; some use centralized file servers, and thus do not scale. Oth-
ers such as xFS [6] are completely serverless, and in theory can scale to arbitrarily large
capacities.

File systems expose a relatively low level interface with little data independence;
a file system is organized as a hierarchical directory of files, and files are variable-length
arrays of bytes. These elements (directories and files) are directly exposed to file system
clients; clients are responsible for logically structuring their application data in terms of
directories, files, and bytes inside those files. As a result of this, the intent of an operation
issued by a client is hidden from the file system; it is impossible to tell if a write to bytes
100-250 of file /X/Y corresponds to a modification of part of a logical application record, an
entire logical record, multiple records, or something else altogether. This limits the ability
of a file system to optimize based upon such knowledge, resulting in performance anomalies

from effects such as false sharing.

98

6.1.3 Distributed data structures (DDS)

A DDS has a strictly defined consistency model: all operations on its elements
are atomic, in that any operation completes entirely, or not at all. DDS’s have one-copy
equivalence, so although data elements in a DDS are replicated, clients see a single, logical
data item. Two-phase commits are used to keep replicas coherent, and thus all clients see
the same image of a DDS through its interface. Transactions across multiple elements or
operations are not currently supported: as we will show later, many of our current protocol
design decisions and implementation choices exploit the lack of transactional support for
greater efficiency and simplicity. There are Internet services that require transactions (e.g.
for e-commerce); we can imagine building a transactional DDS, but it is beyond the scope of
this paper, and we believe that the atomic single-element updates and coherence provided
by our current DDS are strong enough to support interesting services.

Rather than attempting to provide a general abstraction that is useful to all con-
ceivable services, we have deliberately focused on providing a narrow interface with carefully
chosen properties. A DDS’s interface is more structured and at a higher level than that of
a file system. The granularity of an operation is a complete data structure element rather
than an arbitrary byte range. The set of operations over the data in a DDS is fixed by a
small set of methods exposed by the DDS API, unlike an RDBMS in which operations are
defined by the set of expressible declarations in SQL. The query parsing and optimization
stages of an RDBMS are completely obviated in a DDS, but the DDS interface is less flexible
and offers less data independence.

In summary, by choosing a level of abstraction somewhere in between that of an
RDBMS and a file system, and by choosing a well-defined and simple consistency model,
we have been able to design and implement a DDS with all of the service properties. It

has been our experience that the DDS interfaces, although not as general as SQL, are rich

99

enough to successfully build sophisticated services.

6.2 DDS Design Principles

In this section, we present a number of general design principles that guided us

while designing and building a hash table distributed data structure.

6.2.1 Separation of concerns

The clean separation of service code from storage management simplifies system
architecture by decoupling the complexities of state management from those of service
construction. Because persistent service state is kept in the DDS, service instances can
crash (or be gracefully shut down) and restart without a complex recovery process. Crashes
become incidental: only session state needs to be regenerated in the case of a crash. This
greatly simplifies service construction, as authors need only worry about service-specific

logic, and not the complexities of data partitioning, replication, and recovery.

6.2.2 Appeal to properties of clusters

In addition to the properties listed in section 1.3, we require that our cluster is
physically secure and well-administered. Given all of these properties, a cluster represents
a carefully controlled environment in which we have the greatest chance of being able to
provide all of the service properties. For example, its low latency SAN (10-100 us instead of
10-100 ms for the wide-area Internet) means that two-phase commits are not prohibitively
expensive. The SAN’s high redundancy means that the probability of a network partition
can be made arbitrarily small, and thus we need not consider partitions in our protocols.
An uninterruptible power supply (UPS) and good system administration help to ensure

that the probability of system-wide simultaneous hardware failure is extremely low; we

100

can thus rely on data being available in more than one failure boundary (i.e., the physical
memory or disk of more than one node) while designing our recovery protocols. We do have
a checkpoint mechanism (discussed later) that permits us to recover in the case that any of
these cluster properties fail, however all state changes that happen after the last checkpoint

will be lost should this occur.

6.2.3 Design for high throughput and high concurrency

Given the workloads presented in section 1.2, the control structure used to effect
concurrency is critical. Techniques often used by web servers, such as process-per-task or
thread-per-task, do not scale to our needed degree of concurrency. Instead, we use the
asynchronous, event-driven style of control flow in our DDS that is outlined in Part II
of this thesis. This style is similar to that espoused by modern high performance servers
[13, 76] such as the Harvest web cache [26] and Flash web server [105]. As we will show, a
convenient side-effect of this style is that layering is inexpensive and flexible, as layers can be
constructed by chaining together event handlers. Such chaining also facilitates interposition:
a “middleman” event handler can be easily and dynamically patched between two existing
handlers. In addition, if the DDS experiences a burst of traffic, the burst is absorbed in
event queues, providing graceful degradation of the DDS by preserving its throughput but

temporarily increasing latency.

6.3 An Early, Failed Prototype: the mmap()-based Dis-

tributed Hash Table

As an early exploration into distributed data structures, we implemented a rudi-

mentary prototype of a distributed hash table DDS that supports multiple node failures,

101

but does not provide any atomicity, consistency, or on-line recovery guarantees, nor is it
extensible (in terms of being able to add more nodes to the SDDS while it is running). This
prototype was built using the “C” programming language. Architecturally, wide area clients
communicate with service-specific front ends, such as web servers. These front ends export
a service-specific interface such as HTTP, and in the process of handling a client request,
make use of the distributed hash table for persistent, available storage. Interactions with
the distributed hash table are done through an abstraction library that is linked into each
front end (or other such hash table clients); it is assumed that hash table clients are on the
same SAN as the hash table storage nodes.

The abstraction library exports a “C” language interface (as shown in Figure 41),
and also provides Java glue to a subclass of the standard java.util.hashtable class. The
library converts each hash table operation into an RPC-like message that is sent to appro-
priate nodes in the hash table; currently, tables are partitioned across nodes according to
a simple modulus-based hash. Each storage node in the cluster is an independent “brick”
that contains an isolated, single-node persistent hash table implementation. Storage nodes
are not aware of their peers; it is the abstraction libraries that contain the logic for parti-
tioning requests across the bricks, and for forming replication groups for partitions. This
partitioning logic is configurable at service launch time. Services can manipulate a table
that binds replica group numbers to one more physical storage bricks; because of this, each
service has control over the degree of replication for all of that service’s hash tables.

In addition to the standard hash table insert, delete, and lookup routines, we
included the ability to create and destroy hash tables, as well as to enumerate through all
of the entries in a particular hash table asynchronously. These additional operations were
necessary in order to support features required by the java.util.hashtable Java interface

for which we provided glue, but they significantly complicated the implementation of both

102

int MR_createTable(char *table_name, UINT32 num_buckets);
int MR_destroyTable(char *table_name);
int MR_openTable(char *table_name)
int MR_closeTable(char *table_name) ;
int MR_lookup_value(char *table_name, UINT64 lookup_hashval,
mr_hash_rec *returned_record);
int MR_insert_value(char *table_name, mr_hash_rec record);
int MR_delete_value(char *table_name, UINT64 delete_hashval);
int MR_num_elements(char *table_name, UINT64 *num_elements);
int MR_num_lookup_next(char *table_name,
int *logical_node_num,
int *element_num, int *chain_num,
mr_hash_rec *returned_record);

Figure 41: Prototype hash table “C” language API: All functions return zero on
success, and non-zero values in case of error.

the abstraction library and the storage bricks. Conspicuously absent from the interface
is the ability to lock elements in the hash table or perform atomic transactions: indeed,
the prototype provided no atomicity or consistency guarantees to callers. Two or more
simultaneous state-changing operations on the same element would produce undefined and

perhaps disastrous results.

6.3.1 Storage “Bricks”

As previously mentioned, each storage node in the cluster maintains an indepen-
dent, self-contained storage “brick”. These bricks contain single-node hash tables that can
be accessed via an RPC-like interface, similar in nature to networked file systems such as
Sun’s NFS [113]. Significant design and engineering effort went into the implementation of
these bricks, since we wanted to be able to run bricks under different operating systems,
thread models, and network primitives and communications media. Figure 42 illustrates
the architecture of one of these bricks.

Persistent storage is managed by using the Unix mmap system call to map a large

103

worker pool: one thread | Thread RPC single node
dispatched per request. Pool marshalling hash table
P implementation
Communications Hash table
abstractions primitives MMAP region
management, and
transport specific ,_——§ TCP | AM | virt/ MMAP LY MMAP’ed alloc(),
comm. and naming layer | layer | phys management free()

Figure 42: Distributed hash table prototype ‘“storage brick”: A brick contains a
single-node hash table and RPC-like stubs so that it can be remotely accessed.
file into the virtual address space of the brick. All modifications to persistent state are
thus done by manipulating virtual memory structures; this significantly simplified the con-
struction of the brick, but had the implication that write ordering is now controlled by the
virtual memory subsystem instead of the brick. Also, page faults or dirty page writes cause
the entire brick to seize, since the brick process is swapped out until the virtual memory
operation completes. Finally, because memory mapped regions may not always be loaded
at the same absolute virtual address, the mapped memory could not contain any pointers.
This implied that we had to implement our own offset based malloc and free memory
allocation routines as well an offset based in-memory chained hash table access method.

To support network communications, we implemented a simple communications
abstraction layer that facilitated multiple underlying network transports. We currently only
have a TCP/IP based brick, but this abstraction layer will allow us to easily port the brick
to more sophisticated cluster-oriented transports such as active messages [128] or U-Net
[127].

Using the underlying memory-based chained hash table and the abstract com-
munications layer, we implemented an RPC skeleton layer that accepts incoming network
connections, unmarshalls hash table operations, executes those operations, and returns mar-

shalled results. This RPC skeleton layer works in conjuction with a worker thread pool;

104

as an incoming network connection or message is detected, a thread is dispatched to the
skeleton layer to process the encapsulated request. After handling the request, the thread

rejoins the pool and sleeps until it is redispatched for some subsequent request.

6.3.2 Lessons from the Prototype

We learned many lessons during the implementation and operation of this dis-
tributed hash table prototype:

Service simplicity: our hypothesis about SDDS’s simplifying service construc-
tion was backed; we were able to implement an interesting “related site” service! that
inherited the properties of the prototype hash table. The service code is devoid of any
code related to data persistence and availability—that complexity is successfully hidden in-
side the hash table implementation. Unfortunately, because the hash table didn’t maintain
consistency or have a recovery path, neither did the service.

Client-side abstraction libraries: embedding the hash table partitioning, repli-
cation, and fail-over logic in the client-side abstraction libraries simplified the implemen-
tation of the hash table, since we could make each storage brick completely independent.
However, this had negative implications for administration and monitoring: there was no
place in the system that had a complete view of the activity of the hash table. Furthermore,
each client must make isolated decisions: they cannot share load balancing information or
knowledge about discovered failures in the cluster. From this, we believe that the correct
design point is to have partitioning and replication information durably stored by the bricks,
and to share this information with the client-side abstraction libraries on demand. The li-
braries would thus learn the current state of the hash table topology, and they would be

able to independently route requests to bricks based on this.

!Described at http://ninja.cs.berkeley.edu/demos/parallelisms/what_is_it.html.

105

Incremental scaling: a second effect of our poor decision to embed partition and
replication metadata in the client-side abstraction library was that in order to change the
configuration of the hash table (e.g., by adding more nodes to increase capacity), the meta-
data kept by all client-side libraries needed to be updated synchronously and atomically.
Again, we believe the correct solution to this is to rely on the bricks to retain authorita-
tive knowledge of the cluster topology, but to have the client-side libraries lazily discover
topology changes and adapt based on that.

Recovery: there was no on-line recovery strategy built into the prototype hash
table. If a node failed, then the number of replicas in the hash table would dwindle. The
only recourse available was to shut down the hash table temporarily, copy data from a
surviving brick to the failed brick, and then turn the hash table back on. This resulted in
unacceptable periods of unavailability.

Consistency: the fact that the prototype hash table made no guarantees about
the consistency of data in the face of simultaneous state changing operations was disas-
trous. It effectively limited the usefulness of the hash table to read-only services that were
bulk-loaded with a single write-intensive process. This lead us to believe that the next
implementation of the hash table must promise atomicity of reads and writes, allowing the
possibility of simultaneous writes to the same key.

mmap: the mmap system call proved to have severe limitations. Writes from vir-
tual memory could not be ordered by the hash table implementation, preventing it from
maintaining any consistency. Even worse, writes are done on page boundaries rather than
hash table element boundaries. Furthermore, if a brick crashes, the operating system would
spend tens of seconds flushing dirty data back to disk, increasing the amount of time it takes
to recover a brick, and potentially overwriting the on-disk representation with corrupted

data. Finally, page faults would cause the entire process to hang.

106

Language issues: when we went to implement Java glue that exposed the “C”
distributed hash table implementation to Java, we discovered that the fact that we included
a user-level thread package in the “C” client-side abstraction library caused great difficulties.
The Java run-time environment has its own notion of threading, and correspondingly, it’s
own implementation of a user-level thread package. These two thread packages, as it turned
out, could not coexist: we had to reauthor significant portions of the client-side abstraction
library so that it did not depend on a thread subsystem at all, which unavoidably introduced
complexities and inefficiencies. Because of this, we decided that the next implementation of
the distributed hash table should be implemented purely in Java, even though we anticipated

the performance implications of this decision.

107

Chapter 7

A Robust Distributed Hash Table

Implementation

In this chapter, we present the design, architecture, and implementation of our
second version of a distributed hash table DDS. This second implementation was designed
to be much more robust than our original prototype, and it was also designed to enforce
consistency, to provide an online recovery path, and to allow incremental scaling and re-

configuration of the hash table across the cluster.

7.1 Assumptions

To simplify the hash table design and to specify precisely the operational attributes
that we expect from it, we made number of key assumptions we made regarding our cluster
environment. In particular, we examine the failure modes that the DDS can handle and
the workloads that we assume that it will receive.

If one DDS node cannot communicate with another, we assume it is because this

other node has stopped executing (due to a planned shutdown or a crash); we assume that

108

network partitions do not occur inside our cluster, and that DDS software components are
fail-stop. The justification for no network partitions is addressed by the high redundancy
of our network, as previously mentioned. We have attempted to induce fail-stop behavior
in our software by having it terminate its own execution if it encounters an unexpected
condition, rather than attempting to recover gracefully from such a condition. These strong
assumptions have been valid in practice; we have never experienced an unplanned network
partition in our cluster, and our software has always behaved in a fail-stop manner.

We further assume that software failures in the cluster are independent. We repli-
cate all durable data at more than one place in the cluster, but we assume that at least one
replica is active (has not failed) at all times. We also assume some degree of synchrony, in
that processes take a bounded amount of time to execute tasks, and that messages take a
bounded amount of time to be delivered.

We make several assumptions about the workload presented to our distributed
hash tables. A table’s key space is the set of 64-bit integers; we assume that the population
density over this space is even (i.e. the probability that a given key exists in the table is
a function of the number of values in the table, but not of the particular key). We don’t
assume that all keys are accessed equiprobably, but rather that the current working set of
popularly accessed keys is larger than the number of nodes in our cluster. We then assume
that a partitioning strategy that maps fractions of the keyspace to cluster nodes based on
the nodes’ relative processing speed will induce a balanced workload. Our current DDS
design does not gracefully handle a small number of extreme hotspots (i.e., if a handful
of keys receive most of the workload).! If there are many such hotspots, however, then
our partitioning strategy will balance them across the cluster. Failure of these workload

assumptions can result in load imbalances across the cluster, leading to a reduction in

'We believe that the use of caching plus invalidation of write locks (similar to that used in [48]) could
help to solve this; we have not yet explored this possibility.

109

‘cliem‘| ‘cliem‘| ‘clien‘r| ‘cliem‘| ‘cliem‘|

service service service hash table
: ; S| API
DDS lib DDS lib DDS lib | :

\ i redundant, low

SAN «—— 1 latency, high

! i throughput
/ \ \\ network

storage storage storage | : brick =
"brick" “brick" "brick” | 7t single-node,
/ 1 N\ i durable hash
storage storage storage | : table
“brick" “brick" “brick" | :
... St

Figure 43: Distributed hash table architecture: Each box in the diagram represents
a software process. In the simplest case, each process runs on its own physical machine,
however there is nothing preventing processes from sharing machines.
throughput.

Finally, we assume that tables are large and long lived. Hash table creations and

destructions are relatively rare events: the common case is for hash tables to serve read,

write, and remove operations.

7.2 Architecture

Figure 43 illustrates our hash table’s architecture, which consists of the following
components:

Client: a client consists of service-specific software running on a client machine
that communicates across the wide area with one of many service instances running in the
cluster. The mechanism by which the client selects a service instance is beyond the scope

of this work, but it typically involves DNS round robin [22], a service-specific protocol, or

110

public int create_dis_hashtable(int num_bucks, UpcallHandlerIF compQ);
public int destroy_dis_hashtable(UpcallHandlerIF compQ) ;

public int get(long key, UpcallHandlerIF compQ) ;

public int put(long key, byte[] bytes, UpcallHandlerIF compQ);

public int remove(long key, UpcallHandlerIF compQ) ;

Figure 44: Hash table Java language API: All methods return an integer, which is a
unique ID that will be passed in as a field of the completion event. This completion event
is delivered to the comp() UpcallHandlerIF specified as the final argument to all methods.
The put () and remove () methods return the old value in addition to updating the current
value in the table.

level 4 or level 7 load-balancing switches (such as Cisco’s Local Director [124]) on the edge
of the cluster. An example of a client is a web browser, in which case the service would
be a web server. Note that clients are completely unaware of DDS’s: no part of the DDS
system runs on a client.

Service: a service is a set of cooperating software processes, each of which we
call a service instance. Service instances communicate with wide-area clients and perform
some application-level function. Services may have soft state (state which may be lost and
recomputed if necessary), but they rely on the hash table to manage all persistent state.

Hash table API: the hash table API (Figure 44) is the boundary between a
service instance and its “DDS library”. The API provides services with put(), get(),
remove (), create(), and destroy() operations on hash tables. Each operation is atomic,
and all services see the same coherent image of all existing hash tables through this API.
Hash table names are strings, hash table keys are 64 bit integers, and hash table values are
opaque byte arrays; operations affect hash table values in their entirety.

DDS library: the DDS library is a Java class library that presents the hash
table API to services. The library accepts hash table operations, and cooperates with the

“bricks” to realize those operations. The library contains only soft state, including metadata

about the cluster’s current configuration and the partitioning of data in the distributed hash

111

tables across the “bricks”. The DDS library acts as the two-phase commit coordinator for
state-changing operations on the distributed hash tables.

Brick: bricks are the only system components that manage durable data. Each
brick manages a set of network-accessible single node hash tables. A brick consists of a
buffer cache, a lock manager, a persistent chained hash table implementation, and network
stubs and skeletons for remote communication. Typically, we run one brick per CPU in the
cluster, and thus a 4-way SMP will house 4 bricks. Bricks may run on dedicated nodes, or

they may share nodes with other components.

7.2.1 Partitioning, Replication, and Replica Consistency

A distributed hash table provides incremental scalability of throughput and data
capacity as more nodes are added to the cluster. To achieve this, we horizontally partition
tables to spread operations and data across bricks. Each brick thus stores some number of
partitions of each table in the system, and when new nodes are added to the cluster, this
partitioning is altered so that data is spread onto the new node. Because of our workload
assumptions, this horizontal partitioning evenly spreads both load and data across the
cluster.

Given that the data in the hash table is spread across multiple nodes, if any of those
nodes fail, then a portion of the hash table will become unavailable. For this reason, each
partition in the hash table is replicated on more than one cluster node. The set of replicas
for a partition form a replica group; all replicas in the group are kept strictly coherent with
each other. Any replica can be used to service a get (), but all replicas must be updated
during a put() or remove(). If a node fails, the data from its partitions is available on
the surviving members of the partitions’ replica groups. Replica group membership is thus

dynamic; when a node fails, all of its replicas are removed from their replica groups. When

112

a node joins the cluster, it may be added to the replica groups of some partitions (such as
in the case of recovery, described later).

To maintain consistency when state changing operations (put() and remove())
are issued against a partition, all replicas of that partition must be synchronously updated.
We use an optimistic two-phase commit protocol to achieve consistency, with the DDS
library serving as the commit coordinator and the replicas serving as the participants. If
the DDS library crashes after prepare messages are sent, but before any commit messages
are sent, the replicas will time out and abort the operation.

However, if the DDS library crashes after sending out any commits, then all replicas
must commit. For the sake of availability, we do not rely on the DDS library to recover
after a crash and issuing pending commits. Instead, replicas store short in-memory logs of
recent state changing operations and their outcomes. If a replica times out while waiting for
a commit, that replica communicates with all of its peers to find out if any have received a
commit for that operation, and if so, the replica commits as well; if not, the replica aborts.
Because all peers in the replica group that time out while waiting for a commit communicate
with all other peers, if any receives a commit, then all will commit.

Any replica may abort during the first phase of the two-phase commit (e.g., if the
replica cannot obtain a write lock on a key). If the DDS library receives any abort messages
at the end of the first phase, it sends aborts to all replicas in the second phase. Replicas do
not commit side-effects unless they receive a commit message in the second phase.

If a replica crashes during a two-phase commit, the DDS library simply removes
it from its replica group and continues onward. Thus, all replica groups shrink over time;
we rely on a recovery mechanism (described later) for crashed replicas to rejoin the replica
group. We made the significant optimization that the image of each replica must only be

consistent through its brick’s cache, rather than having a consistent on-disk image. This

113

allows us to have a purely conflict-driven cache eviction policy, rather than having to force
cache elements out to ensure on-disk consistency. An implication of this is that if all
members of a replica group crash, that partition is lost. We assume nodes are independent
failure boundaries; there must be no systematic software failure across nodes, and the
cluster’s power supply must be uninterruptible.

Our two-phase commit mechanism gives atomic updates to the hash table. It does
not, however, give transactional updates. If a service wishes to update more than one
element atomically, our DDS does not provide any help. Adding transactional support to
our DDS infrastructure is a topic of future work, but this would require significant additional
complexity such as distributed deadlock detection and undo/redo logs for recovery.

We do have a checkpoint mechanism in our distributed hash table that allows us to
force the on-disk image of all partitions to be consistent; the disk images can then be backed
up for disaster recovery. This checkpoint mechanism is extremely heavyweight, however;
during the checkpointing of a hash table, no state-changing operations are allowed. We

currently rely on system administrators to decide when to initiate checkpoints.

7.2.2 Metadata maps

To find the partition that manages a particular hash table key, and to determine
the list of replicas in partitions’ replica groups, the DDS libraries consult two metadata
maps that are replicated on each node of the cluster. Each hash table in the cluster has its
own pair of metadata maps.

The first map is called the data partitioning (DP) map. Given a hash table key, the
DP map returns the name of the key’s partition. The DP map thus controls the horizontal
partitioning of data across the bricks. As shown in Figure 45, the DP map is a trie over

hash table keys; to find a key’s partition, key bits are used to walk down the trie, starting

114

key: 11010011
Y JE

RGname | RG membership list
000 ddsl.cs, dds2.cs
100 dds3.cs, dds4.cs

10 dds5.cs
01 dds3.cs, dds4.cs

000 100 011 111 011 dds5.cs, dds6.cs
| 111 dds7.cs

Step 1: lookup key in Step 2: lookup RGname in
DP map to find RGname RG map to find list of replicas

Figure 45: Distributed hash table metadata maps: This illustration highlights the
steps taken to discover the set of replica groups which serve as the backing store for a
specific hash table key. The key is used to traverse the DP map trie and retrieve the name
of the key’s replica group. The replica group name is then used looked up in the RG map
to find the group’s current membership.
from the least significant key bit until a leaf node is found. As the cluster grows, the DP
trie subdivides in a “split” operation. For example, partition 10 in the DP trie of Figure 45
could split into partitions 010 and 110; when this happens, the keys in the old partition are
shuffled across the two new partitions. The opposite of a split is a “merge”; if the cluster is
shrunk, two partitions with a common parent in the trie can be merged into their parent.
For example, partitions 000 and 100 in Figure 45 could be merged into a single partition
00.

The second map is called the replica group (RG) membership map. Given a parti-
tion name, the RG map returns a list of bricks that are currently serving as replicas in the
partition’s replica group. The RG maps are dynamic: if a brick fails, it is removed from all

RG maps that contain it. A brick joins a replica group after finishing recovery. An invariant

that must be preserved is that the replica group membership maps for all partitions in the

115

hash table must have at least one member.

The maps are replicated on each cluster node, in both the DDS libraries and the
bricks. The maps must be kept consistent, otherwise operations may be applied to the
wrong bricks. Instead of enforcing consistency synchronously, we allow the libraries’ maps
to drift out of date, but lazily update them when they are used to perform operations. The
DDS library piggybacks hashes of the maps? on operations sent to bricks; if a brick detects
that either map used is out of date, the brick fails the operation and returns a “repair” to
the library. Thus, all maps become eventually consistent as they are used. Because of this
mechanism, libraries can be restarted with out-of-date maps, and as the library gets used
its maps become consistent.

To put () a key and value into a hash table, the DDS library servicing the operation
consults its DP map to determine the correct partition for the key. It then looks up that
partition name in its RG map to find the current set of bricks serving as replicas, and finally
performs a two-phase commit across these replicas. To do a get () of a key, a similar process
is used, except that the DDS library can select any of the replicas listed in the RG map
to service the read. We use the locality-aware request distribution (LARD) technique [50]
to select a read replica—LARD further partitions keys across replicas, in effect aggregating

their physical caches.

7.2.3 Recovery

If a brick fails, all replicas on it become unavailable. Rather than making these
partitions unavailable, we remove the failed brick from all replica groups and allow opera-
tions to continue on the surviving replicas. When the failed brick recovers (or an alternative

brick is selected to replace it), it must “catch up” to all of the operations it missed. In many

%It is important to use large enough of a hash to make the probability of collision negligible; we currently
use 32 bits.

116

RDBMS’s and file systems, recovery is a complex process that involves replaying logs, but
in our system we use properties of clusters and our DDS design for vast simplifications.

Firstly, we allow our hash table to “say no”—bricks may return a failure for an
operation, such as when a two-phase commit cannot obtain locks on all bricks (e.g., if two
puts() to the same key are simultaneously issued), or when replica group memberships
change during an operation. The freedom to say no greatly simplifies system logic, since
we don’t worry about correctly handling operations in these rare situations. Instead, we
rely on the DDS library (or, ultimately, the service and perhaps even the WAN client) to
retry the operation. Secondly, we don’t allow any operation to finish unless all participat-
ing components agree on the metadata maps. If any component has an out-of-date map,
operations fail until the maps are reconciled.

We make our partitions relatively small (T100MB), which means that we can trans-
fer an entire partition over a fast system-area network (typically 100 Mb/s to 1 Gb/s) within
1 to 10 seconds. Thus, during recovery, we can incrementally copy entire partitions to the
recovering node, obviating the need for the undo and redo logs that are typically maintained
by databases for recovery. When a node initiates recovery, it grabs a write lease on one
replica group member from the partition that it is joining; this write lease means that all
state-changing operations on that partition will start to fail. Next, the recovering node
copies the entire replica over the network. Then, it sends updates to the RG map to all
other replicas in the group, which means that DDS libraries will start to lazily receive this
update. Finally, it releases the write lock, which means that the previously failed operations
will succeed on retry. The recovery of the partition is now complete, and the recovering
node can begin recovery of other partitions as necessary.

There is an interesting choice of the rate at which partitions are transferred over

the network during recovery. If this rate is fast, then the involved bricks will suffer a loss

117

in read throughput during the recovery. If this rate is slow, then the bricks won’t lose
throughput, but the partition’s mean time to recovery will increase. We chose to recover as
quickly as possible, since in a large cluster only a small fraction of the total throughput of
the cluster will be affected by the recovery.

A similar technique is used for DP map split and merge operations, except that
all replicas must be modified and both the RG and DP maps are updated at the end of the

operation.

7.2.4 Convergence of Recovery

A challenge for fault-tolerant systems is to remain consistent in the face of repeated
failures; our recovery scheme described above has this property. In steady state operation,
all replicas in a group are kept perfectly consistent. During recovery, state changing oper-
ations fail (but only on the recovering partition), implying that surviving replicas remain
consistent and recovering nodes have a stable image from which to recover. We also ensure
that a recovering node only joins the replica group after it has successfully copied over the
entire partition’s data but before it release its write lease. A remaining window of vulner-
ability in the system is if recovery takes longer than the write lease. The recovering node
could detect this, and either proactively renew its write lease or abort recovery, but we have
not currently implemented this behavior.

If a recovering node crashes during recovery, its write lease will expire and the
system will continue as normal. If the replica on which the lease was grabbed crashes,
the recovering node must reinitiate recovery with another surviving member of the replica

group. If all members of a replica group crash, data will be lost.

118

"""""""""" thread boundary

address space
_____ physical machine distributed hashtable
“RPC” stubs ?
» req event]
—
—p completion event J+
< thread Iil queue
single-node g’. Ilq-
HT
(a)
FMr——r—
s | s e
| i ? cache
_________ |
| operating system
1| service service 1 ‘ . 1
oo || oo R 1T e =
.) >] —
| |LPDS!lib DDS lib f node I/O core I/O core
1 1 disk network
| operating system 1 Y A
| |
node v 7
operating system

(b) ©

Figure 46: Hash table structure: This figure shows the architecture of the distributed
hash table in terms of the programming model described in Part IT of this thesis. (a) shows
a key of icons, (b) illustrates the mapping of processes to machines across the cluster and
a two-phase commit composition operator joining a library to two bricks, and (c) shows
the structure of a “brick” process in terms of queues, thread pools, thread boundaries, and
events.

7.2.5 Programming Model

All components of the distributed hash table are built using the asynchronous,
event-driven programming model described in Part IT of this dissertation. Each hash table
layer has its own thread boundary (as shown in Figure 46), and thus it is designed so that
only a single thread ever executes in it at a time. This greatly simplified implementation
by eliminating the need for data locks, and race conditions due to threads. The thread
boundaries between the hash table layers are separated by FIFO queues, into which I/O

completion events and I/O requests are placed. The FIFO discipline of these queues ensures

119

fairness across requests, and the queues act as natural buffers that absorb bursts that exceed
the system’s throughput capacity.

All interfaces in the system (including the DDS library APIs) are split-phase and
asynchronous. This means that a hash table get () doesn’t block, but rather immediately
returns with an identifier that can be matched up with a completion event that is delivered
to a caller-specified upcall handler. This upcall handler can be application code, or it can

be a queue that is polled or blocked upon.

7.3 Hash Table Performance

In the following sections, we present performance benchmarks of the distributed
hash table implementation that were gathered on a cluster of 28 2-way SMPs and 38 4-way
SMPs (a total of 208 500 MHz Pentium CPUs). Each 2-way SMP has 500 MB of RAM,
and each 4-way SMP has 1 GB. All are connected with either 100 Mb/s switched Ethernet
(2-way SMPs) or 1 Gb/s switched Ethernet (4-way SMPs). The benchmarks are run using
Sun’s JDK 1.1.7v3, using the OpenJIT 1.1.7 JIT compiler and “green” (user-level) threads
on top of Linux v2.2.5.

When running our benchmarks, we evenly spread hash table bricks across 4-way
and 2-way SMPs, running at most one brick node per CPU in the cluster. Thus, 4-way
SMPs would have at most 4 brick processes running on them, while 2-way SMPs would
have at most 2. We also made use of these cluster nodes as load generators; because of this,
we were only able to gather performance numbers to a maximum of a 128 brick distributed
hash table, as we needed the remaining 80 CPUs to generate enough load to saturate such

a large table.

120

100000
(128,61432)
Q
2 (128,13582)
2 100001{
5
Q
<
O
=5
© 1000 & g
s writes
x
©
=
100 ‘ ‘
1 10 100 1000

of DDS bricks

Figure 47: Throughput scalability: This benchmark shows the linear scaling of through-
put as a function of the number of bricks serving in a distributed hash table; note that
both axis have logarithmic scales. As we added more bricks to the DDS, we increased the
number of clients using the DDS until throughput saturated.

7.3.1 In-Core Benchmarks

Our first set of benchmarks tested the in-core performance of the distributed hash
table. By limiting the working set of keys that we requested to a size that fits in the
aggregate physical memory of the bricks, this set of benchmarks investigates the overhead

and throughput of the distributed hash table code independently of disk performance.

Throughput Scalability

This benchmark demonstrates that hash table throughput scales linearly with the
number of bricks. The benchmark consists of several services that each maintain a pipeline
of 100 operations (either gets() or puts()) to a single distributed hash table. We varied
the number of bricks in the hash table; for each configuration, we slowly increased the
number of services and measured the completion throughput flowing from the bricks. All

configurations had 2 replicas per replica group, and each benchmark iteration consisted of

121

reads or writes of 150-byte values. The benchmark was closed-loop: a new operation was
immediately issued with a random key for each completed operation.

Figure 47 shows the maximum throughput sustained by the distributed hash table
as a function of the number of bricks. Throughput scales linearly up to 128 bricks; we didn’t
have enough processors to scale the benchmark further. The read throughput achieved with
128 bricks is 61,432 reads per second (5.3 billion per day), and the write throughput with
128 bricks is 13,582 writes per second (1.2 billion per day); this performance is adequate to

serve the hit rates of most popular web sites on the Internet.

Graceful Degradation for Reads

Bursts of traffic are a common phenomenon for all Internet services. If a traf-
fic burst exceeds the service’s capacity, the service should have the property of “graceful
degradation”: the throughput of the service should remain constant, with the excess traffic
either being rejected or absorbed in buffers and served with higher latency.

Figure 48 shows the throughput of a distributed hash table as a function of the
number of simultaneous read requests issued to it; each service instance has a closed-loop
pipeline of 100 operations. Each line on the graph represents a different number of bricks
serving the hash table. Each configuration is seen to reach a maximum throughput as its
bricks eventually saturate. This maximum throughput is successfully sustained even as
additional traffic is offered. The overload traffic is absorbed in the FIFO event queues of
the bricks; all tasks are processed, but they experience higher latency because of the longer

event queue lengths.

122

20000

—+—2 bricks
—\f 16000 1 —+—8bricks = ——"
= —¢16 bricks
=3 —=—32 brick
+— 12000 - FICKS
=
o
=
> 3¢ > —X
> 8000 -
<
@ ——
= 4000 | o
i e
[7,] e | |
(4] T T T %
= 0 T T T T T

0 5 10 15 20 25 30

service instances

Figure 48: Graceful degradation of reads: This graph demonstrates that the read
throughput from a distributed hash table remains constant even if the offered load exceeds
the capacity of the hash table.

Ungraceful Degradation for Writes

An unfortunate performance anomaly emerged when benchmarking put()
throughput. As the offered load approached the maximum capacity of the hash table bricks,
the total write throughput suddenly began to drop. On closer examination, we discovered
that most of the bricks in the hash table were unloaded, but one brick in the hash table
was completely saturated and had become the bottleneck in the closed-loop benchmark.

Figure 49 illustrates this imbalance. To generate it, we issued puts() to a hash
table with a single partition and two replicas in its replica group. Each put() operation
caused a two-phase commit across both replicas, and thus each replica saw the same set of
network messages and performed the same computation (but perhaps in slightly different

orders). We expected both replicas to perform identically, but instead one replica became

123

300 120
3 250 100
2 2 <
= 200 5 -80S
5 150 ° 60 3
[« »n E
<, 100 3 40 5
S o 2
2 50 ~ 20 &
= throughput
0 T T \g p 0
0 50000 100000 150000 200000

time (ms)
Figure 49: Write imbalance leading to ungraceful degradation: The bottom curve
shows the throughput of a two-brick partition under overload, and the top two curves show
the CPU utilization of those bricks. One brick is saturated, the other becomes only 30%
busy.
more and more idle, and the throughput of the hash table dropped to match the CPU
utilization of this idle replica.

Investigation showed that the busy replica was spending a significant amount of
time in garbage collection. As more live objects populated that replica’s heap, more time
needed to be spent garbage collecting to reclaim a fixed amount of heap space, as more
objects would be examined before a free object was discovered. Random fluctuations in
arrival rates and garbage collection caused one replica to spend more time garbage collecting
than the other. This replica became the system bottleneck, and more operations piled up
in its queues, further amplifying this imbalance. Write traffic particularly exacerbated the
situation, as objects created by the “prepare” phase must wait for at least one network
round-trip time before a commit or abort command in the second phase is received. The
number of live objects in each bricks’ heap is thus proportional to the bandwidth-delay
product of hash table put () operations. For read traffic, there is only one phase, and thus

objects can be garbage collected immediately after read requests are satisfied.

124

@ 6000
(%2
T 5000 -
[«}]
£ 4000 -
@ 3000 -
S
o 2000
£ 000 o
R
E T T
10 100 1000 10000

hash table value size (bytes)

Figure 50: Throughput vs. read size The X axis shows the size of values read from the
hash table, and the Y axis shows the maximum throughput sustained by an 8 brick hash
table serving these values.

We experimented with many JDKs, but consistently saw this effect. Some JDKs
(such as JDK 1.2.2 on Linux 2.2.5) developed this imbalance for read traffic as well as
write traffic. This sort of performance imbalance is fundamental to any system that doesn’t
perform admission control; if the task arrival rate temporarily exceeds the system’s ability
to handle them, then tasks will begin to pile up in the system. Because systems have
finite resources, this inevitably causes performance degradation (thrashing). In our system,
this degradation first materialized due to garbage collection. In other systems, this might
happen due to virtual memory thrashing, to pick an example. We are currently exploring
using admission control (at either the bricks or the hash table libraries) or early discard
from bricks’ queues to keep the bricks within their operational range, ameliorating this

imbalance.

Throughput Bottlenecks

In Figure 50, we show the results of varying the size of elements that we read

out of an 8 brick hash table. Throughput was flat from 50 bytes through 1000 bytes,

125

but then began to degrade. From this we deduced that per-operation overhead (such as
object creation, garbage collection, and system call overhead) saturated the bricks’ CPUs
for elements smaller than 1000 bytes, and per-byte overhead (byte array copies, either in
the TCP stack or in the JVM) saturated the bricks’” CPUs for elements greater than 1000
bytes. At 8000 bytes, the throughput in and out of each 2-way SMP (running 2 bricks) was
60 Mb/s. For larger sized hash table values, the 100 Mb/s switched network became the

throughput bottleneck.

7.3.2 Out-of-core Benchmarks

Our next set of benchmarks tested performance for workloads that do not fit in
the aggregate physical memory of the bricks. These benchmarks stress the single-node hash

table’s disk interaction, as well as the performance of the distributed hash table.

A Terabyte DDS

To test how well the distributed hash table scales in terms of data capacity, we
populated a hash table with 1.28 terabytes of 8KB data elements. To do this, we created a
table with 512 partitions in its DP map, but with only 1 replica per replica group (i.e., the
table would not withstand node failures). We spread the 512 partitions across 128 brick
nodes, and ran 2 bricks per node in the cluster. Each brick stored its data on a dedicated
12GB disk (all cluster nodes have 2 of these disks). The bricks each used 10GB worth of
disk capacity, resulting in 1.28TB of data stored in the table.

To populate the 1.28TB hash table, we designed bulk loaders that generated writes
to keys in an order that was carefully chosen to result in sequential disk writes. These bulk
loaders understood the partitioning in the DP map and implementation details about the

single-node tables’ hash functions (which map keys to disk blocks). Using these loaders,

126

it took 130 minutes to fill the table with 1.28 terabytes of data, achieving a total write
throughput of 22,015 operations/s, or 1.4 MB/s per disk.

Comparatively, the in-core throughput benchmark presented in Section 7.3.1 ob-
tained 13,582 operations/s for a 128 brick table, but that benchmark was configured with
2 replicas per replica group. Eliminating this replication would double the throughput of
the in-core benchmark, resulting in a 27,164 operations/s. The bulk loading of the 1.28TB
hash table was therefore only marginally slower in terms of the throughput sustained by
each replica than the in-core benchmarks, which means that disk throughput was not the

bottleneck.

Random Write and Read Throughput

However, we believe it is unrealistic and undesirable for hash table clients to have
knowledge of the DP map and single-node tables’ hash functions. We ran a second set
of throughput benchmarks on another 1.28TB hash table, but populated it with random
keys. With this workload, the table took 319 minutes to populate, resulting in a total write
throughput of 8,985 operations/s, or 0.57 MB/s per disk. We similarly sustained a read
throughput of 14,459 operations/s, or 0.93 MB/s per disk.?

This throughput is substantially lower than the throughput obtained during the
in-core benchmarks because the random workload generated results in random read and
write traffic to each disk. In fact, for this random workload, every read() issued to the
distributed hash table results in a request for a random disk block from a disk. All disk
traffic is seek dominated, and disk seeks become the overall bottleneck of the system.

We expect that there will be significant locality in DDS requests generated by

3Write throughput is less than read throughput because a hash bucket must be read before it can written,
in case there is already data stored in that bucket that must be preserved. There is therefore an additional
read for every write, nearly halving the effective throughput for DDS writes.

127

600
2
T
(1]
g
5
2
(2] U £-) T 40 Y S 4 N
s O ® @06
Z 100
o T T T T T
0 50000 100000 150000 200000 250000 300000

time (ms)
Figure 51: Availability and Recovery: This benchmark shows the read throughput of a
3-brick hash table as a deliberate single-node fault is induced, and afterwards as recovery
is performed.
Internet services, and given workloads with high locality, the DDS should perform nearly as
well as the in-core benchmark results. However, it might be possible to improve the write

performance of traffic with little locality by using disk layout techniques similar to those of

log-structured file systems [111]; we have not explored this possibility as of yet.

7.4 Availability and Recovery

To demonstrate availability in the face of node failures and the ability for the
bricks to recover after a failure, we repeated the read benchmark with a hash table of 150
byte elements. The table was configured with a single 100MB partition and three replicas
in that partition’s replica group. Figure 51 shows the throughput of the hash table over
time as we induced a fault in one of the replica bricks and later initiated its recovery.
During recovery, the rate at which the recovered partition is copied was 12 MB/s, which is
maximum sequential write bandwidth we could obtain from the bricks’ disks.

At point (1), all three bricks were operational and the throughput sustained by the

128

hash table was 450 operations per second. At point (2), one of the three bricks was killed.
Performance immediately dropped to 300 operations per second, two-thirds of the original
capacity. Fault detection was immediate: client libraries experienced broken transport
connections that could not be reestablished. The performance overhead of the replica group
map updates could not be observed. At point (3), recovery was initiated, and recovery
completed at point (4). Between points (3) and (4), there was no noticeable performance
overhead of recovery; this is because there was ample excess bandwidth on the network, and
the CPU overhead of transferring the partition during recovery was negligible. It should be
noted that between points (3) and (4), the recovering partition is not available for writes,
because of the write lease grabbed during recovery. This partition is available for reads,
however.

After recovery completed, performance briefly dropped at point (5). This degra-
dation is due to the buffer cache warming on the recovered node. Once the cache became
warm, performance resumed to the original 450 operations/s at point (6). An interesting
anomaly at point (6) is the presence of noticeable oscillations in throughput; these were
traced to garbage collection triggered by the “extra” activity of recovery. When we re-
peated our measurements, we would occasionally see this oscillation at other times besides
immediately post-recovery. This sort of performance unpredictability due to garbage collec-
tion seems to be a pervasive problem; a better garbage collector or admission control might

ameliorate this, but we haven’t yet explored this.

129

Chapter 8

Experience and Applications

In this chapter, we discuss experiences that we gained by administrating a dis-
tributed hash table over a long period of time, and by building several interesting services

using the hash table.

8.1 Operational Experience: Violations of Assumptions

The performance metrics presented in Section 7.3 validate that, for the workloads
and operational environment of our benchmarks, our hash table implementation has all of
the service properties enumerated in Table 1.1. However, benchmarks are almost always a
poor reflection of the operational environment that a deployed system will experience; by
their very nature, benchmarks are carefully controlled so that they may be reproduced and
independently verified by multiple parties. This careful control is contrary to the require-
ment that our DDS must be robust and available in the face of unexpected circumstances.

In this Section, we present more realistic operational experiences that we gathered
from managing a distributed hash table DDS over a period of six months. This DDS was

run on a dedicated 8-CPU cluster in the UC Berkeley CS department. In addition to our

130

own services, which we will describe in Section 8.3, many external research projects built
systems that depended on this hash table.

Some of the external projects that relied upon our DDS during this six-month
experiment include:

vSpace: The vSpace Internet service platform provides fault-tolerance and load
balancing abstractions for computational elements of Internet services. (Comparatively,
the DDS provides similar abstractions for persistent state management aspects of services.)
One component of vSpace makes use of the DDS to store descriptions of services, their
operational requirements, and service instantiation metadata. The DDS provides a cluster-
wide mechanism for vSpace nodes to access all of this data, and as such it greatly simplified
the consistent management of service state. The workload generated by vSpace is read-
mostly; writes occur only when services are instantiated or halted.

The ICEBERG Preference Registry: The ICEBERG project [131] seeks to
integrate telephony and data services by designing and implementing an IP-centric signalling
and service architecture. The ICEBERG user preference registry exploits the hash table
DDS to store user profiles that dictate the routing of incoming telephone calls to users’
devices. Accesses to this preference registry are read-mostly; an access occurs for every
incoming telephone call. Updates to the registry occur less frequently, on the order of once
every week for each user.

Proxy framework: As part of an undergraduate class (Berkeley CS199) on scal-
able services, the DDS was used as the storage manager for a proxy framework that allows
untrusted, heterogeneous devices to access secure services. The proxy framework transforms
content on-the-fly to reduce the value of the information in the content, so that it can be
safely displayed on untrusted devices. The proxy relied on the DDS to store filters, device

profiles, and user preferences.

131

A number of interesting incidents occurred during this experiment that caused the
DDS to fail in some manner. These incidents all represented violations of the assumptions
we made while designing the hash table (Section 7.1), and they resulted in a loss of one or
more of the service properties. In all cases, they could have been avoided with more careful
engineering, administration, or documentation. The violations occurred because of latent
bugs in the system, or because the “customers” using the hash table were not aware of an
assumption, causing them to build something outside of the intended operating regime of
the DDS. Nonetheless, these incidents happened, and it is useful to examine closely why

they happened to reflect upon the reasonableness of our assumptions.

8.1.1 NFS Considered Harmful

A running distributed hash table consists of many bricks executing on multiple
cluster nodes; each brick is a set of classes executing in a JVM that manages a slice of the
distributed hash table on its node’s local disk. To run the hash table, Java .class files that
comprise the brick program must be shipped to each cluster node. Rather than implement
our own .class file distribution mechanism, we initially chose to rely on an NFS networked
file system to house both these .class files and the JVM executable itself. This has the
nice property that changes to the .class files during development are instantly accessible
throughout the cluster.

Unfortunately, this decision introduced a coupling between the nodes in the cluster
that led to multiple violations of our assumptions. Our NFS file server was not scalable;
as we scaled the size of the hash table, the number of bricks that relied on the NFS server
to read the JVM executable and the brick .class files increased, and thus the workload
on the NFS server increased. By the time we scaled up to a 128 node hash table, the NFS

server was completely saturated, and it took over a minute for JVMs to launch on all nodes,

132

and another minute for the minimal set of .class files necessary to execute the bricks to
be classloaded by the JVM. Strictly speaking, this isn’t a violation of any assumption; we
expected that bricks will be restarted independently, and thus during steady-state operation,
the demand on the NFS server would be extremely low.

However, modern JVM'’s perform lazy classloading: they only read, validate, and
JIT compile .class files when program execution happens to first touch that class. Thus,
if there is an execution path in a program that happens rarely, it is possible that .class
files touched by that execution path won’t be classloaded for many minutes, hours, or even
days. Two such rare execution paths correspond to a timeout, or to a DP map update
from a brick failure. Since timeouts and failures occur infrequently, this execution path is
rarely exercised. The unfortunate consequence of this is that the first time a brick fails in a
running hash table, all DDS libraries and bricks will quickly detect this, and simultaneously
issue reads against the NF'S server for the necessary .class files. This results in a barrage
of read traffic that saturates the NF'S server, causing all of the bricks to “seize up” for many
seconds or tens of seconds.

This behaviour represents a failure of our assumption of synchrony, namely that
processes take a bounded amount of time to execute tasks and that messages take a bounded
amount of time to be delivered. Because the NFS server doesn’t scale, but was relied upon
by all nodes in the system, we inadvertently introduced a coupling between system elements
that resulted in poor scaling behavior and a violation of our synchrony assumption. The
degree of this violation grows with the size of the cluster, since the NF'S server doesn’t scale.

A second violation occurred because of this coupling. As previously mentioned,
changes to .class files served by the NFS server are instantaneously visible across the
cluster. Because .class files are lazily loaded, it is possible that a given class file has

not been loaded, but the JVM has already made assumptions about its interface signature

133

based on a dependent class that has already been loaded. Changing a .class file on NFS
can thus lead to the situation where a JVM loads a class with an interface signature that it
doesn’t expect. When faced with this situation (which arises due to a race condition and is
extremely non-deterministic), the JVM will crash. Thus, by recompiling .class files on the
NF'S server, it becomes possible to cause many nodes in the cluster to simultaneously crash.
Even worse, this simultaneous crash may happen at a much later time than the .class files
were changed, because of the lazy class loading of the JVM. This represents a violation of
our assumption of independent failures.

The obvious solution to these violations was to eliminate the NFS server, and
instead rely on a more carefully controlled .class file distribution mechanism. We also
believe that it would be extremely useful to introduce formal versioning mechanisms to
.class files, to prevent the situation where dependent class files’ signatures inadvertently
change. Even though there was an obvious solution in this case, the lesson learned from
these violations is that even a seemingly innocuous coupling between nodes can lead to

correlated failures and a violation of our assumption of synchrony.

8.1.2 DDS as a Lock Manager

The design of the vSpace execution platform required a globally accessible lock in
order to serialize nodes’ accesses to a group membership map. To build this global lock,
the vSpace authors chose to exploit the fact that the put () method in the distributed hash
table API returned the old value of the element in the hash table. Using this, they built a
test-and-set lock primitive by populating a hash table with a boolean element behind a
globally known key. If the key contains the value “0”, the lock associated with the key is
available, and if it contains the value “1”7, the lock has been grabbed. To grab the lock, a

vSpace node would put () the value 1 into the lock; if the old value returned by the put ()

134

method is 0, then that node successfully grabbed the lock. If not, somebody else has the
lock, and the node repeatedly spins until it eventually obtains the lock. To release a lock,
the vSpace node would put () the value “0” into lock.

This lock implementation was functionally successful, and performed well if there
was no contention for the lock. However, if there was any contention at all (i.e., more than
one node simultaneously attempting to access the lock), performance became intolerably
poor. Investigation showed that there were two compounding effects leading to this poor
performance.

The first effect that lead to poor performance was the impact of having the com-
peting nodes spinning in order to acquire the lock. If one node successfully grabs a lock,
then all other nodes competing for the lock will repeatedly issue put () calls to the hash
table, generating vast amounts of load on the table. This load causes the latency of oper-
ations issued against the table to increase, which in turn increases the time it takes for a
node to release and acquire a lock. The competition for locks has effectively dilated time,
increasing the latency to successfully acquire and release a lock.

The second effect that lead to poor performance was an interesting implementation
artifact arising from the two-phase commit protocol used to effect state changing operations.
In the first phase of the two-phase commit, the issuing DDS library sends “prepare” messages
to all replicas serving the specific key. These prepare messages are sent in parallel, and thus
the order in which they arrive at the replicas depends on factors such as network load and
the timing of message arrivals in the face of competing traffic. For the two-phase commit
to succeed, all replicas that receive the prepare message must successfully grab a local lock;
if any cannot, that replica will send back an abort.

When multiple nodes compete for the vSpace test-and-set lock, those multiple

nodes will each issue parallel “prepare” messages to the same replicas that control the lock

135

element. As the number of nodes competing for the test-and-set lock increases, the chance
that any given node will successfully grab all brick local locks needed for the two-phase
commit rapidly diminishes, since it is likely that at least one of the locks has been grabbed
by another node. Thus, as the number of competing nodes increases, it becomes much less
likely that any forward progress would be made.

These performance implications arose because of a violation of two of our workload
assumptions. We assumed that keys accessed by services would be largely independent,
and that the working set of hot keys would be greater than the number of bricks in the
cluster. For the vSpace test-and-set workload, the vSpace lock element is an extremely
hot key that is not independently accessed by the underlying vSpace, leading to these two
performance degradation effects.

To fix the first effect (performance degradation due to competing nodes spinning
to grab the lock), we experimented with adding randomized exponential backoff to the
lock acquisition algorithm. Each time a node unsuccessfully bids for the lock, it doubles
the amount of time (4 a random offset) that it waits before bidding for the lock again.
To address the second effect (starvation due to parallel “prepare” messages in the first
phase of the two-phase commit), we experimented with modifying the two-phase commit
algorithm so that the prepare messages sent by nodes were serialized and ordered across
bricks. Because of this, if a node successfully grabbed a local lock on the first brick, it is
guaranteed to grab all of the locks on the other brick, eliminating the potential for starvation.
These experiments successfully improved the performance of the vSpace lock manager,
but nonetheless it still had unacceptably high latency (100-500ms to grab a lock under
contention from 5-6 nodes) and high overhead (an average of 5 attempts were necessary to
grab the lock when under contention from 5-6 nodes).

We believe that the use of the DDS as a global lock manager falls out of the

136

expected operating regime of our current system design. Although it may be possible to
further modify the design of the hash table to better accomodate this workload, we believe
it would be better either to add additional operations to the hash table that would simplify
the construction of a lock manager, or to design a distributed lock manager specifically for
this purpose that is completely independent of the hash table. In Section 10.3.2, we discuss

these design alternatives in detail.

8.1.3 Independence of Failures

Two separate incidents over the 6 month experiment lead to the breakdown of our
assumption of independent failures. The first incident occurred when we ran our throughput
scaling benchmarks using all 208 CPUs in the millennium cluster (128 for the hash table,
and 80 for load generators). After a few minutes of gathering data, 1/3 of the nodes in the
cluster simultaneously lost power. Investigation revealed that the power supply unit for the
machine room that housed the cluster was underprovisioned for the number of machines that
had been installed. Running the benchmark on the full cluster forced all of the CPUs in the
cluster to run at full load, generating a spike in power consumption that eventually caused
a fuse to blow in the power supply. The solution to this was of course to properly provision
the power supply for the machine room. However, it serves to once again demonstrate that
coupling between the nodes in the cluster can lead to correlated performance degradation
or failure. In this case, the coupling was the power supply of the nodes.

The second incident occurred when we first attempted the experiment in which
we bulk-loaded a hash table with the 1.28 terabytes of data. After about 1 hour of loading,
the all of the bricks in the hash table began to fail within seconds or minutes of each other.
Investigation revealed that the bricks had run out of memory, and that an extremely subtle,

latent, slow memory leak was surfacing. During normal two-phase commit processing, the

137

sequence of events that a brick experiences is:

1) receive PREPARE message from two-phase commit coordinator

2) create a state-machine to handle this action, and store the
state machine in a multiplexing table

3) grab a lock for the requested key, and issue a single-node
hash table lookup for the requested key

4) receive a completion for that lookup, and send an ‘0K’
message to the two-phase commit coordinator

5) receive a ‘‘COMMIT’’ message from the coordinator, issue
a write to the single-node hash table, and release the lock

6) destroy the state machine for the action

However, it is possible (although extremely rare) that another brick participating
in the two-phase commit will fail to grab a lock for the requested key, and will send an
“FAIL” message to the two-phase commit coordinator. In this situation, the coordinator
will issue “ABORT” messages to all bricks instead of the “COMMIT” messages that would
normally arrive in step 5 above. If this ABORT arrives between steps 3 and 4 above, our
brick implementation would correctly cancel the hash table lookup, but it would fail to
destroy the state machine for the action. Thus, in this rare circumstance, the memory
associated with that state machine would be leaked. Over the period of an hour, enough
of these rare circumstances would occur so that the bricks would run out of memory, and
crash. The leak rates were roughly the same across all bricks, and thus the bricks would
crash out at approximately the same time.

The solution to this problem was simple: we fixed the bug that caused the memory
leak, eliminating the correlated failure. However, this sort of correlated failure demonstrates
that the bricks are all indirectly coupled together by their workload alone, and if any memory

leak exists in any part of the system (including those that we don’t control, such as the

138

operating system), then correlated failures can emerge again. A more robust solution is to
accept that these sorts of failures are inevitable no matter how carefully software is built,
and to restart bricks proactively (perhaps even rebooting cluster nodes) as preventative
maintenance against memory leaks in both our software, libraries we depend on, and the
operating system itself. Regardless, we believe it is better to address independence of

failures inside the DDS, rather than forcing each application to address it itself.

8.1.4 Failstop

We also observed an incident that led to the failure of our assumption of fail-
stop behavior. In this incident, a service that used the hash table was run on a machine
that wasn’t physically housed in the cluster. This machine was configured to act as a
firewall, dropping all packets associated with incoming TCP connection requests. Because
of this, any TCP connection attempt made to this machine would block for up to 12
minutes, since standard TCP implementations reattempt connection requests 10 times with
an exponentially increasing backoff between attempts. Because of the fact that we used a
single thread inside the “RPC” layer of our brick implementation, any connection attempt
made by our brick to that machine would cause the brick to lock up and become unresponsive
for 12 minutes. Unfortunately, part of the RPC layer included a session layer that would
automatically created a connection to services that use the DDS, so as soon as that service
first contacted the DDS, any brick that was involved in an operation from this service would
become frozen for 12 minutes, but would then wake up and continue to operate.

The side-effect of this behavior was that all of the DDS libraries in the cluster
would falsely believe that these frozen bricks had crashed, since all operations to those
bricks would inevitably time out. However, 12 minutes later, the bricks would reappear.

Fortunately, none of the existing DDS libraries would communicate with these bricks, but

139

any newly instantiated client libraries would do so, since they haven’t been informed that
the bricks are dead. This would lead to a state of system delusion.

This particular failure mode would not happen in a more closely administered
environment; both the fact that the machine housing the service wasn’t a part of the cluster,
and the fact that this machine was running firewall software violated our stipulation that
the DDS and services were in a carefully controlled environment. However, it serves to

demonstrate that there are situations in which fail-stop behavior might not occur.

8.1.5 Debugging Workload vs. Operational Workload

One final assumption violation occurred as part of the cs199 undergraduate class
efforts. We assumed that tables are large and long-lived. As a result, we didn’t spend
any effort optimizing the table creation or destruction operations. Also, we assumed that
creation and destruction would be “special” events that occur rarely, and when they do
occur, they will be done under the careful watch of a single system administrator. Because
of this, we failed to synchronize these operations to permit multiple processes to issue them
simultaneously.

What we failed to realize is that during the process of designing, implementing,
and debugging a service, that service and its associated DDS tables would be instantiated
and destroyed many times. In fact, during a typical debugging cycle, it is likely that a
service’s tables would be created and destroyed every few minutes. Worse, independent
programmers may simultaneously attempt to create, destroy, and use the same table, re-
sulting in extremely unpredictable behavior because of our lack of synchronization of creates
and destroys. Because of this, we abandoned our assumption that creation and destruction
operations are rare events, and reimplemented the table creation and destruction operations

to include synchronization and atomicity with respect to other operations.

140
8.2 Java as a High Performance Systems Platform

We found that Java was an adequate platform from which to build a scalable,
high performance subsystem. Certainly, Java’s high-level programming model made for
extremely rapid development. Java’s strong typing also encouraged modularity, and greatly
facilitated the abstract interfaces of the I/O core and its event delivery mechanisms. How-
ever, we ran into a number of serious issues with the Java language and runtime.

The garbage collector of all JVMs that we experimented with inevitably became
the performance bottleneck of the bricks and also a source of very high throughput and
latency variation. Whenever the garbage collector became active, it had a serious impact
on all other system activity, and unfortunately, current JVMs do not provide adequate
interfaces to allow systems to influence garbage collection behavior adequately. The presence
of garbage collection therefore makes it impossible to accurately predict the performance of
a system at any given instance, although the effect of garbage collection is predictable and
can be averaged out over long periods of time. As shown in Section 7.3.1, the overhead of
the garbage collector can increase as more active heap space is allocated by an application,
introducing the potential for thrashing.

The type safety and array bounds checking features of Java vastly accelerated our
software engineering process, and helped us to write stable, clean code. However, these
features got in the way of code efficiency, especially when dealing with multiple layers of a
system each of which wraps some array of data with layer-specific metadata. We often found
ourselves performing copies of regions of byte arrays in order to maintain clean interfaces to
data regions, whereas in a C implementation it would be more natural to exploit pointers
into malloc’ed memory regions to the same effect without needing copies.

Java lacks asynchronous I/O primitives, which necessitated the use of a thread pool

141

at the lowest-layer of the system. This is much more efficient than a thread-per-task system,
as the number of threads in our system is equal to the number of outstanding I/O requests
rather than the number of tasks. Nonetheless, it introduced performance overhead and
scaling problems, since the number of TCP connections per brick increases with the cluster
size. Accordingly, we have implemented a high-throughput asynchronous I/O completion
mechanisms into the JVM using the JNI native interface; because it depends on JNI, this
mechanism isn’t portable across operating systems or architectures.

Our final observation about Java is that in our experience, our programs run a
factor of 3-5 slower than equivalent “C”-based programs. Part of this is because of the
relative immaturity of Java compiler technology, but a fundamental part of this is a result
of garbage collection and because of the overhead due to the high-level system interfaces
offered by Java runtime systems. The large degree of abstraction provided by these interfaces
simplifies programming, but at the cost of performance. As processors and I/O gets faster,
it is possible that the benefits of this simplification will outweigh the associated performance

costs.

8.3 Example Services

In this section, we describe several interesting services that we implemented using
our distributed hash table. The services’ implementation was greatly simplified by using

the DDS, and they trivially scaled by adding more service instances.

142

Results
Successful lookup of http /Awww freshmeat.net— 2 categories found.

e Yahoo! Computers and Internet: Softwrare: Operating Systems: Unix: Linus: News and Media — 6 urls
o Yahoo! Computers and Internet: Softwrare: Operating Systems: Untx: Linus: Softwrare — 17 urls

Yahoo! Computers and Internet:Software :Operating Systems :Unix:Linnx:News and Media
HEGOL! LinuxHQ

freshmeat

Linux Met News

Linux Resources

Linuxz Today
Linux Weekly News

Yahoo! Computers and Internet:Software :Operating Systems :Unix:Linux:Software
Astronomical Softwrare on Linug

Blue Moon Rendering Tools (BMERT)

Ethernet Phone for the Linux 08

freshreat.net

{aZip for Limus
Linuz Archive Search

Figure 52: Parallelisms: The Parallelisms services uses an inverted index of the Yahoo!
web directory (stored in a DDS) to return a list of web pages that are ontologically related
to a user-specified URL.

8.3.1 Parallelisms

The Parallelisms service!, built using the early prototype of the distributed hash
table, allows a user to search for web sites that are semantically related to a user-specified
URL. Parallelisms uses a statically constructed large table that maps URLs (the user-
specified page) to groups of URLs (related sites, grouped by semantic relation). This map-
ping was obtained by crawling the Yahoo! web directory, which provides a list of sites that
is hierarchically structured according to semantic content. To build our related site map,
we inverted the Yahoo! directory: given a URL, our inverted table returns a list of Yahoo!
ontology paths. We also maintain the normal Yahoo! ontology so that we can convert

those ontological paths to URLs. Figure 52 shows Parallelisms in action: given the URL

!Parallelisms is periodically available at http://ninja.cs.berkeley.edu/demos/parallelisms/
parallelisms.html

143

Rlucere0s B 1
A ERg

A% A A B 7 U link
ey S0692447> 2pZe> Hallo there, welcome to the]
AOL worker

| Sanctio sernce runnng on a distibuted hash tablel

A 4

AOL client 4|_|

|| lish t profile
english to DDS

spanish worker

v
[Wessoge Bt || :I_|

‘ [<aim Bagmani 972> hola all, recepcion al senicio de Sanctio
que se ejecuta enuna tabla de hash distribuidal — ICQ worker

ICQ client . .
sanctio service on a base

Figure 53: Sanctio Messaging Proxy: The Sanctio messaging proxy service is composed
of language translation and instant message protocol translation workers in a base. Sanctio
allows unmodified instant messaging clients that speak different protocols to communicate
with each other; Sanctio can also perform natural language translation on the text of the
messages.

http://www.freshmeat .net, Parallelisms returns two semantics groups (Linux “News and
Media”, and Linux “Software”) that contain a total of 23 related URLs.

Both the inverted and regular Yahoo! ontologies are stored in a single distributed
hash table. This table (which currently contains over 4 million entries, averaging roughly
250 bytes each in length) was populated through repeated insertions from the Yahoo! crawl
log. Because all of this data is maintained in the distributed hash table, the Parallelisms
service itself is quite simple: it contains approximately 400 lines of C code, 130 of which is

service-specific logic, and 270 of which is dedicated to thread management, network socket

management, and HTTP/HTML parsing and generation.

8.3.2 Sanctio

Sanctio is an instant messaging gateway that provides protocol translation between
popular instant messaging protocols (such as Mirabilis’ ICQ and AOL’s AIM), conventional

email, and voice messaging over cellular telephones (Figure 53). Sanctio acts as a middle-

144

man between these protocols, routing and translating messages between the networks. In
addition to protocol translation, Sanctio also can transform the message content. We have
built a “web scraper” that allows us to compose AltaVista’s BabelFish natural language
translation service with Sanctio. We can thus perform language translation (e.g., English
to French) as well as protocol translation; a Spanish speaking ICQ user can send a mes-
sage to an English speaking AIM user, with Sanctio providing both language and protocol
translation.

A user may be reached on a number of different addresses, one for each of the
networks that Sanctio can communicate with. The Sanctio service must therefore keep
a large table of bindings between users and their current transport addresses on these
networks; we used the (robust) distributed hash table for this purpose. The expected
workload on the DDS includes significant write traffic generated when users change networks
or log in and out of a network. The data in the table must be kept consistent, otherwise
messages will be routed to the wrong address.

Sanctio took 1 person-month to develop, most which was spent authoring the
protocol translation code. The code that interacts with the distributed hash table took less

than a day to write.

8.3.3 Web Server

We also implemented a rudimentary scalable web server using the distributed hash
table. The server speaks HT'TP to web clients, hashes requested URLs into 64 bit keys, and
requests those keys from the hash table. The server takes advantage of the event-driven,
queue-centric programming style to introduce CGI-like behavior by interposing on the URL
resolution path. This web server was written in 900 lines of unoptimized Java, 750 of which

deals with HTTP parsing and URL resolution, and only 50 of which deals with interacting

145

server
' CGl CGl
; FSM ? FSM ?
i = =
: HTTP
response € ?‘ I
i generator T T
HTTP «I—+ server
request —— > II ?
: parser - core
HTTP ; —
request — > parser? library
i W WY U W W
Axa
Thread
Pool
Yy YyvYyYvyYYyYy

response 4———
: rver
request —————— serve

| distributed |
/,; hash table |

response *———
: server
request — P
'

cluster |

Figure 54: Scalable Web Server: The scalable web server consists of a number of stateless
web server front ends, all of which rely on a distributed hash table to access the served web

pages.
with the hash table DDS.

The web server architecture, shown in Figure 54, consists of a number of stateless
web server instances, all of which use a distributed hash table to access the served web
pages. Each server instance maintains many concurrent HT'TP connections; each connection
is served by a dedicated thread (dispatched from a thread pool) that parses the incoming
request. Parsed requests are placed on a single request queue, which is served by a “core”
thread that either routes the request to a CGI handler module (which is separated from

the rest of the server by a thread boundary), or issues a request to the hash table for the

146

appropriate page. Completions from the hash table or CGI handlers are handed back to the
dedicated connection threads, which write back a response and then close the connection.
Using the workload generator described in [12], we benchmarked our web server.
Each server instance can sustain 127 requests/s for 4KB pages; for each request that a server
handles, a single distributed hash table lookup is issued. Using the hash table benchmarks
in Section 7.3, we conclude that in order to saturate a 2-way replicated hash table with
N brick processes, we would need to run 4N web server instances (assuming that the web
server workload fits in the physical memory of the bricks). Using the millennium cluster,
we were able to scale to a 16 node distributed hash table, 60 web server instances, and 82
load generators. With this configuration, our web servers were able to sustain an aggregate
throughput of 7476 requests/s. The extremely high overhead of our HTTP parsing within
the web server was the bottleneck of our system; significant performance improvements

could be obtained by optimizing this code.

8.3.4 Others

We have built many other services as part of the Ninja project?. For example, we
implemented a collaborative filtering engine for a digital music jukebox service [61]; this
engine stores users’ music preferences in a distributed hash table. We have also implemented
a reusable private key store service and a composable user preference service, both of which

use the distributed hash table for persistent state management.

’http://ninja.cs.berkeley.edu/

147

Part 1V

Related and Future Work

148

Chapter 9

Related Work

This dissertation contains work that is most directly related to the following three

areas of systems research:

1. Efficient, robust, and reusable programming models and abstraction libraries for high-

performance or highly concurrent systems;
2. Scalable high-performance storage systems, networked file systems, and databases;

3. Platforms for simplifying the construction of scalable, highly available Internet services

or for the construction of cluster-based parallel applications.

In this chapter, we describe the relevant related work in these three areas, and

compare it to that in our dissertation.

9.1 Programming Models for Concurrent Systems

The ADAPTIVE Communications Environment (ACE) [42] is a C++-based
object-oriented framework that provides platform-independent implementations of a num-

ber of design patterns for distributed systems software. ACE includes patterns for IPC,

149

shared memory management, object brokerage, connection management, naming, and log-
ging, but most relevant to this thesis are its patterns associated with event demultiplexing
and concurrency. In particular, the Reactor pattern [116] and Proactor pattern [76] abstract
away mechanisms for non-blocking I/O channel availability and asynchronous I/O comple-
tions; the JAWS web server [75] is an example application that uses the Proactor pattern to
simplify its development. Reactor and Proactor are similar to the I/O core’s mechanisms
for asynchronous I/O completion and application-specific event handlers. However, the I/O
core further advocates a code structure on top of this event-delivery mechanism, describes
how this code structure can be used to condition applications against load, and identi-
fies composition operations and additional patterns that can be used to compose multiple
components resulting in a service with availability and scalability.

In [104], Ousterhout gave a now-infamous presentation on the tradeoffs between
threaded and event-driven programming styles. In this presentation, he claimed that the
disadvantages associated with threaded programming (debugging reentrant code, deadlock
elimination, performance overhead) imply that event-driven programming should be se-
lected whenever possible. In this thesis, we agree with his conclusions, but only for unstruc-

¢

tured threaded programs. The “wrap” design pattern and thread boundaries described in
this dissertation, if used appropriately, can eliminate the programming-related disadvan-
tages of threaded programming while bounding the performance overhead associated with
it. We believe that event-driven programming is necessary for maximum performance from
high concurrency systems.

Significant effort has been put into improving the mechanisms associated with both
threaded and event-driven systems; here, we highlight a few notable projects. In [110], Pu

et al. describe a mechanism for incrementally specializing operating system functionality

based on known invariants. Using this specialization, threads themselves can carry syn-

150

thesized kernel calls with them that vastly improve the latency and decrease the overhead
associated with operations such as I/O, queue manipulation, signal processing, and context
switching. In [5], the distinction between kernel and user threads is blurred through an
API and mechanism for unifying kernel-level and user-level schedulers. This mechanism
provides notification to the user-level scheduler of kernel events; the resulting system has
the performance of user-level threads with the consistent behavior and true concurrency of
kernel threads. In [13], Banga et al. advocate changes to the UNIX system call interface to
more efficiently support event notification to event-driven applications, and in [14], modifi-
cations to the select () UNIX system call are proposed to result in higher throughput and
scalability for realistic concurrent workloads.

The Click modular packet router [101] uses a software architecture which is sim-
ilar to our design framework; packet processing stages are implemented by separate code
modules with their own private state. Click modules communicate using either queues or
function calls, so threads can cross module boundaries. Click is a domain-specific system
for obtaining high concurrency in a packet router, and as such is less general and lower-
level than the framework presented here. Click uses both push and pull semantics for flow
control; that is, packet processing modules can send data downstream or request that data
be pushed upstream to it. The rationale for pull processing is that push semantics require
packets to be queued up before stages which are not ready to process a packet (for example,
when a network port is busy). The push/pull distinction is important when threads can
cross module boundaries, as is the case in Click. Our framework always imposes a queue
between modules, so threads push data downstream (to other queues) and pull data up-
stream (from their incoming queue). Click could be implemented using our framework, by
creating a thread pool boundary (using the Wrap pattern) where a queue exists between

two Click modules. Click modules that communicate through function calls would operate

151

within a single task handler using our framework.

Many high-performance web server and proxy cache implementations use events
for achieving high throughput and high concurrency. For example, the Harvest web cache
[26] contains a single thread, and uses non-blocking I/O mechanisms for passing completions
through the various layers of the system. Similarly, the Flash web server [105] uses events
for network I/0O, and a thread pool to simulate events for disk I/0.

High speed I/O systems have also been the focus of much study. On the networking
side, much progress has been made in the realm of fast and zero-copy network transports
[128, 127, 30, 102] and operating system structure to support fast networking [43, 77, 106,
44]. Work has also gone into obtaining balanced I/O streaming in cluster environments
[10, 9]. Our work is complementary to this research, and can be layered on top of these

existing techniques or mechanisms.

9.2 Scalable Storage Systems

Litwin et al.’s scalable, distributed data stores (SDDS) such as RP* and LH* [83,
90, 91, 92] helped to motivate our own work. Their work focuses primarily on defining the
theoretical and algorithmic properties of a family of scalable data structures, demonstrating
properties such as the smooth incremental scalability and fault tolerance in the presence
of failures. Their work does not, however, consider the systems issues of implementing
an SDDS that satisfies the concurrency, availability, and incremental scalability needs of
Internet services; most of their proposed data structures have not been implemented or
tested with the same operational rigour as our distributed hash table. In addition, the
consistency model offered by their data structure is unspecified.

There are a variety of projects that provide programmatically accessible storage in

152

the infrastructure. The Linda project [3] provides a collaborative storage space to be used
for both data persistence, process synchronization, and event posting; Linda became quite
sophisticated, incorporating notions of transactions and query processing. Linda imposed
its own storage and access methods on applications, and didn’t allow them to select from a
number of different data structures, which is the ultimate goal of our work. Furthermore,
Linda didn’t focus on making its storage available and scalable, and it was not implemented
in a clustered environment. Recent spinoffs of Linda include the IBM TSpaces project
[133] and Sun’s JavaSpaces [98], both of which provide Linda-like functionality to the Java
environment, but in a non-scalable way.

The single-node hash table, although not the primary focus of our work, is related
to the design and implementation of single-node file systems [96, 111] and databases [11,
25, 58, 63, 65, 95, 117, 118]. Our current design is relatively naive in comparison to this
research. For example, if a service currently receives write traffic with little locality, then
the single-node hash table design will become a bottleneck due to seeks. To ameliorate this,
we could adopt a log-structured approach similar to [111] to merge the many writes into a
single log; writing this log would result in sequential traffic, eliminating expensive seeks.

Our work has a great deal in common with distributed and parallel databases.
The problems of partitioning and replicating data across shared-nothing multicomputers
has been studied extensively in these communities [46, 64, 89, 120]. We use mechanisms
such as horizontal partitioning and two-phase commits, but we do not need an SQL parser
or a query optimization layer since we have no general-purpose queries in our system. If
we were to strengthen the consistency model of our hash table to include transactions, the
resulting system would look very similar to a distributed relational storage system (RSS),
to use the terminology of [11].

We also have much in common with distributed and parallel file systems

153

[6, 33, 48, 84, 113, 126]. A DDS presents a higher-level interface than a typical file system,
and DDS operations are data-structure specific and atomically affect entire elements. Our
research has focused on scalability, availability, and consistency under high throughput,
highly concurrent traffic, which is a different focus than file systems. Our work is most sim-
ilar to Petal [86], in that a Petal distributed virtual disk can be thought of as a simple hash
table with fixed sized elements. Our hash tables have variable sized elements, an additional
name space (the set of hash tables), and focus on Internet-service workloads and properties
as opposed to file-system workloads and properties.

The CMU network-attached secure-disk (NASD) architecture [47] explores
variable-sized object interfaces as an abstraction to allow storage subsystems to optimize
disk layout. This is similar to our own data structure interface, which is deliberately higher-
level than the block or file interfaces of Petal and parallel or distributed file systems.

Distributed object stores [49] attempt to transparently add persistence to dis-
tributed object systems. The persistence of (typed) objects is typically determined by
reachability through the transitive closure of object references, and the removal of objects
is handled by garbage collection. A DDS has no notion of pointers or object typing, and
applications must explicitly use API operations to store and retrieve elements from a DDS.
Distributed object stores are often built with the wide-area in mind, and thus do not focus
on the scalability, availability, and high-throughput requirements of cluster-based Internet
services.

There have been many projects that explored wide-area replicated, distributed
services [45, 99]. Unlike clusters, wide-area systems must deal with heterogeneity, network
partitions, untrusted peers, high-latency and low-throughput networks, and multiple ad-
ministrative domains. Because of these differences, wide-area distributed systems tend to

have relaxed consistency semantics and low update rates. However, if designed correctly,

154

they can scale up enormously.

9.3 Clusters and Internet Service Platforms

Much work has gone into researching issues associated with clusters of worksta-
tions. Some of this work focuses on providing run-time environments that attempt to
provide a single, unified system image of the cluster, and on harvesting idle resources in
that cluster [51, 60, 93, 94, 123, 129]. Other systems have attempted to glue wide-area com-
puting systems into a world-wide computational grid [28, 54, 73]. Research has also gone
into issues such as load balancing in a cluster environment, using techniques like implicit
load balancing [8] and locality-aware request distribution [50].

A number of projects have explored the use of clusters of workstations specifically
as a general-purpose platform for building Internet services [2, 7, 35, 55]. To date, these
platforms rely on file systems or databases for persistent state management, or they im-
plement their own service-specific storage layer. Our DDS’s are meant to augment such
platforms with a state management platform that is better suited to the needs of Internet
services. The Porcupine project [112] includes a storage platform built specifically for the
needs of a cluster-based scalable mail server, but they are attempting to generalize their
storage platform for arbitrary service construction.

A recently emerging product category in the commercial world is that of appli-
cation servers, including BEA WebLogic [15], ObjectSpace Voyager [103], and IBM Web-
Sphere [78]. An application server is a middleware platform that bridges the gap between
web server front ends and database back ends; an application server seeks to support scal-
able, concurrent applications using industry-standard programming interfaces, such as En-

terprise Java Beans [121] and Java Servlets [79]. Although these systems provide a variety

155

of application programming interfaces, their internal structure is generally thread based.
Threads, network connections, and database connections are usually pooled to limit resource
consumption on the server; replication is used across several servers to provide scalability
and fault isolation.

Kaashoek et al. [82] and Mogul [100] propose specializing operating system ar-
chitectures for server applications, using Internet services as a specific example. Although
this work focuses on low-level aspects of O/S performance for servers (such as disk and
network access overhead), it also realizes the benefit of an event-driven concurrency model.
In [82], application-specific handlers [130] are used to install application-level event handlers
in the kernel for added performance. This approach complements our design framework by

providing novel kernel-level functionality to improve I/O performance.

156

Chapter 10

Discussion and Future Directions

In the course of experimenting with the programming model of Part II and the
distributed hash table implementation described in Part III, we uncovered a number of
topics that warrant additional exploration and design reconsideration. In this chapter, we

touch upon the most interesting of these topics.

10.1 Programming Model

10.1.1 Debugging

A known weakness of event-driven models is the increased difficulty of debugging
them. The control flow of a task in an event-driven model is no longer equivalent to the
control flow of a single thread, since tasks can span threads by crossing thread boundaries,
or they can have no execution context at all while sitting idle in queues. Because of this,
it is very hard for programmers to trace the chain of events that result from an occurrence
such as task reception. Traditional debuggers only allow programmers to inspect variable
state and to trace the execution of threads; such debuggers have no notion of causality from

events, and accordingly it is impossible for them to provide an event tracing facility.

157

O Q Q) @

N, I

debLJgging
(@) tag (b)

Figure 55: Debugging event flow: In (a), we depict a graph of event handlers and the
event flow between them. A hypothetical debugging “tag” is injected into the event flow
graph. In (b), the resulting event flow paths and affected handlers are highlighted; this
highlighted graph would be output by the debugger, along with timing information.

We see an opportunity to introduce “event aware” debugging capabilities to pro-
grams that make use of the primitives provided by the I/O core; this is possible because
events, event reception, and event dispatch are all strongly typed primitives in our program-
ming model. The debugging tool that we envision would allow a programmer to interrupt
program execution, inspect all current events in the system, and tag any event in order to
initiate the monitoring of its flow. The debugger would then log the path that this event
and any events that are causally related to this event take through the system, and allow
the programmer to inspect this log, as well as all associated events currently in the contour
generated by the chain of causality (Figure 55).!

Even with the strongly typed event and event dispatch mechanisms of the I/O core,
it is still impossible for a debugger to identify all chains of causality. For example, a program
may aggregate multiple event receptions over time to produce a new, single aggregate event;

a debugger has no way to automatically recognize that this has happened. To overcome

!To use a physical metaphor, this is the programming equivalent of an intravenous pylogram (IVP) X-ray
commonly used to inspect patients kidneys; to perform this procedure, doctors inject a special material into
a patient’s bloodstream that appears distinctly on the X-ray, making it possible to trace the flow of blood
into the kidney.

158

this limitation, programmers could instrument their code to provide debugging hints to
the infrastructure regarding such causal events. In the previous examples, the programmer
could explicitly add all of the tags from the incoming events to the outgoing aggregate

event.

10.1.2 Conditioning Beyond Load

One of the benefits of the programming framework that we presented in Chapter

4 is that the explicitly exposed queues and event-driven style of control flow permit the

4 4

use of patterns such as “wrap” to condition application code. The “wrap” pattern imparts
robustness to load, and limits the concurrency of the code to keep it within an efficient
operating regime. The “replicate” pattern imparts robustness in the face of failure, assuming
that the replicated code has some adequate strategy for replicated state management.

An interesting future avenue of work would be to investigate whether or not there
are other mechanisms that could be adopted to further condition code. For example, it
would be extremely useful to be able to allow untrusted third parties to dynamically inject
services into a running Internet service platform. Providing this mechanism would allow
individual programmers to build, debug, and deploy scalable, robust services without re-
quiring them to purchase and manage the cluster and machine room that houses the service.
This would encourage the kind of distributed innovation that was responsible for making
the web so successful: anybody could contribute to the Internet service landscape for rel-
atively little cost. For this to be realistic, uploaded services must be conditioned to cause
isolation from each other: a service must not be able to unreasonably disrupt the operation
of another service. Isolation would involve imposing and enforcing limits on memory con-

sumption, disk consumption, disk and network channel rates, as well as sandboxing code

for the sake of security.

159

As an example of how to approach this additional condition- T%T%

ing, the sink abstraction discussed in Chapter 5 could be exploited

throttle
to simplify the enforcement of rate limits on disk and network chan-

rate r

nels. Because all sinks implement the same SinkIF abstract interface,
we could dynamically interpose a “throttle” element with this same @ SinkIF
interface on the sink, but have the throttle element perform rate limiting on its output
flow. There could be many classes of throttle implementations that experiment with dif-
ferent rate limiting policies, such as leaky-bucket algorithms, fair queueing [39, 107], or
class-based queueing [52].

In addition to conditioning individual stages, we could also apply conditioning
across entire services that encompass multiple stages. Our programming framework consid-
ers services to be directed graphs of composed stages and patterns. These graphs look very
similar to computer networks, in that they are composed of computational elements with
queues, and data that flows between these elements in discrete “packets”. It is possible
that many of the same techniques used in the network community to induce good behavior
on networks could be used to condition services, for example imposing flow control, con-

gestion control, and using routing algorithms to induce a balance of data flow across the

computational elements.

10.1.3 Demultiplexing and Layering

A challenge we encountered while building large, layered systems using our pro-
gramming framework was being able to demultiplex events that arrive at a high-level layer
from a lower-level layer. Because of our concurrency model, if the high-level layer needs
to perform a long-latency operation using the lower layer, the high-level layer will bundle

up the state associated with the executing task, and then asynchronously dispatch the op-

160

task ID| state

<

demux

=

S

Layer N+1

@
Layer N+1

thread boundary
@ Layer N

Layer N

(a) (b)

3

||1111111

mm
mm
[m |- thread boundary
EES mm

Layer N+1

Layer N

Figure 56: Demultiplexing: (a) Shows the demultiplexing challenge in our current code:
given an incoming completion event, the event handler thread must match that completion
with the task state associated with the completion. In (b), we show how we could route
completions directly to handler interfaces wrapped around task state, eliminating demulti-
plexing altogether, but also eliminating thread boundaries. In (c), we show how to eliminate
demultiplexing while preserving thread boundaries.
eration on the lower layer. Eventually, a completion event will flow from the lower layer
and arrive at the higher layer. The demultiplexing challenge is in being able to find the
appropriate bundled state for the task to receive the completion, based only on information
in the completion itself.

As mentioned in Section 5.1.1, we augmented our APIs to allow callers to specify
completion handlers for every I/O request that they issued. This was done to allow multiple

applications to share lower layers, allowing completions to be automatically routed to the

correct application. However, once the completion arrives at the application, there is still

161

demultiplexing that must be done between concurrent tasks (Figure 56a).

We believe that some additional syntactic sugar can eliminate even this demulti-
plexing. Instead of storing an opaque state bundle to store tasks that are awaiting comple-
tions, we could wrap each of these bundles with fine-grained, dynamically created comple-
tion handler object. We could then specify this handler as the destination for completions
for any requests generated by the handler’s task. Completion events would thus arrive as
method invocations on a task object, instead of arriving as elements on an application’s
queue and needing further demultiplexing (Figure 56b). A wrinkle with this approach is
that it effectively removes the thread boundary between the layers, but this can easily be
reintroduced by having the wrapper reenqueue the completion and the destination task on

a queue (Figure 56c¢).

10.2 Distributed Data Structures

10.2.1 Indexes and Embeddable Data Structures

As we were building services using the distributed hash table DDS, it became clear
that many services would benefit from the ability to embed complex structures inside a hash
table. For example, in the collaborative filtering engine for the jukebox, the engine would
store one hash table record for every song that a given user had listened to. Whenever a
user played a song, the engine would simply look up the record for that song, and modify it.
Occasionally, however, the engine would need to gather all records for a given user. In order
to be able to do this, the engine manually maintained an index block for each user that
included the keys of all records for that user. To fetch all records, the engine would retrieve
this block, and afterwards retrieve (in parallel) all records in that index. The unfortunate

consequences of this are that the index blocks grow with the size of the users’ record sets,

162

and that each addition of a record must be accompanied with a modification of an index
block. Both consequences contributed to poor performance.

A better alternative to this index block would be to allow services to embed small
data structures in the hash table. For example, the collaborative filtering engine could
maintain a linked list across user records by having each record contain the key of the
next record in the list. A challenge with doing this is maintaining the consistency of the
embedded data structure without using transactions. Fortunately, because of the fact that
we have two-phase commit already implemented in the hash table, we can exploit it to add
additional atomic operations, as long as they only affect a single element. For example, we
could add an atomic compare-and-swap operation, and given this, it is possible to build a
consistent embedded linked list.

A second alternative to the currently implemented index block for the collaborative
filtering engine would be to provide additional data structures that can serve as an index.
For example, if users’ records were stored in a B-tree instead of a hash table, enumerating

all of the records would be an operation that is directly supported by the B-tree.

10.2.2 Transactions vs. Atomic Actions

As mentioned in Section 7.2.1, adding transactional support to the distributed
hash table would introduce significant complexity and would warrant a substantial recon-
sideration of its design. However, many authors that implemented services using our hash
table expressed a desire to be able to perform multiple operations atomically. This desire
was originally expressed as a need for transactions, but upon closer discussion, it became
clear that in most cases, authors needed to be able to perform atomic read-modify-write
operations on single elements, rather than multiple operations that span elements (trans-

actions).

163

These sorts of atomic operations permit the use of non-blocking synchronization
primitives, as discussed in [67]. Non-blocking synchronization has a number of important
benefits. It allows synchronized code to be executed in asynchronous event handlers, without
fear of introducing deadlock. It also fully decouples process scheduling and synchroniza-
tion; priority inversion is impossible with non-blocking synchronization. Finally, and most
importantly, it completely insulates systems from deadlock due to processes failing while
holding locks. For all three of these reasons, we believe that adding suitable non-blocking
synchronization primitives can completely obviate the need for a lock manager.

Most non-blocking synchronization primitives (such as test-and-set,
compare-and-swap, or load-linked-store-conditional) affect only a single element.
However, more sophisticated primitives (such as double-compare-and-swap) exist that
can vastly simplify non-blocking data structure implementations, but these primitives re-
quire the atomic modification of multiple elements. We believe that we can extend our
two-phase commit to handle these multi-element atomic operations, but an interesting al-
ternative would be to perform these operations on multiple bytes within the same hash
table element. This would subtly introduce additional typing into the hash table interface,
as specific bytes within elements would have meaning, instead of elements being completely

opaque byte arrays.

10.2.3 Caching and Code Shipping

Our current distributed hash table implementation only makes use of caching
within the bricks: disk blocks are accessed through the single-node hash table’s buffer
cache. Because of this, every read or write operation from a service results in network com-
munication between DDS libraries and bricks, and a read or write being performed on one

or more bricks’ single-node hash tables. However, if there are workloads with considerable

164

read or write locality, the distributed hash table would greatly benefit from distributed
or cooperative caching by the DDS libraries. The mechanisms and policies that would be
necessary for such caching are well-explored by previously research, such as [38]. Scalably
maintaining cache consistency, and maintaining data availability in the face of cache failures
would be the major design challenges; we believe that the correct path to doing so would
be to use callback style cache consistency [48], in which bricks would notify libraries upon
invalidation of hash table entries, as this style of cache consistency has proven to be scalable
in previous projects.

Similarly, the current distributed hash table implementation is completely focused
on data-shipping: any computation that is done on hash table elements must be done by
services after having retrieved the elements, incurring the overhead associated with network
communication. We can conceive of many services that would benefit from the ability to
perform code-shipping, i.e., causing computation to be performed at the bricks that store
the data. For example, if a service wished to select a hash table element based on its content,
we would currently require that service to enumerate through all hash table elements, in
essence copying the entire distributed hash table over the network and pushing it through a
service filter. A much more efficient way to do this would be to ship the selection criteria in
parallel to all bricks, and have the bricks perform a local search. This way, only the result
of the selection would be transferred over the network.

One method of closely approximating true code-shipping is to give services insight
into the toplogy of the distributed hash table, by granting them access to the current DP
and RG maps. A service could then arrange to execute instances of itself on appropriate
bricks’ nodes, and directly manipulate single-node hash tables. Of course, by doing so,
services would give up the consistency and transparent incremental scalability that the

distributed hash table libraries provide. Accordingly, we expect that this technique would

165

only be useful for read-only operations, such as selection.

10.2.4 Administration

This dissertation did not broach the topic of distributed hash table administration.
A distributed hash table cannot be completely maintenance free; there are a number of
events that can occur that require human intervention. If the contents of a hash table
grow to exceed the aggregate capacity of the hash table bricks, an administrator must add
more nodes to the cluster, and arrange for “split” operations to occur to incorporate this
additional disk space. Similarly, if a node fails, an administrator must add a replacement
node to the cluster, and arrange for recovery to initiate. We also believe that a DDS should
be instrumented to report current operating conditions, such as request throughput and
latency, and the distribution of requests across keys (to look for potential hotspots).

Our position is that the infrastructure can provide hooks for carrying out adminis-
trative tasks such as recovery, node addition, etc., but that human operators should initiate
these tasks, rather than relying purely on automatic code to handle them. Including a well-
trained human in the administrative chain helps to ensure that reasonable administrative
decisions occur. The infrastructure can help with these decisions, for example by enforcing
the constraint that no two replicas of the same partition are assigned to the same brick, or

by suggesting additional replication to ease hotspots.

10.3 Future Directions

As is often the case, the research in this dissertation has generated as many (or
perhaps even more) questions than it answered: there are several unexplored areas of fertile

research that are offshoots of this work. In this section, we highlight several of these.

166

10.3.1 Layered Distributed Data Structures

Given a DDS such as our distributed hash table, it would be interesting to consider
whether or not it is possible to layer higher-level data structures on top of it. For example,
given a hash table and a B-tree, a useful aggregate data structure to have would be an
indexed hash table through which content could be located both by key (via the hash table)
or by searching/filtering on content (via the B-tree). If it were a relatively simple matter for
service authors to build higher-level data structures, then they could implement structures
that are particularly well suited to their specific service.

We expect that there will be significant challenges with building layered data
structures. Ideally, authors would be able to build higher layers without having to explicitly
worry about preserving the scalability, consistency, or availability characteristics of the
lower-layer “foundation” data structures. However, it is not at all clear how to do this
without resorting to heavyweight mechanisms such as nested transactions, or having to
reveal the partitioning and replication schemes of the foundation structures so that the
higher-level structures can exploit them.

An alternative to layering higher-level data structures on top of “foundation” struc-
tures such as hash tables and trees is to provide a DDS construction kit that contains a
library of reusable essential elements of all distributed data structures. This library would
include two-phase commit code, group membership maps, buffer caches, single-node data
structure implementations, communications primitives, and perhaps split-phase RPC stub
compilers. Given these pieces, it would be significantly easier to implement a service-specific
distributed data structure than writing one completely from scratch. However, even with
these pieces, the details of partitioning, load and content balancing, recovery, and even just
getting the interfaces correct are subtle and complex. For these reasons, we suspect that

the layering approach would be more readily adopted.

167

10.3.2 A Distributed Lock Manager

The experience we gained with using the distributed hash table as a lock manager
(Section 8.1.2) demonstrated that although there is demand for a lock manager, the current
DDS implementation is unsuitable for use as such. Two DDS implementation choices lead
to this unsuitability: the use of parallel PREPARE messages in the two-phase commit, and
the use of spinning retries if an operation fails.

A better lock manager implementation would keep a list of waiting tasks that have
requested access to a held lock; when the lock is released, one of these waiting tasks would be
notified. Notification obviates spinning, and fits in well with our upcall-based event-driven
programming framework. For the lock manager to be highly available, the list of waiting
process must be replicated. However, in order to guarantee that the replicas have the same
list order, some sort of two-phase commit (or other total-ordering protocol) must be used
on insert into the list. If a two-phase commit is used, then we must avoid using parallel
PREPARE messages in the first phase, or risk suffering the same performance degradation
under contention as experienced in Section 8.1.2.

There are two implementation paths to building a lock manager. The easiest path
would be to embed the list of waiting processes inside a distributed hash table, relying
on the non-blocking synchronization primitives that we discussed earlier in Section 10.2.2
in order to manage this embedded data structure. However, with this implementation,
the service library that releases a lock would be responsible for notifying the next waiting
process in the lock’s list; we would need to design a scheme by which waiters periodically
poll the lock list in case the service library fails before issuing this notification. Unless
the two-phase commit were modified for lock operations (which is entirely possible given
the modularity of the hash table implementation), the resulting lock manager may suffer

degraded performance under high contention, but far less so than in the implementation

168

in Section 8.1.2, since once a process makes it onto the waiter list, it no longer actively
contends for access to the lock.

A second path would be to implement a new distributed lock manager data struc-
ture. Doing so would require significant implementation effort, but the resulting implemen-

tation could be highly tuned for the lock manager workload.

10.3.3 A Better Single-Node Hash Table

As previously mentioned, our current single-node hash table implementation is
relatively naive. It is designed for workloads with significant read and write locality; if
the offered workload doesn’t have enough locality, the hash table performance is disk seek
dominated. In addition, the hash table makes no effort to keep its on-disk image consistent,
so in the case of failure, the entire hash table must be recovered from a peer. Improving
disk performance in the case of traffic with poor locality could be addressed by using log-
structured file system techniques [111] (in which all writes are directed to a log, resulting in
sequential write traffic). Maintaining high performance while preserving on-disk consistency
could be achieved by using techniques from journaling file systems, which keep a log of
operations that can be replayed after a crash for quick recovery, or by using a technique
similar to soft updates [97], which carefully orders data and metadata writes so that the

on-disk image is always consistent.

10.3.4 Additional Data Structures

We would like to implement a few other additional data structures. We believe
that an adequate set of structures to build a very large set of interesting services includes
our existing distributed hash table, but also a distributed administrative log and some form

of a distributed tree. Administrative logging (i.e., using a log to report interesting events,

169

‘ Service ‘ Data structures used ‘

Web Server read-mostly hash table: (static documents, caching popu-
lar documents, caching dynamically generated documents), log:
(tracking accesses)
Web Proxy Cache | hash table: (caching documents), log: (tracking accesses)
Search Engine hash table: (caching popular queries), log: (spooling crawl
data), hash table: (word to document relation tables), tree:
(index over documents), log: (tracking accesses)
PIM Server hash table: (document repository), hash table, tree: (in-
dexes over repository), log: (tracking accesses), log: (write-
ahead logging for atomic, durable refiling operations). PIM
stands for Personal Information Management, i.e. applications
such as email and shared calendars.
Chat Engine hash table: (client binding cache), tree, hash table: (indexes
over client list), log: (tracking accesses, archiving chat sessions)

Table 10.1: Examples of Services: This table shows how one could hypothetically build
some common Internet services out of a distributed hash table, a distributed tree, and a
distributed log.

in the style of a web server log) is common to most services. The consistency model of an
administrative log is weaker than a hash table: all that matters is that all events are logged
in roughly the order they were generated, and that no events are lost. A tree provides the
notion of ordering, which would allow the construction of indexes and the issuance of range

queries. Table 10.1 shows how to hypothetically implement a number of common modern

Internet services using these three data structures.

10.3.5 Alternative Languages to Java

The current performance bottleneck of the distributed hash table (assuming some
locality in traffic) is related to our choice to use Java as our implementation language.
Garbage collection, expensive class libraries, memory copies arising from the lack of point-
ers and also due to Java’s network and disk abstractions, and the overall degradation in

performance due to immature compiler implementations all contributed to relatively poor

170

performance. Although optimal performance was never an explicit goal, and although we
were successful in building a scalable implementation, we nonetheless feel that switching to
a compiled language such as C++ would permit much more detailed exploration of issues
such as damping the variability of throughput and latency, and more carefully balancing
cluster resources such as CPU, bus bandwidth, disk throughput, and network through-
put. The use of Java simply takes away too much of our ability to control memory usage,
processor usage, and memory copies, preventing us from being able to explore such issues.

By switching to C++, we would also be able to more accurately compare our im-
plementation to related abstractions such as parallel file systems or databases. Currently,
the performance overhead introduced by Java makes such comparison unfair. For exam-
ple, because of the economy of mechanism in our distributed hash table, we feel that an
optimized implementation should achieve equivalent or higher throughput than modern re-
lational databases. Also, we would be able to compare the performance of our scalable web
server application that uses the distributed hash table to other high performance or scalable
web server implementations, whereas currently the poor performance of our Java-based web

server implementation prevents us from achieving comparable throughput.

10.3.6 Different Consistency Models

Our current hash table implementation offers only one consistency model, although
this model and its implications are precisely described and well understood. There are many
other consistency models that could be explored, such as transactional consistency, release-
oriented consistency, or weak consistency on writes for read-mostly workloads. In addition
to the obvious implications of performance and service expressability, we believe that the
assumptions we made for our hash table implementation (described in Section 7.1) could

be reexamined and perhaps weakened for these alternate consistency models.

171

Chapter 11

Conclusion

In this thesis, we have demonstrated that there is a programming model, a set of
I/O abstractions, and a design framework that are much better suited to high concurrency,
I/0O centric scalable Internet services than the traditional thread-per-task, synchronous I/O
model. We described this programming model and design framework in terms of design
patterns that can be applied to code in order to layer it, condition it against load and
concurrency, and replicate and pipeline it to give it high performance and availability.
Services built using this framework behave well when scaled up, and the explicit queues in
the model naturally impart the service property of graceful degradation.

Using this programming model, we demonstrated that it is possible to build a
scalable storage platform specifically designed for the needs of Internet services. This storage
platform contains all of the service properties; if services relinquish all of their persistent
state management to this platform, then they inherit these service properties from the
storage platform. This platform, called a distributed data structure, exports a conventional
single-site data structure interface, but transparently partitions and replicates the data

across a cluster. We made use of clusters’ properties in order to tune the design of the DDS

172

to best handle the workloads of Internet services and the failure properties of well-managed
clusters.

Given these two elements (the Internet service design framework and the scalable
persistent state management platform), we showed that it is possible to easily build a large
and interesting class of Internet services that possess all of the service properties. We
described several services that we implemented, including a scalable web server, and an
instant messaging translation gateway.

There is a rich body of related work to this dissertation, primarily from three
research communities: efficient programming models and primitives, scalable storage sys-
tems (including file systems and databases), and platforms for Internet service construction.
We believe that our own work represents a synthesis and evolution of ideas from many of
these communities, resulting in a important new design framework and storage abstraction

particularly suitable for the emerging world of infrastructural services.

173

Bibliography

[1]

2]

Amazon.com Inc. The Amazon.com Web Service. http://www.amazon. com.

Elan Amir, Steven McCanne, and Randy Katz. An Active Service Framework and
its Application to Real-Time Multimedia Transcoding. In Proceedings of ACM SIG-

COMM 98, pages 178-189, October 1998.

B. Anderson and D. Shasha. Persistent Linda: Linda + Transactions + Query Process-
ing. In Springer-Verlag Lecture Notes in Computer Science 574, Mont-Saint-Michel,

France, June 1991.

T. E. Anderson, D. E. Culler, and D. Patterson. A Case for NOW (Networks of

Workstations). IEEE Micro, 12(1):54-64, February 1995.

Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy.
Scheduler Activations: Effective Kernel Support for the User-Level Management of

Parallelism. ACM Transactions on Computer Systems, 10(1):53-79, February 1992.

Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe, David A. Patterson,
Drew S. Roselli, and Randolph Y. Wang. Serverless Network File Systems. In Pro-
ceedings of the 15th ACM Symposium on Operating Systems Principles, December

1995.

7]

[10]

[11]

[12]

174

D. Andresen, T. Yang, O. Egecioglu, O. H. Ibarra, and T. R. Smith. Scalability Issues
for High Performance Digital Libraries on the World Wide Web. In Proceedings of

IEEE ADL ’96, Washington D.C., May 1996.

Andrea C. Arpaci-Dusseau, David E. Culler, and Alan Mainwaring. Scheduling with
Implicit Information in Distributed Systems. In Proceedings of the 1998 SIGMET-
RICS Conference on the Measurement and Modeling of Computer Systems, pages

233-243, Madison, Wisconsin, USA, June 1998.

Remzi Arpaci-Dusseau, Andrea Arpaci-Dusseau, David E. Culler, Joseph M. Heller-
stein, and David A. Patterson. The Architectural Costs of Streaming I/O: A Compar-
ison of Workstations, Clusters, and SMPs. In Proceedings of the Fourth International
Symposium on High-Performance Computer Architecture, Las Vegas, Nevada, USA,

February 1998.

Remzi H. Arpaci-Dusseau, Eric Anderson, Noah Treuhaft, David E. Culler, Joseph M.
Hellerstein, David A. Patterson, and Katherine Yelick. Cluster I/O with River: Mak-
ing the Fast Case Common. In Proceedings of the Sizth Workshop on I/0 in Parallel

and Distributed Systems (IOPADS ’99), May 1999.

Morton M. Astrahan, Mike W. Blasgen, Donald D. Chamberlin, Kapali P. Eswaran,
Jim Gray, Patricia P. Griffiths, W. Frank King, Raymond A. Lorie, Paul R. McJones,
James W. Mehl, Gianfranco R. Putzolu, Irving L. Traiger, Bradford W. Wade, and
Vera Watson. System R: Relational Approach to Database Management. ACM Trans-

actions on Database Systems (TODS), 1(2):97-137, 1976.

Gaurav Banga and Peter Druschel. Measuring the Capacity of a Web Server. In

[13]

[14]

[15]

[16]

[17]

[18]

[19]

175

Proceedings of the First USENIX Symposium on Internet Technologies and Systems

(USITS ’97), Monterey, CA, December 1997.

Gaurav Banga, Jeffrey C. Mogul, and Peter Druschel. A Scalable and Explicit Event
Delivery Mechanism for UNIX. In Proceedings of the USENIX 1999 Annual Technical

Conference, Monterey, CA, June 1999.

Guarav Banga and Jeffrey C. Mogul. Scalable Kernel Performance for Internet Servers

under Realistic Loads, June 1998.

BEA Systems. BEA WebLogic Application Servers. http://www.bea.com/products/

weblogic/.

T. Berners-Lee, R. Cailliau, A. Loutonen, H.F. Nielsen, and A. Secret. The World
Wide Web. Communications of the ACM, 37(8):76-82, August 1994. Also see http:

//info.cern.ch/hypertext/WWW/TheProject .html.

A. Bhushan, B. Braden, W. Crowther, E. Harslem, J. Heafner, A. McKenzie,
J. Melvin, B. Sundberg, D. Watson, and J. White. The File Transfer Protocol. RFC

172, June 1971.

David Bindel, Yan Chen, Patrick Eaton, Dennis Gees, Ramakrishna Gummadi, Sean
Rhea, Hakim Weatherspoon, Westley Weimer, Christopher Wells, Ben Zhao, and John
Kubiatowicz. OceanStore: An Extremely Wide-Area Storage System. In Proceedings
of the Ninth International Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS-IX), Cambridge, MA, November 2000.

Andrew D. Birrell and Bruce Jay Nelson. Implementing Remote Procedure Call. ACM

Transactions on Computing Systems, 2(1):39-59, February 1984.

[20]

21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

176

C. Mic Bowman, Peter B. Danzig, Darren R. Hardy, Udi Manber, Michael F. Schwartz,
and Duane P. Wessels. Harvest: A Scalable Customizable Discovery and Access Sys-

tem. Technical Report CU-CS-732-94, Department of Computer Science, University

of Colorado, Boulder, March 1995.

R. Braden. Requirements for Internet Hosts — Communication Layers. RFC 1122,

October 1989.

T. Brisco. RFC 1764: DNS Support for Load Balancing, April 1995.

P. Buonadonna, J. Coates, S. Low, and D.E. Culler. Millennium Sort: A Cluster-
Based Application for Windows NT using DCOM, River Primitives and the Virtual
Interface Architecture. In Proceedings of the 3rd USENIX Windows NT Symposium,

Seattle, WA, July 1999.

P. Buonadonna, A. Geweke, and D. Culler. An Implementation and Analysis of the

Virtual Interface Architecture. In Proceedings of SC’98, November 1998.

Michael J. Carey, Joseph M. Hellerstein, and Michael Stonebraker. Designing the B-1:

A Universal System for Information. Personal Communication, February 1999.

A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and K. J. Worrell.
A Hierarchical Internet Object Cache. In Proceedings of the 1996 Useniz Annual

Technical Conference, January 1996.

Mike Chen, Rob von Behren, and Nikita Borisov. Getting Started with vSpace v2.

http://www.cs.berkeley.edu/ "mikechen/vspace/.

Bernd O. Christiansen, Peter Cappello, Mihai F. Tonescu, Michael O. Neary, Klaus E.
Schauser, and Daniel Wu. Javelin: Internet-Based Parallel Computing Using Java.

UC Santa Barbara Dept. of Computer Science, 1997.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

177

B.N. Chun and D.E. Culler. REXEC: A Decentralized, Secure Remote Execution En-
vironment for Clusters. In Proceedings of the 4th Workshop on Communication, Ar-
chitecture, and Applications for Network-based Parallel Computing, Toulouse, France,

January 2000.

Brent Chun, Alan M. Mainwaring, and David E. Culler. Virtual Transport Protocols

for Myrinet. In Proc. Hot Interconnects 97, 1997.

F. J. Corbato, M. Merwin-Daggett, and R. C. Daley. An Experimental Time-Sharing
System. In AFIPS Proceedings of the 1962 Spring Joint Computer Conference, pages

335-344, 1962.

Fernando J. Corbaté and Victor A. Vyssotsky. Introduction and Overview of the
Multics System. In AFIPS Conference Proceedings, 1965. Available at http://www.

1illi.com/fjccl.html.

Thomas H. Cormen and David Kotz. Integrating Theory and Practice in Parallel File
Systems. In Proceedings of the 1993 DAGS/PC Symposium, pages 64-74, Hanover,

NH, June 1993. Dartmouth Institute for Advanced Graduate Studies.
HotMail Corporation. Hotmail. http://www.hotmail.com.

Inktomi Corporation. The Inktomi Technology Behind HotBot, May 1996. http:

//www.inktomi.com/products/network/traffic/tech/clustered.html.

Myricom Corporation. Myrinet Performance Measurements. http://www.myri.com/

myrinet/performance/index.html.

Mark E. Crovella and Azer Bestavros. Explaining World Wide Web Traffic Self-
Similarity. Technical Report TR-95-015, Computer Science Department, Boston Uni-

versity, Oct 1995.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

178

Michael D. Dahlin, Clifford J. Mather, Randolph Y. Wang, Thomas E. Anderson,
and David A. Patterson. A Quantitative Analysis of Cache Policies for Scalable
Network File Systems. In Proceedings of the SIGMETRICS ’94 Annual Conference
on Measurement and Modeling of Computer Systems, Nashville, Tennessee, May 1994.

Association for Computing Machinery.

Alan Demers, Srinivasan Keshav, and Scott Shenker. Analysis and Simulation of a
Fair Queueing Algorithm. In Proceedings of the ACM SIGCOMM Conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer Communications,

pages 1-12, Austin, TX, September 1989.

Alan Demers, Karin Petersen, Mike Spreitzer, Doug Terry, Marvin Theimer, and
Brent Welch. The bayou architecture: Support for data sharing among mobile users.
In Proceedings of the 1994 Workshop on Mobile Computing Systems and Applications,

December 1994.

UC Berkeley CS Division. The Millennium Project (home page), 1999. http://

millennium.berkeley.edu.

Douglas C. Schmidt and Donal F. Box and Tatsuya Suda. ADAPTIVE: A Dynami-
cally Assembled Protocol Transformation, Integration, and eValuation Environment.

Concurrency Practice and Ezperience, 5(4), June 1993.

Peter Druschel and Gaurav Banga. Lazy Receiver Processing: A Network Subsystem
Architecture for Server Systems. In Proceedings of the USENIX 2nd Symposium
on Operating System Design and Implementation (OSDI ’96), Seattle, WA, USA,

October 1996.

Peter Druschel and Larry Peterson. Fbufs: a High-Bandwidth Cross-Domain Transfer

[45]

[46]

[47]

[48]

[49]

[50]

[51]

179

Facility. In Proceedings of the 15th ACM Symposium on Operating Systems Principles,

December 1993.

A.D. Birrell et al. Grapevine: An Exercise in Distributed Computing. Communica-

tions of the Association for Computing Machinery, 25(4):3-23, Feb 1984.

D. DeWitt et al. The Gamma Database Machine Project. IEEE Transactions on

Knowledge and Data Engineering, 2(1), March 1990.

G. A. Gibson et al. A Cost-Effective, High-Bandwidth Storage Architecture. In
Proceedings of the Eighth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS-VIII), San Jose, California,

1998.

J. H. Howard et al. Scale and Performance in a Distributed File System. ACM

Transactions on Computer Systems, 6(1), February 1988.

P. Ferreira et al. PerDiS: Design, Implementation, and Use of a PERsistent DIs-
tributed Store. In Recent Advances in Distributed Systems, volume 1752 of Lecture
Notes in Computer Science, chapter 18, pages 427-452. Springer-Verlag, February

2000.

V. S. Pai et al. Locality-Aware Request Distribution in Cluster-Based Network
Servers. In Proceedings of the Eighth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS-VIII), San Jose,

CA, Oct 1998.

R.E. Ewing, R.C. Sharpley, D. Mitchum, P. O’Leary, and J. Sochacki. Distributed

Computation of Wave Propagation Models Using PVM. In Proceedings of the IEEE

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

180

Supercomputing 93 Conference, Portland, OR, November 1993. IEEE Computer So-

ciety and ACM SIGARCH.

Sally Floyd and Van Jacobson. Link-Sharing and Resource Management Models for

Packet Networks. IEEE/ACM Transactions on Networking, 3(4), August 1995.

National Laboratory for Applied Network Research. The Squid Internet Object Cache.

http://squid.nlanr.net.

Ian Foster and Carl Kesselman. Globus: A Metacomputing Infrastructure Toolkit.

International Journal of Supercomputer Applications, 11(2):115-128, 1997.

A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier. Cluster-Based
Scalable Network Services. In Proceedings of the 16th ACM Symposium on Operating

Systems Principles, St.-Malo, France, October 1997.

Armando Fox and Eric A. Brewer. Harvest, Yield, and Scalable Tolerant Systems. In

Proceedings HotOS-VII, Rio Rico, Arizona, March 1999.

Armando Fox, Steven D. Gribble, Eric A. Brewer, and Elan Amir. Adapting to
Network and Client Variability via On-Demand Dynamic Distillation. In Proceedings

of the Seventh International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS-VII), Cambridge MA, October 1996.

Michael J. Franklin. Concurrency Control and Recovery. In The Handbook of Com-

puter Science and Engineering, A. Tucker, ed., CRC Press, Boca Raton, 1997.

Nicolas D. Georganas. Self-Similar (“Fractal”) Traffic in ATM Networks. In Pro-
ceedings of the 2nd International Workshop on Advanced Teleservices and High-
Speed Communications Architectures (IWACA ’94), pages 1-7, Heidelberg, Germany,

September 1994.

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

181

Douglas P. Ghormley, David Petrou, Steven H. Rodrigues, Amin M. Vahdat, and
Thomas E. Anderson. GLUnix: A Global Layer Unix for a Network of Workstations.

In Software Practice and Ezperience, volume 28:9, July 1998.

I. Goldberg, S. D. Gribble, D. Wagner, and E. A. Brewer. The Ninja Jukebox. In The
2nd USENIX Symposium on Internet Technologies and Systems, Boulder, Colorado,

USA, October 1999.

J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesley,

Reading, MA, 1996.

G. Graefe. Query Evaluation Techniques for Large Databases. ACM Computing

Surveys, 25(3):73-170, June 1993.

Goetz Graefe. Encapsulation of Parallelism in the Volcano Query Processing System.
In ACM SIGMOD Conference on the Management of Data, Atlantic City, NJ, USA,

May 1990.

J. N. Gray, R. A. Lorie, and G. F. Putzolu. Granularity of Locks in a Large Shared
Database. In Proceedings of the Conference on Very Large Data Bases, Framingham,

MA, USA, September 1995.

Jim Gray. The Transaction Concept: Virtues and Limitations. In Proceedings of

VLDB, Cannes, France, September 1981.

Michael Greenwald and David Cheriton. The Synergy Between Non-Blocking Syn-
chronization and Operating System Structure. In Proceedings of the USENIX 2nd
Symposium on Operating System Design and Implementation (OSDI ’96), Seattle,

WA, USA, October 1996.

[68]

[69]

[70]

[71]

[72]

[73]

182

S. D. Gribble and E. A. Brewer. System Design Issues for Internet Middleware Ser-
vices: Deductions from a Large Client Trace. In Proceedings of the 1997 USENIX
Symposium on Internet Technologies and Systems (USITS 97), Monterey, California,

USA, December 1997.

Steven D. Gribble, Eric A. Brewer, Joseph M. Hellerstein, and David Culler. Scalable,
Distributed Data Structures for Internet Service Construction. In Proceedings of the
4th USENIX Symposium on Operating System Design and Implementation (OSDI

2000), San Diego, California, USA, October 2000.

Steven D. Gribble, Matt Welsh, Eric A. Brewer, and David Culler. The MultiSpace:
an Evolutionary Platform for Infrastructural Services. In Proceedings of the 1999

Useniz Annual Technical Conference, Monterey, California, USA, Jun 1999.

Steven D. Gribble, Matt Welsh, Rob von Behren, Eric A. Brewer, David Culler,
N. Borisov, S. Czerwinski, R. Gummadi, J. Hill, A. Joseph, R.H. Katz, Z.M. Mao,
S. Ross, , and B. Zhao. The Ninja Architecture for Robust Internet-Scale Systems
and Services. Computer Networks, 2000. Special Issue on Pervasive Computing, To

Appear, http://www.cs.berkeley.edu/“gribble/papers/ninja.ps.gz.

Robert Grimm, Tom Anderson, Brian Bershad, and David Wetheral. A System Archi-
tecture for Pervasive Computing. In Proceedings of the 9th ACM SIGOPS European

Workshop, Kolding, Denmark, September 2000.

Andrew S. Grimshaw, William A. Wulf, James C. French, Alfred C. Weaver, and Paul
F. Reynolds Jr. Legion: The Next Logical Step Toward a Nationwide Virtual Com-
puter. Technical Report CS-94-21, University of Virginia, Department of Computer

Science, Jun 1994.

183

[74] Joseph M. Hellerstein. Designing the Telegraph Storage Manager. In Proceedings of
the Eight International Workshop on High Performance Transaction Systems (HPTS

'99), 1999.

[75] James C. Hu, Irfan Pyarali, and Douglas C. Schmidt. High Performance Web Servers
on Windows NT: Design and Performance. In Proceedings of the USENIX Windows

NT Workshop 1997, August 1997.

[76] James C. Hu, Irfan Pyarali, and Douglas C. Schmidt. Applying the Proactor Pattern
to High-Performance Web Servers. In Proceedings of the 10th International Conference

on Parallel and Distributed Computing and Systems, October 1998.

[77] Norman C. Hutchinson and Larry L. Peterson. The x-Kernel: an Architecture or
Implementing Network Protocols. IEEE Transactions on Software Engineering, 17(1),

January 1991.

[78] IBM Corporation. IBM WebSphere Application Server. http://www-4.ibm.com/

software/webservers/.

[79] Sun Microsystems Inc. Java Servlet API. http://java.sun.com/products/servlet/index.html.

[80] Yahoo! Inc. The Yahoo! Directory and Web Services. http://www.yahoo.com.

[81] Arun Iyengar, Jim Challenger, Daniel Dias, and Paul Dantzig. High-Performance

Web Site Design Techniques. IEEE Internet Computing, 4(2), March 2000.

[82] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, and Deborah A. Wal-
lach. Server operating systems. In Proceedings of the SIGOPS European Workshop,

September 1996.

[83]

[84]

[85]

[86]

[87]

[83]

[89]

[90]

184

J. S. Karlsson, W. Litwin, and T. Risch. LH*LH: A Scalable High Performance Data
Structure for Switched Multicomputers. In Proceedings of the 5th International Con-
ference on Extending Database Technology, pages 573-591, Avignon, France, March

1996.

O. Krieger and M. Stumm. HFS: A Flexible File System for Large-Scale Multipro-
cessors. In Proceedings of the 1993 DAGS/PC Symposium, pages 614, Hanover, NH,

June 1993.

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals prob-
lem. ACM Transactions on Programming Languages and Systems, 4(3):382-401, July

1982.

E. K. Lee and C. A. Thekkath. Petal: Distributed Virtual Disks. In Proceedings
of the Seventh International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS-VII), Cambridge, MA, 1996.

Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wilson. On the
Self-Similar Nature of Ethernet Traffic (Extended Version). IEEE/ACM Transactions

on Networking, 2(1), February 1994.

Nikolai Likhanov, Boris Tsybakov, and Nicolas D. Georganas. Analysis of an ATM
Buffer with Self-Similar (“Fractal”) Input Traffic. In Proceedings of IEEE INFOCOM

’95, Boston, MA, April 1995. IEEE.

B. G. Lindsay. A Retrospective of R*: A Distributed Database Management System.

Proceedings of the IEEE, 75(5):668-673, May 1987.

W. Litwin, M. Neimat, and D. A. Schneider. RP*: A Family of Order Preserving

[91]

[92]

[93]

[94]

[95]

[96]

[97]

185

Scalable Distributed Data Structures. In Proceedings of the Twentieth International

Conference on Very Large Databases, pages 342-353, Santiago, Chile, 1994.

Witold Litwin, Marie-Anne Neimat, and Donovan A. Schneider. LH* - A Scalable,
Distributed Data Store. ACM Transactions on Database Systems (TODS), 21(4):480—

525, December 1996.

Witold Litwin and Thomas Schwarz. A High-Availability Scalable Distributed Data
Structure using Reed Solomon Codes. In Proceedings of the ACM SIGMOD Interna-

tional Conference on the Management of Data, Dallas, TX, 2000.

Michael Litzkow, Todd Tannenbaum, Jim Basney, and Miron Livny. Checkpoint and
Migration of UNIX Processes in the Condor Distributed Processing System. Technical
Report 1346, University of Wisconsin-Madison Computer Sciences Technical Report,

Apr 1997.

Miron Livny and Mike Litzkow. Making workstations a friendly environment for batch

jobs. In The Third Workshop on Workstation Operating Systems, Apr 1992.

L. F. Mackert and G. M. Lohman. R* Optimizer Validation and Performance Eval-
uation for Distributed Queries. In Proceedings of the ACM SIGMOD International
Conference on the Management of Data, pages 84-95, Washington, D.C., USA, May

1986.

McKusic, Joy, Leffler, and Fabry. A Fast File System for UNIX. ACM Transactions

on Computer Systems, 2(3), 1984.

Marshall Kirk McKusick and Gregory R. Ganger. Soft Updates: A Technique for
Eliminating Most Synchronous Writes in the Fast Filesystem. In Proceedings of the

1999 Annual Useniz Technical Conference, June 1999.

[98]

[99]

[100]

[101]

[102]

103

[104]

[105]

[106]

186

Sun Microsystems. JavaSpaces White Paper. http://java.sun.com/products/

javaspaces/whitepapers/index.html.

P. V. Mockapetris and K. J. Dunlap. Development of the Domain Name System. In

ACM SIGCOMM Computer Communication Review, 1988.

Jeffrey C. Mogul. Operating Systems Support for Busy Internet Servers. In Proceed-

ings HotOS-V, Orcas Island, Washington, May 1995.

Robert Morris, Eddie Kohler, John Jannotti, and M. Frans Kaasho ek. The Click
modular router. In Proceedings of the 17th ACM Symposium on Operating System
s Principles (SOSP ’99), pages 217-231, Kiawah Island, South Carolina, December

1999.

Myricom Corporation. Myrinet: A Gigabit Per Second Local Area Network. In IEEE

Micro, February 1995.

ObjectSpace Inc. ObjectSpace Voyager. http://www.objectspace.com/Pro-

ducts/voyagerl.htm.

John K. Ousterhout. Why Threads Are A Bad Idea (for most purposes). Presentation

given at the 1996 Usenix Annual Technical Conference, January 1996.

Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. Flash: An Efficient and Portable
Web Server. In Proceedings of the 1999 Annual Useniz Technical Conference, June

1999.

Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. I0-Lite: A Unified I/O Buffer-
ing and Caching System. In Proceedings the 3rd USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’99), New Orleans, LA, USA, February

1999.

107]

[108]

109

[110]

[111]

[112]

[113]

[114]

187

Abhay K. Parekh and Robert G. Gallager. A Generalized Processor Sharing Ap-
proach to Flow Control in Integrated Services Networks—The Single Node Case. In

Proceedings of INFOCOM 92, Florence, Italy, May 1992.

Vern Paxson and Sally Floyd. Wide-area Traffic: the Failure of Poisson Modeling.
In ACM SIGCOMM ’94 Conference on Communications Architectures, Protocols and

Applications, London, UK, August 1994.

Apache Server Project. Project home page. http://www.apache.org.

Calton Pu, Tito Autrey, and Andrew Black. Optimistic Incremental Specialization:
Streamlining a Commercial Operating System. In Proceedings of the 15th ACM Sym-
posium, on Operating Systems Principles, Copper Mountain Resort, CO, USA, De-

cember 1995.

Mendel Rosenblum and John K. Ousterhout. The Design and Implementation of a
Log-Structured File System. In Proceedings of the 13th ACM Symposium on Operating

Systems Principles, 1991.

Y. Saito, B. Bershad, and H. Levy. Manageability, Availability and Performance in
Porcupine: a Highly Scalable, Cluster-based Mail Service. In Proceedings of the 17th

Symposium on Operating System Principles, Kiawah Island, SC, December 1999.

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and Im-
plementation of the Sun Network Filesystem. In Proceedings of the USENIX 1985

Summer Conference, El Cerrito, CA, USA, June 1985.

S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical Network Support for
IP Traceback. In Proceedings of the 2000 ACM SIGCOMM Conference, Stockholm,

Sweden, August 2000.

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

188

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas An-
derson. Eraser: A Dynamic Race Detector for Multi-Threaded Programs. In Proceed-
ings of the 16th ACM Symposium on Operating Systems Principles, St.-Malo, France,

October 1997.

Douglas C. Schmidt. Reactor: An Object-Behavioral Pattern for Concurrent Event
Demultiplexing and Event Handler Dispatching. In Proceedings of the 6th USENIX

C++ Technical Conference, Cambridge, MA, April 1994.

Selinger, Astrahan, Chamberlain, Lorie, and Price. Access Path Selection in a Rela-
tional Database Management System. In Proceedings of the ACM SIGMOD Interna-

tional Conference on the Management of Data, 1979.

Margo I. Seltzer and Ozan Yigit. A New Hashing Package for UNIX. In Proceedings

of the USENIX Winter 1991 Technical Conference, Dallas, TX, January 1991.

Junehwa Song, Eric Levy, Arun Iyengar, and Daniel Dias. Design Alternatives for
Scalable Web Server Accelerators. In Proceedings of the 2000 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS-2000), Austin,

TX, April 2000.

Michael Stonebraker, Paul M. Aoki, Witold Litwin, Avi Pfeffer, Adam Sah, Jeff Sidell,
Carl Staelin, and Andrew Yu. Mariposa: a Wide-Area Distributed Database System.

The VLDB Journal, 5(1):48-63, January 1996.

Sun Microsystems. Enterprise Java Beans Technology. http://java.sun.com/

products/ejb/.

Sun Microsystems Inc. Java Native Interface Specification. http://java.sun.com/

products/jdk/1.2/docs-guide-jni/index.html.

[123]

[124]

[125]

[126]

[127]

[128]

[129]

130

189

V. S. Sunderam, G. A. Geist, J. Dongarra, and R. Manchek. The PVM Concur-
rent Computing System: Evolution, Experiences, and Trends. Parallel Computing,

20(4):531-545, April 1994.

Cisco Systems. Local director. http://www.cisco.com/warp/public/751/lodir/

index.html.

Computer Emergency Response Team. Advisory CA-2000-01 Denial-of-Service De-

velopments. http://www.cert.org/advisories/CA-2000-01.html, January 2000.

C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A Scalable Distributed File
System. In Proceedings of the 16th ACM Symposium on Operating Systems Principles,

St.-Malo, France, October 1997.

Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels. U-Net: A
User-Level Network Interface for Parallel and Distributed Computing. In Proceedings

of the 15th ACM Symposium on Operating Systems Principles, Copper Mountain

Resort, CO, USA, Decemeber 1995.

Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik
Schauser. Active Messages: A Mechanism for Integrated Communication and Com-

putation. In 19th Annual International Symposium on Computer Architecture, 1992.

David W. Walker. The Design of a Standard Message-Passing Interface for Distributed

Memory Concurrent Computers. Parallel Computing, 20(4):657-673, April 1994.

Deborah A. Wallach, Dawson R. Engler, and M. Frans Kaashoek. ASHs: Application-
specific Handlers for High-Performance Messaging. In Proceedings of the ACM SIG-
COMM °96 Conference: Applications, Technologies, Architectures, and Protocols for

Computer Communication, pages 40-52, Stanford, CA, August 1996.

190

[131] Helen J. Wang, Bhaskaran Raman, Chen nee Chuah, and et al. ICEBERG: An
Internet-core Network Architecture for Integrated Communications. In IEEE Personal

Communications, August 2000.

[132] Matt Welsh and David Culler. Jaguar: Enabling Efficient Communication and I/O
in Java. Concurrency: Practice and Fxperience, 2000. Special Issue on Java for High-
Performance Network Computing, To appear, http://www.cs.berkeley.edu/ mdw/

papers/jaguar-journal.ps.gz.

[133] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford. TSpaces. IBM Systems

Journal, 37(3), April 1998.

191

Appendix A

Source Code: SignServer

This appendix lists the source code to the various flavors of the SignServer pro-
grams described in Section 4.4, as well as the source code for the benchmark client.

A.1 Common Utility Functions

/*

* Author: Steve Gribble <gribble@cs.berkeley.edu>
* Inception Date: August 30th, 2000

* File: HashSigner.java

*/
package ninja2.personal.gribble.ex;

import java.io.x;

import java.lang.*;

import java.util.x*;

import java.security.;

import ninja2.personal.gribble.ex.*;

/**
* This class allows you to sign things using a hard-coded

* keyed hash.
*

* Qauthor Steve Gribble
*/
public class HashSigner {

public static byte[] hashkeyl = {

-84, -19, 0, 5, 115, 114, 0, 34, 115, 117, 110, 46
};

public static byte[] hashkey2 = {
21, 106, 12, 77, 77, 35, -65, -18, 32, -111, 2, 21
s

MessageDigest md = null;

public HashSigner() {
try {
md = MessageDigest.getInstance("MD5");
} catch (NoSuchAlgorithmException nsae) {
nsae.printStackTrace();
System.exit(-1);
+
}

public byte[] signl(bytel[] signme) {
byte[] retB = null;

md.reset();

md .update (hashkeyl);
md .update (signme) ;
retB = md.digest();

return retB;
public byte[] sign2(byte[] signme) {
byte[] retB = null;
md.reset();
md .update (hashkey2) ;
md .update (signme) ;
retB = md.digest();
return retB;
// a little performance test

public static void main(String args[]) {

byte[] testB = new byte[5000];

192

for (int i=0; i<5000; i++)
testB[i] = (byte) (i%256);

HashSigner hs = new HashSigner();

System.out.println("doing loop") ;
long before;
before = System.currentTimeMillis();
before = System.currentTimeMillis();
for (int i=0; i<10000; i++) {

bytel[] hashr = hs.signl(testB);
}

long after = System.currentTimeMillis();

long diff = (after - before) / 10;
System.out.println("hash: " + diff + " us");

/*

* Author: Steve Gribble <gribble@cs.berkeley.edu>
* Inception Date: August 30th, 2000

* File: Serializer.java

*/
package ninja2.personal.gribble.ex;

import java.io.x;
import java.lang.*;
import java.util.x*;

VAL
* This class exists only to define some convenience routines for
casting serializable objects to byte arrays, and vice versa.

*

*

@author Steve Gribble
*/

public class Serializer {

VAL
* Given a byte array, create an object out of it through the magic
* of Java deserialization.

193

194

Oparam arr the byte array containing a serialized object

Q@return the deserialized object, if all is well

Q@exception IOException if something bad happens with the streams

Q@exception ClassNotFoundException if it isn’t a serialized object
after all

* X X X X *

*/
public static Object ByteArrToObject(byte[] arr) throws IOException,
ClassNotFoundException {

ByteArrayInputStream bi = new ByteArrayInputStream(arr);
ObjectInputStream is =
new ObjectInputStream(new BufferedInputStream(bi));

Object o = is.readObject();
is.close();

bi.close();
return o;
}
/**
* Given a byte array, create an object out of it through the magic
* of Java deserialization.
*
* Q@param o the (serializable) object to be serialized
* Qreturn a bytearray containing the serialized object
* Q@exception IOException if something bad happens with the streams,
* or if the object isn’t serializable after all
*/

public static byte[] ObjectToByteArr(Object o) throws IOException {
ByteArrayOutputStream bs = new ByteArrayOutputStream();
ObjectOutputStream os =
new ObjectOutputStream(new BufferedOutputStream(bs));
os.writeObject(o);
os.flush();
bytel[]l rv = bs.toByteArray();
os.close();
return rv;

A.2 Threaded SignServer

195

/*

* Author: Steve Gribble <gribble@cs.berkeley.edu>
* Inception Date: August 30, 2000

* File: SignServer.java

*
*/
package ninja2.personal.gribble.ex;

import ninja2.core.io_core.interfaces.*;
import ninja2.core.io_core.interfaces.network.*;
import ninja2.core.io_core.tcp_network.;
import ninja2.core.io_core.fs_disk.*;
import ninja2.core.io_core.core.*;

import ninja2.core.io_core.thread_pool.x;
import ninja2.core.io_core.util.x*;

import ninja2.personal.gribble.ex. *;
import java.io.x;

import java.net.*;

import java.util.x*;

The SignServer receives a packet from the network, computes two
keyed MD5 hashes of the packet (using two different keys), and

then returns the two hashes to the client. This uses no design
pattern, but rather uses the thread-per-task model.

Q@author Steven Gribble
*/
public class SignServer implements ThreadPool_TaskIF, UpcallHandlerIF {
private ThreadPool tp = null;
private Hashtable writers = null;
private NetworkIF nif = null;
private MemAllocatorIF alloc = null;
private NinjaLinkedList nll = new NinjaLinkedList();
private SinkIF disk_sink = null;
private MemRegionIF logentry = null;

// create the NetworkIF to receive tasks from network clients
public SignServer(String self, int num_threads) {
ThreadPool vizpools = new ThreadPool(15,15,15);
for (int i=0; i<num_threads+2; i++) {
nll.add_to_tail(new HashSigner());
}

196

writers = new java.util.Hashtable();

alloc = (MemAllocatorIF) new ByteArrayMemAllocator();

tp = new ThreadPool (num_threads, num_threads, num_threads);

try {
nif = (NetworkIF) new TCPNetworkVizier(vizpools, self);

} catch (UnknownHostException uhe) {
System.err.println("Unknown host in server address " + self);
System.exit(1);

} catch (NumberFormatException nfe) {
System.err.println("Badly formatted port num in server address " + self);
System.exit(1);

// open up the disk sink
FSDiskSegmentVizier fdsv = new FSDiskSegmentVizier(vizpools) ;
try {
disk_sink = (SinkIF) fdsv.openForWrite("/var3/gribble/bigfile", 0);
logentry = alloc.allocateRegion(128);
} catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}

// register ourselves as the packet arrival handler
nif.register_upcall(this);
System.out.println("SignServer: ready to receive.");

// here’s where packet arrives come in - this is the UpcallHandlerIF
public void enqueue_many(QueueElementIF[] els) {

for (int i=0; i<els.length; i++)

enqueue (els[i]);

}
public void enqueue(QueueElementIF el) {

// dispatch the arrivals to the thread pool

tp.enqueue_task(this, el);
}

// the thread pool dispatches arrive here

private int num_done = 0;

public void go_for_it(0Object task_argument) {
NetworkReadFinished nrf = (NetworkReadFinished) task_argument;
NetworkWriterIF nw = null;

197

HashSigner signer = null;
synchronized(nll) {
signer = (HashSigner) nll.remove_tail();

}

if (++num_done > 1000) {
System.out.println("tick");
num_done = 0;

}

// try to read something from a disk
Queue compQ = new Queue();
GenericSinkElement gse2 = new GenericSinkElement(logentry,
logentry.getSize(),
0, compQ);
try {
disk_sink.sync_enqueue(gse2, null);
} catch (SinkDeadException sde) {
sde.printStackTrace() ;
System.exit(-1);
}
compQ.blocking_dequeue (0);

// grab the appropriate network sink to send the reply to, or
// create it if it doesn’t already exist
nw = (NetworkWriterIF) writers.get(nrf.peer);
if (aw == null) {
synchronized(writers) {
nw = (NetworkWriterIF) writers.get(nrf.peer);
if (ow == null) {
// doesn’t exist, so create it
try {
System.out.println("Connecting to " + nrf.peer);
nw = nif.openForWrite(nrf.peer);
writers.put(nrf.peer, nw);
} catch (IOException ioe) {
ioe.printStackTrace();
System.exit(-1);

// hashl

198

byte[] signl = signer.signl(nrf.region.fetchEntireByteArray());
// hash2
byte[] sign2 = signer.sign2(nrf.region.fetchEntireByteArray());
MemRegionIF mr = null;
try {
mr = alloc.allocateRegion(signl.length + sign2.length);
mr.copyByteArrayInto(signl, 0, O, signl.length);
mr.copyByteArrayInto(sign2, 0, signl.length, sign2.length);
} catch (OutOfMemoryError ome) {
ome.printStackTrace();
System.exit(-1);
}

synchronized(nll) {
nll.add_to_tail(signer);
}

// send the response here
GenericSinkElement gse = new GenericSinkElement (
mr, mr.getSize(), 0, null
)s
try {
if (!nw.async_enqueue(gse, null)) {
System.err.println("enqueue failed");
System.exit(1);
}
} catch (SinkDeadException sde) {
sde.printStackTrace();
System.exit(1);
}
}

// this method handles the command line arguments passed in to the
// SignServer.
public static void main(String args([]) {
if (args.length != 2) {
System.err.println('"usage: SignServer self num_threads");
System.exit(1);
}
int numt = O;
try {
numt = Integer.parselnt(args[1]);
} catch (NumberFormatException nfe) {
nfe.printStackTrace();

System.exit(1);

}

SignServer as = new SignServer(args[0], numt);

}
}

A.3 Wrapped SignServer

/*

* Author: Steve Gribble <gribble@cs.berkeley.edu>
* Inception Date: August 30, 2000

*

*/

File: W_SignServer. java

package ninja2.personal.gribble.ex;

import ninja2.core.io_core.interfaces.x*;

import ninja2.core.io_core.interfaces.network.*;

import ninja2.core.io_core.interfaces.disk.x*;
import ninja2.core.io_core.tcp_network.;

import ninja2.core.io_core.fs_disk.*;

import ninja2.core.io_core.core.*;

import ninja2.core.io_core.thread_pool.x;

import ninja2.core.io_core.util.x*;
import ninja2.personal.gribble.ex. *;
import java.io.x;

import java.net.*;

import java.util.x*;

The WP_SignServer receives a packet from the network, computes two
keyed MD5 hashes of the packet (using two different keys), and

*

*

* then returns the two hashes to the client.

* the WRAP design pattern to condition itself against load. It uses
* a single thread across a thread boundary.

*

*

Q@author

*/

Steven Gribble

public class W_SignServer {

private
private
private
private
private
private

ThreadPool tp = null;
Hashtable writers = null;
NetworkIF nif = null;

Queue task_queue = null;
MemAllocatorIF alloc = null;
SinkIF disk_sink = null;

It, however, uses

199

200

private GenericSinkElement logentry = null;
private NinjaLinkedList nll_gse = new NinjaLinkedList();
private NinjaLinkedList nll_sink = new NinjaLinkedList();

private HashSigner signer = new HashSigner();

// create the NetworkIF to receive tasks from network clients
public W_SignServer(String self) {
writers = new java.util.Hashtable();
alloc = (MemAllocatorIF) new ByteArrayMemAllocator();
task_queue = new Queue();

tp = new ThreadPool(15, 15, 15); // just for handling TCP connections
try {
nif = (NetworkIF) new TCPNetworkVizier(tp, self);
} catch (UnknownHostException uhe) {
System.err.println("Unknown host in server address " + self);
System.exit(1);
} catch (NumberFormatException nfe) {
System.err.println("Badly formatted port num in server address " + self);
System.exit(1);

// register the queue as the completion handler - this is WRAP
nif.register_upcall(task_queue);
System.out.println("W_SignServer: ready to receive.");

// open up the disk sink
FSDiskSegmentVizier fdsv = new FSDiskSegmentVizier(tp);
try {
disk_sink = (SinkIF) fdsv.openForWrite("/var3/gribble/bigfile", 0);
MemRegionIF mr = alloc.allocateRegion(128);
logentry = new GenericSinkElement(mr, mr.getSize(), O, task_queue);
} catch (Exception e) {
e.printStackTrace();
System.exit(-1);

// here’s where the wrap thread waits for arrivals
public void go_for_it() {
int num_done = O;

while(true) {

201

QueueElementIF els[] = task_queue.blocking_dequeue(0);
if (els != null) {

for

(int i=0; i<els.length; i++) {

if (els[i] instanceof DiskSegmentWriteDrainedEvent) {

}

process_disk_write ((DiskSegmentWriteDrainedEvent) els[il);
else {

NetworkReadFinished nrf = (NetworkReadFinished) els[il];
NetworkWriterIF nw = null;

if (++num_done > 1000) {
System.out.println("tick");
num_done = 0;
}
// grab the appropriate network sink to send the reply to, or
// create it if it doesn’t already exist
nw = (NetworkWriterIF) writers.get(nrf.peer);
if (aw == null) {
// doesn’t exist, so create it
try {
System.out.println("Connecting to " + nrf.peer);
nw = nif.openForWrite (nrf.peer);
writers.put (nrf.peer, nw);
} catch (I0Exception ioe) {
ioe.printStackTrace();
System.exit(-1);

// hashl
byte[] signl
// hash2
byte[] sign2 = signer.sign2(nrf.region.fetchEntireByteArray());
MemRegionIF mr = null;
try {
mr = alloc.allocateRegion(signl.length + sign2.length);
mr . copyByteArrayInto(signil, 0, O, signl.length);
mr.copyByteArrayInto(sign2, O, signl.length, sign2.length);
} catch (OutOfMemoryError ome) {
ome .printStackTrace();
System.exit(-1);
}

signer.signl(nrf.region.fetchEntireByteArray());

// line up the response here
GenericSinkElement gse = new GenericSinkElement (

202

mr, mr.getSize(), 0, null

)

nll_sink.add_to_tail(nw);
nll_gse.add_to_tail(gse);

// do the disk write here
try {
disk_sink.sync_enqueue(logentry, null);
} catch (SinkDeadException sde) {
sde.printStackTrace();
System.exit(-1);

private void process_disk_write(DiskSegmentWriteDrainedEvent dwde) {
SinkIF nw = (SinkIF) nll_sink.remove_head();
GenericSinkElement gse = (GenericSinkElement) nll_gse.remove_head() ;
try {
if (!nw.async_enqueue(gse, null)) {
System.err.println("enqueue failed");
System.exit(1);
}
} catch (SinkDeadException sde) {
sde.printStackTrace();
System.exit(1);
}
}

// this method handles the command line arguments passed in to the
// W_SignServer.
public static void main(String args[]) {
if (args.length != 1) {
System.err.println("usage: W_SignServer self");
System.exit(1);
+
W_SignServer as = new W_SignServer(args[0]);
as.go_for_it();

}

203

A.4 Wrapped, Pipelined SignServer

/*

* Author: Steve Gribble <gribble@cs.berkeley.edu>
* Inception Date: August 30, 2000

* File: WR_SignServer.java

*/
package ninja2.personal.gribble.ex;

import ninja2.core.io_core.interfaces.*;
import ninja2.core.io_core.interfaces.network.*;
import ninja2.core.io_core.interfaces.disk.x*;
import ninja2.core.io_core.tcp_network. *;
import ninja2.core.io_core.fs_disk.*;

import ninja2.core.io_core.core.*;

import ninja2.core.io_core.thread_pool.x;
import ninja2.core.io_core.util.x*;

import ninja2.personal.gribble.ex.*;

import java.io.x*;

import java.net.x*;

import java.util.x*;

VAL

The WP_SignServer receives a packet from the network, computes two
keyed MD5 hashes of the packet (using two different keys), and

then returns the two hashes to the client. This server uses the WRAP
pattern to condition against load, and the PIPELINE pattern to
achieve functional parallelism across CPUs in a multiprocessor.

* X ¥ ¥ ¥ * ¥

Q@author Steven Gribble
*/
public class WP_SignServer implements java.lang.Runnable {
private ThreadPool tp = null;
private Hashtable writers = null;
private NetworkIF nif = null;
private Queue task_queuel = null, task_queue2 = null;
private MemAllocatorIF alloc = null;
private HashSigner signerl = new HashSigner();
private HashSigner signer2 = new HashSigner();
private SinkIF disk_sink = null;
private GenericSinkElement logentry = null;

204

private NinjaLinkedList nll_gse = new NinjaLinkedList();
private NinjaLinkedList nll_sink = new NinjaLinkedList();

private static class Continuer implements QueueElementIF {
public NetworkReadFinished nrf;
public bytel[] signi;

+

// create the NetworkIF to receive tasks from network clients
public WP_SignServer(String self) {
writers = new java.util.Hashtable();
alloc = (MemAllocatorIF) new ByteArrayMemAllocator();
task_queuel = new Queue();
task_queue2 = new Queue();

tp = new ThreadPool(15, 15, 15); // just for handling TCP connections
try {
nif = (NetworkIF) new TCPNetworkVizier(tp, self);
} catch (UnknownHostException uhe) {
System.err.println("Unknown host in server address " + self);
System.exit(1);
} catch (NumberFormatException nfe) {
System.err.println("Badly formatted port num in server address " + self);
System.exit(1);

// register the queue as the completion handler - this is WRAP
nif.register_upcall(task_queuel) ;
System.out.println("WP_SignServer: ready to receive.");

// open up the disk sink
FSDiskSegmentVizier fdsv = new FSDiskSegmentVizier(tp);
try {
disk_sink = (SinkIF) fdsv.openForWrite("/var3/gribble/bigfile", 0);
MemRegionIF mr = alloc.allocateRegion(128);
logentry = new GenericSinkElement(mr, mr.getSize(), O, task_queue2);
} catch (Exception e) {
e.printStackTrace();
System.exit(-1);

// here’s where the two stage threads are created
public void go_for_it() {

205

Thread tl1 = new Thread(this, "1");
Thread t2 = new Thread(this, "2");
tl.start();
t2.start();

}
public void run() {
String myName = Thread.currentThread() .getName();
if (myName.equals("1"))
ql_go(Q);
else
q2_go();

// HERE IS WHERE THE FIRST STAGE WRAPPED THREAD STARTS
public void ql_go() {
int num_done = O;

while(true) {
QueueElementIF els[] = task_queuel.blocking_dequeue (0) ;
if (els !'= null) {
for (int i=0; i<els.length; i++) {
Continuer cnr = new Continuer();
cnr.nrf = (NetworkReadFinished) els[i];

if (++num_done > 1000) {
System.out.println("tick");
num_done = 0;

}

// hash 1 here
cnr.signl = signerl.signl(cnr.nrf.region.fetchEntireByteArray());
task_queue?2.enqueue(cnr) ;

// HERE IS WHERE THE SECOND STAGE WRAPPED THREAD STARTS
public void q2_go() {
while(true) {
QueueElementIF els[] = task_queue2.blocking_dequeue (0) ;
if (els != null) {
for (int i=0; i<els.length; i++) {
if (els[i] instanceof DiskSegmentWriteDrainedEvent) {

206

process_disk_write((DiskSegmentWriteDrainedEvent) els[i]);
else {

Continuer cnr = (Continuer) els[i];

NetworkReadFinished nrf = cnr.nrf;

NetworkWriterIF nw = null;

// grab the appropriate network sink to send the reply to, or
// create it if it doesn’t already exist
nw = (NetworkWriterIF) writers.get(nrf.peer);
if (aw == null) {
// doesn’t exist, so create it
try {
System.out.println("Connecting to " + nrf.peer);
nw = nif.openForWrite(nrf.peer);
writers.put(nrf.peer, nw);
} catch (IDException ioe) {
ioe.printStackTrace();
System.exit(-1);

// hash2 here
byte[] sign2 = signer2.sign2(nrf.region.fetchEntireByteArray());
MemRegionIF mr = null;
try {

mr = alloc.allocateRegion(cnr.signl.length + sign2.length);

mr . copyByteArrayInto(cnr.signl, O, O, cnr.signl.length);

mr . copyByteArrayInto(sign2, 0, cnr.signl.length, sign2.length);
} catch (OutOfMemoryError ome) {

ome.printStackTrace();

System.exit(-1);
}

// line up the response here
GenericSinkElement gse = new GenericSinkElement (
mr, mr.getSize(), 0, null

)

nll_sink.add_to_tail(nw);
nll_gse.add_to_tail(gse);

// do the disk write here
try {
disk_sink.sync_enqueue(logentry, null);

207

} catch (SinkDeadException sde) {
sde.printStackTrace() ;
System.exit(-1);

private void process_disk_write(DiskSegmentWriteDrainedEvent dwde) {
SinkIF nw = (SinkIF) nll_sink.remove_head();
GenericSinkElement gse = (GenericSinkElement) nll_gse.remove_head();

try {
if (!nw.async_enqueue(gse, null)) {
System.err.println("enqueue failed");
System.exit(1);
}
} catch (SinkDeadException sde) {
sde.printStackTrace() ;
System.exit(1);
}
}

// this method handles the command line arguments passed in to the
// WP_SignServer.
public static void main(String args([]) {
if (args.length != 1) {
System.err.println("usage: WP_SignServer self");
System.exit(1);
}
WP_SignServer as = new WP_SignServer(args[0]);
as.go_for_it();
}
}

A.5 SignServer Client

/*

* Author: Steve Gribble <gribble@cs.berkeley.edu>
* Inception Date: August 30th, 2000

* File: SignClient.java

208

*/
package ninja2.personal.gribble.ex;

import ninja2.core.io_core.interfaces.x*;

import ninja2.core.io_core.interfaces.network.*;
import ninja2.core.io_core.tcp_network.*;

import ninja2.core.io_core.core.x*;

import ninja2.core.io_core.thread_pool. *;

import ninja2.core.io_core.util.x*;

import java.io.x*;

import java.net.*;
import java.util.x*;
import java.lang.*;

VAL

* The SignClient forges connections to one or more SignServers,

* and starts pipelines of requests to those servers. The

* total throughput across all servers is measured. In other

* words, this client embodies the REPLICATE pattern if more than

* one target server is specified on the command line; load-balancing

* composition is used because of the nature of the closed-loop pipelines.
*

* @author Steven Gribble

*/
public class SignClient {

private QueuelIF compq = null;

private SinkIF peer_sinks[] = null;

private String peers[] = null;

private Hashtable sink_index = new java.util.Hashtable();
private int winlen = O;

private int packetsize = 5000;
private int measuresize = 1500;
private int latsize = 1247;

private GenericSinkElement gse, gse_1;

private boolean gotnor = false;
private byte norbyte = 0;

// forge connections to all the SignServers
public SignClient(String self, int winlen, String[] peers) {
this.peers = peers;

209

ThreadPool tp = new ThreadPool(15,15,15);

this.winlen = winlen;

peer_sinks = new SinkIF[peers.length];

NetworkIF nif = null;

try {
nif = (NetworkIF) new TCPNetworkVizier(tp, self);

} catch (UnknownHostException uhe) {
System.err.println("Unknown host in host string " + self);
System.exit(1);

} catch (NumberFormatException nfe) {
System.err.println("Badly formatted port num in host string " + self);
System.exit(1);

}

compq = new Queue();

nif.register_upcall(compq) ;

for (int i=0; i<peers.length; i++) {
System.out.println("Connecting to " + peers[i]);
while (peer_sinks[i] == null) {

try {
peer_sinks[i] = nif.openForWrite(peers[i]);
sink_index.put(peers[i], peer_sinks[i]);

} catch (IDException ioe) {

}

try {
Thread.currentThread() .sleep(200);

} catch (InterruptedException ie) {

}

// warm up pipelines to the servers
System.out.println("starting volley");
ByteArrayMemAllocator bama = new ByteArrayMemAllocator();
MemRegionIF volley = bama.allocateRegion(packetsize);
gse = new GenericSinkElement (volley, packetsize, 0, null);
for (int i=0; i<packetsize; i++)

volley.putByte ((byte) 0, i);
MemRegionIF lat_sampler = bama.allocateRegion(packetsize);
gse_l = new GenericSinkElement (lat_sampler, packetsize, 0, null);
for (int i=0; i<packetsize; i++)

lat_sampler.putByte((byte) 1, i);
for (int i=0; i<winlen; i++) {

for (int j=0; j<peers.length; j++) {

try {

210

if (!peer_sinks[j].async_enqueue(gse, null)) {
System.err.println("enqueue failed");
System.exit(1);
}
} catch (SinkDeadException sde) {
sde.printStackTrace() ;
System.exit(1);
}
}
}

// enter reactive closed-loop phase
System.out.println("entering closed-loop");
int comps = O;
long before, after;
long lat_req, lat_rep;
before = System.currentTimeMillis();
while (true) {
QueueElementIF els[] = compq.blocking_dequeue(0);
int ellen = els.length;
for (int i=0; i<ellen; i++) {
NetworkReadFinished nrf = (NetworkReadFinished) els[i];
handle_nrf (nrf);
comps++;
}
if (comps >= measuresize) {
after = System.currentTimeMillis();
printTime (before, after, comps);
comps = 0;
before = after;

private static void printTime(long longl, long long3, int int5) {
long long6 = long3 - longl;
double double8 = (double) int5 / (double) long6;
double doublel0 = double8 * 1000.0;

System.out.println(int5 + " iterations in " + long6 +
" milliseconds = " + doublelO
+ " iterations per second");

private long lat_before = O;

private long lat_tries = 0;

private void handle_nrf (NetworkReadFinished nrf) {
GenericSinkElement outse;
lat_tries++;

if ((lat_tries >= latsize) && (lat_before == 0)) {
outse = gse_1;
lat_tries = 0;
lat_before = System.currentTimeMillis();
} else
outse = gse;

if (gotnor == false) {
norbyte = nrf.region.getByte(0);
gotnor = true;
}
if (nrf.region.getByte(0) != norbyte) {
long curt = System.currentTimeMillis();
// is the magic sampler byte
if (lat_before != 0) {
System.out.println("Latency sample: " +
(curt-lat_before) + " ms");
}
lat_before = 0;

// close the pipeline loop- send another packet
SinkIF outSink = (SinkIF) sink_index.get(nrf.peer);
if (outSink == null) {
System.err.println("Unknown peer: " + nrf.peer);
System.exit(-1);
}
try {
if (!outSink.async_enqueue(outse, null)) {
System.err.println("enqueue failed");
System.exit(1);
}
} catch (SinkDeadException sde) {
sde.printStackTrace();
}
}

public static void main(String args[]) {

211

if (args.length < 3) {

212

System.err.println('"usage: SignClient self windowlen peer [peerx]");

System.exit(1);
}
int pipeline = 0;
try {
pipeline = Integer.parseInt(args[1]);
} catch (NumberFormatException nfe) {
nfe.printStackTrace();
System.exit(1);
}

String[] peers = new Stringlargs.length-2];
for (int i=2; i<args.length; i++)
peers[i-2] = args[il;

SignClient as = new SignClient(args[0], pipeline, peers);

