Flash Crowds and Denial of Service Attacks:
Characterization and Implications for CDNs and Web Sites

Jaeyeon Jung
MIT Laboratory for Computer
Science
200 Technology Square
Cambridge, MA 02139

jyjung@Ics.mit.edu

ABSTRACT

The paper studies two types of events that often overload
Web sites to a point when their services are degraded or
disrupted entirely - flash events (FEs) and denial of ser-
vice attacks (DoS). The former are created by legitimate re-
quests and the latter contain malicious requests whose goal
is to subvert the normal operation of the site. We study the
properties of both types of events with a special attention
to characteristics that distinguish the two. Identifying these
characteristics allows a formulation of a strategy for Web
sites to quickly discard malicious requests. We also show
that some content distribution networks (CDNs) may not
provide the desired level of protection to Web sites against
flash events. We therefore propose an enhancement to CDNs
that offers better protection and use trace-driven simula-
tions to study the effect of our enhancement on CDNs and
Web sites.

Keywords

Web Workload Characterization, Flash Crowd, Denial of
Service Attack, Content Distribution Network Performance

1. INTRODUCTION

Coined in 1971 in a science fiction short story [24], the
term flash crowd referred to the situation when thousands of
people went back in time to see historical events anew. The
ease of teleportation enabled this situation. On the Web,
the ubiquitous access of browsers and rapid spread of news
about an event, leads to a similar situation when a very large
number of users simultaneous access a popular Web site.
Common examples of events include widely known ones as
the release of Ken Starr’s report on a few Web sites in 1999,
popular webcasts like that of Victoria’s Secret company, and
sports events like the Olympics. In some cases, information
about the occurrence of the events is known in advance.
However, there have been several flash crowds with no ad-
vance warning. Often this is due to a catastrophic event,
such as the September 2001 terrorist attack in the United
States. Popular news sites such as www.cnn.com noticed a
dramatic increase in the number of requests and many sites
became unavailable.

Unlike science fiction, the effect of flash crowds on the
Copyright is held by the author/owner(s).

WWW2002, May 7-11, 2002, Honolulu, Hawaii, USA.
ACM 1-58113-449-5/02/0005.

Balachander
Krishnamurthy
AT&T Labs—Research
180 Park Avenue
Florham Park, NJ 07932

bala@research.att.com

Michael Rabinovich
AT&T Labs—Research
180 Park Avenue
Florham Park, NJ 07932

misha@research.att.com

servers operating at the Web sites and the network infras-
tructure is real and can be acute. Congestion at the network
layer may even prevent some of the requests from reaching
the servers, and if they do, it can be after significant delays
caused by packet loss and retransmission attempts. Servers
are unable to handle the volume of requests that actually
reach it. Finally, users who are trying to obtain informa-
tion during a flash crowd are often frustrated due to the
resulting long delays or outright failures. In some cases, the
Web server may have to be restarted due to the effects of
the flash crowd [21]. Given the increase in the frequency of
flash crowds and their overall unpredictability, it is impor-
tant that we have a broad understanding of flash crowds.
Our contributions in this paper are threefold:

o We define the term flash event (an event that causes
flash crowds) and provide a taxonomy to better under-
stand its impact on Web servers.

e Before studying the impact of flash events on Web
servers, we need to identify and separate a related but
distinct phenomenon—that of denial of service attacks
(DoS [13]). DoS attacks have been occurring fairly fre-
quently in the last few years on the Internet. A DoS
attack shares several characteristics with that of flash
events but is not a flash event. Our taxonomy of flash
event is used to clearly identify and separate DoS at-
tacks from flash events.

o After separating DoS, we examine current solutions by
Web servers for dealing with flash events. Specifically,
we examine what roles Content Distribution Networks
(CDNs) play and we offer some solutions of our own
in this regard.

A flash event at a Web site can be predictable when a
site is aware of the possibility of its occurrence. A common
example is the on-line play-along Web site for a popular
television program. The Web site typically does not receive
many requests during the time the television show is not
being broadcast and experiences a significant surge for the
duration of the broadcast. A Web site can provision in ad-
vance for such flash events and handle them better. Another
looser kind of predictable flash event is one where the con-
tent creator knows a priori that traffic volume is going to
be significantly higher. For example, URLs that are adver-
tised specifically during an event (such as widely-followed
football games) can lead to expected high levels of traffic.

The unpredictable category of flash events often arise due
to the sudden prominence of a Web site unanticipated by
the content owners. Medical Web sites may experience a
sudden surge as a result of public concern over an epidemic.
Alternately, a Web site that is discussed in another popular
Web site may experience a flash event.

While Web sites can try to provision for the predictable
flash events, they often fail to correctly predict the demand,
as several well planned events (such as the Victoria Secret
webcast) could attest [27]. Even when a Web site has prior
knowledge that its site is going to experience a surge in de-
mand, it may not have enough time to react and provision
the necessary resources. The issue is complicated by com-
petitive pressure where various sites are planning to display
similar content (such as a major news story). Both pre-
dictable and unpredictable flash events can thus pose a se-
rious risk to a Web site.

DoS attacks and flash events can both overload the server
or the server’s Internet connection and result in partial or
complete failure. Unlike DoS attacks, which are simply ma-
licious requests that do not have to be handled by a Web site,
flash events consist of legitimate requests. A Web server has
the responsibility to try and handle as many of the requests
as possible during a flash event. By doing so, the site can
increase its overall profile on the Web resulting in possible
additional revenue. If a DoS attack occurs during a flash
event, a Web server should aim to ignore DoS requests and
handle the legitimate requests. This requires the Web site
to be able to distinguish between the two sets of requests.

Content Distribution Networks (CDNs), have been in use
for a few years primarily to help offload the request vol-
ume on Web servers during normal Web activity. A CDN
typically serves a subset of resources (often static images)
on behalf of a set of origin servers via an overlay network.
Besides being used to improve routine access to Web sites,
CDNs can also serve as insurance protection against flash
events so that Web sites can continue to function normally.
However, some CDNs are not always capable of dealing with
flash events and we present circumstances under which a
flash event can cause a Web site to fail even if it uses a
CDN. The primary reason is the surge of cache misses in
the beginning of flash events. In this paper, we thus pro-
pose an alternate approach, called an adaptive CDN, which
addresses this problem.

The rest of the paper is divided as follows: Section 2 de-
fines flash events and DoS attacks and discusses metrics that
are useful to characterize them. Section 2.1 discusses the
somewhat limited amount of related work in this area. Sec-
tions 3 and 4 present characteristics of flash events and DoS
attacks, respectively, with a view towards distinguishing be-
tween them. Section 4.3 summarizes the behavioral differ-
ences of flash events and DoS attacks and develops some
recommendations for Web servers based on these differences.
Section 5 discusses the difficulties some CDNs face due to
flash events and presents our notion of an adaptive CDN.
We conclude with a look at ongoing and future work.

2. CHARACTERIZING FLASHEVENTSAND

DOS ATTACKS

A flash event (FE) is a large surge in traffic to a par-
ticular Web site causing a dramatic increase in server load
and putting severe strain on the network links leading to

the server, which results in considerable increase in packet
loss and congestion. A denial of service attack (DoS) is “an
explicit attempt by attackers to prevent legitimate users of
a service from using that service” [2]. We interpret this def-
inition broadly—we consider any attempt to undermine a
Web site to be a denial of service attack. Examples of at-
tacks include TCP SYN flooding [1], HTTP request flooding
including an attack to crack down password protected web
pages, or attempting to crash a Web server such as the re-
cent Code Red attack [23].

The key semantic difference between an FE and DoS is
that the former represents legitimate access of the Web site
while the latter does not. However, this does not help in
distinguishing between the two automatically. One needs to
develop behavioral differences between the two phenomena
after understanding their individual properties. We charac-
terize FE and DoS along the following dimensions:

o Traffic patterns: Traffic patterns as seen by the Web
site are important for several reasons. Overall traffic
volume determines how much a server should provision
resources to keep the site operational up to a certain
level. If server load exceeds its maximum tolerance
level which is pre-defined by its capacity, the server
begins to slow down and can be driven to a shutdown.
Thus, watching traffic patterns allows us to articulate
the period when an unusually large number of clients
can overwhelm a site and how much time the server
has from the start of an FE or DoS to take defensive
measures.

e Client characteristics: Understanding client char-
acteristics can help identify malicious attackers who
intentionally stress a server pretending to be legiti-
mate clients. When a server faces an unexpectedly
heavy load, detecting DoS clients quickly would allow
the server to reject their requests and concentrate re-
sources on serving legitimate clients. In particular, we
use a network-aware clustering technique [20] to de-
termine the topological distribution of clients in FE
and DoS. Client clustering allows one to aggregate
individual clients into groups belonging to the same
administrative domain. Clustering uses a large col-
lection of unique network prefixes assembled from a
wide set of BGP routing tables. The various client IP
addresses are grouped into clusters based on longest
prefix matching.

e File reference characteristics: File reference char-
acteristics could potentially provide additional differ-
entiators to rule out suspicious activities. Once it is
clear that all requests come from legitimate clients, we
can utilize file referencing behavior to deal with flash
crowds. Locality of reference enables a reduction of
server load through caching. We exploit these char-
acteristics in designing an adaptive CDN. We consider
aggregate file references as seen by the server, reference
patterns of individual clients, and reference patterns of
client clusters.

2.1 Related Work

There have been a number of studies that attempt to char-
acterize the workload of Web servers. Ten invariants that
applied across all six data sets studied were identified in [6].

The SURGE [7] tool was developed to generate Web work-
load matching empirical measurements of several aspects of
Web server usage. Some studies focused on improving the
utility of caching for Web clients based on traffic patterns
observed by a proxy or web server [3, 11]. These efforts of
Web workload characterization are aimed at understanding
typical traffic behavior.

However, there has been little published on Web work-
load analysis when traffic is very high. The World Cup Web
site study [5] presents a peak workload analysis pointing
out that file referencing is more concentrated on a few ex-
tremely popular pages. Also many clients repeatedly visited
the site with shorter inter-session time. A study of the 1998
Olympic Games Web site [16] analyzed the workload and
developed traffic models that could be used to predict sea-
sonal traffic variations and peak request rates at a Web site
during its normal operation. Neither study is however, con-
cerned with DoS attacks or implications on CDNs. A recent
study [8] examined IP-flow-level traffic at the border router
of the university network and presented flow characteristics
of associated DoS attacks and flash crowd behavior. They
found that flash crowd behavior was identified by rapid rise
in traffic to a particular flow followed by a gradual drop-off
over time. One incident of a DoS attack, on the other hand,
was detected by a very sharp increase and decrease of the
number of outgoing flows to a target server because each at-
tempt was from a distinct source address and port number
which appeared as a separate flow in the analysis. Our work
focuses on HTTP-level traffic measurement and shows much
detailed analysis of HTTP traces recorded at several Web
sites.

Crovella et al. showed that under the high workload,
shortest connection first scheduling algorithm improved the
mean response time of Web servers by the factor of four
or five [10]. A study of the effect of Ken Starr’s report
on NLANR Web caches by Wessels pointed out that inap-
propriate settings of Ezpires and Last-Modified header fields
prevented ordinary caches from dealing effectively with flash
events [28]. In contrast, our study presents an approach for
improved flash crowd protection using CDNs assuming ex-
isting Web site behavior.

There have been a few suggestions, such as the pushback
technique [12] and route-based packet filtering [25] for deal-
ing with DoS attacks at the router level but our technique
does not rely on changing router architecture and is com-
plementary to anything that might bypass such a filter that
may be deployed.

Requests from spiders are another type of HTTP requests
that may inconvenience a Web site and, while usually legit-
imate, might be good candidates for being dropped by an
overloaded site. Previous work on identifying these requests
appeared in [20, 4] and is orthogonal to our study.

3. FLASH EVENTS
3.1 Data

To explore properties of flash events, we analyzed HTTP
traces collected from two busy Web servers, one from the
play-along Web site for a popular TV show (referred to
as the Play-along site for short) and the other from the
Chilean election site (referred to as the Chile site). Both
traces reflect flash events. The Play-along site experienced
such an event during the show time on TV. The Chile Web

site hosted the continuously updated results of the 1999
presidential election in Chile.

Table 1 summarizes statistics of the two traces separately
for the entire trace and for the FE segment, including the
number of requests, documents and clients found in the
traces. The table also lists the number of client clusters ob-
tained by the network-aware client clustering technique [20].

3.2 Traffic Volume

7000 700

second (1ps)

5000 8 s00
4000 2 a00
300

200

Number of requests

100

0 0
010000 20000 30000 40000 50000 60000 70000 80000 90000 0 20000 40000 60000 80000 100000 120000
Time (second) Time (second)

(a) Play-along (b) Chile

Figure 1: Traffic volumes (averaged over successive
2 seconds intervals)

Figure 1 shows the request rate experienced by the two
sites over time. According to our definition of a flash event
(FE) as a sudden growth in the request rate, we classify no-
ticeable peaks as FE in each trace. The figure shows that the
request rate grows dramatically during an FE but that the
duration of the FE is relatively short. So, when provisioned
to handle the peak load, servers would stay practically idle
most of the time.

6000 350

5000 £ 300

cond (1ps)

4000

3000

2000

Number of requests per se

1000 €
2

[[
60600 60800 61000 61200 61400 61600 61800 39000 39100 39200 39300 39400 39500 39600 39700 39800 39900
Time (second) Time (second)

(a) Play-along (b) Chile

Figure 2: Request rate at the beginning of FE

To see how much time a site has to react in the face of
an unfolding FE, Figure 2 shows the traffic pattern when we
zoom in on the first 15 minutes of the FE. Both figures show
that request rate increase, while rapid, is far from instan-
taneous. In the Play-along case, the rate increase occurs
gradually over the 15-minute interval from the time index of
60,600 second and reaches 6,719 req/sec at 64,700 second.
The Chile trace has a much steeper rate increase, but even
here the increase occurs over a few tens of seconds (from
39,334 second to 39,374 second) and reaches only half the
peak rate: the peak rate of about 610 req/sec is reached
only later, outside the time window shown in Figure 2(b).
We use this property in Section 5 to let a CDN adapt to

Data size

Trace (Mbyte) Duration Requests | Documents Clients | Clusters

B Total 02/05/00 (24h) 13,018,385 7,084 53,745 14,100
Play-along | 112.1 on 100 mimutes 9,245,399 1887 | 34,349 3,689
(71.0%) (68.9%) | (63.9%) | (61.6%)

Chile 20.5 Total | 12/12/99 (32h30m) 2,634,567 10,302 20,532 1,737

' FE 2892 minutes 2,385,811 9,388 18,281 1,507

(88.2%) (90.2%) | (89.0%) | (86.8%)

Table 1: Basic statistics for Play-along and Chile traces. Data size is counted over the traces compressed with

a gzip utility

the unfolding FE so that it offers better protection to origin
sites against overload.

3.3 Characterizing Clients

1600 clients
clusters -

clients
clusters -

Number of distinct clients

o 5
010000 20000 30000 40000 50000 60000 70000 80000 90000 0 20000 40000 60OOD 80000 100000 120000
Time (second) Time (second)

(a) Play-along (b) Chile

Figure 3: Distribution of clients and clusters over
time

Figure 3 shows how the number of distinct clients and
client clusters accessing the site in 10-second intervals change
over time. We see that the spikes in request volumes during
an FE correspond closely with the spikes in the number of
clients accessing the site. Thus, the number of clients in a
flash event is commensurate with the request rate.

Average per-cient request rate
Average per-client request rate

0 0
010000 20000 30000 40000 50000 60000 70000 80000 90000 0 20000 40000 60000 80000 100000 120000
Time (second) Time (second)

(a) Play-along (b) Chile

Figure 4: Average number of requests per client in
a second

To verify this claim more directly, Figure 4 shows how
the average request rate generated by a single client changes
during and outside the flash event. The figure dos not show
any clear increase in per client request rate during the flash
event, at least for the two FEs we consider. The per-client
rates rather drop and remain lower during the flash events

than any other time slots. Thus, the increase in traffic vol-
ume occurs largely because of the increase in the number of
clients.

The fairly stable per-client request rate can also be used to
identify robots or proxies that automatically retrieve docu-
ments from the Web, which would behave more aggressively.
We picked out several clients in this way from the Chile
trace that turned out to be proxies that had sporadically
sent tens of requests in a row.

Figure 3 also shows that the number of distinct clusters
during the FE is much smaller than the number of distinct
clients. This is because that cluster size distribution is very
skewed — few clusters account for a large fraction of hosts
— and therefore new clients come disproportionately from
existing clusters, which is more apparent during the flash
events. We will see that this is not true in the case of DoS,
and is one of the strongest differentiator between FE and
DoS that we were able to identify.

To better understand the dynamics of client clusters ac-
cessing each Web site, we divided the trace into before and
during an FE and marked an incoming cluster during the
FE as old if it did appear before it. We then calculate the
percentage of old clusters as the ratio of old clusters over
the number of distinct clusters during the FE. Surprisingly,
we found that a large number of clusters active during an
FE had also visited the sites before the event. The amount
of the cluster overlap is 42.7% in the Play-along trace and
82.9% in the Chile trace. A possible explanation is that big
clusters are responsible for most of requests to the Web site.
With a high overall request rate, most of these big clusters
would have at least one client that accessed the site already,
so this cluster will not be new no matter how many more
clients from it access the site.

Fraction of requests.

Play-along
Chile -

0 0.2 04 06 08 1
Fraction of clusters

Figure 5: Cluster contribution to requests

To verify this explanation, Figure 5 shows the cumulative
distribution of the requests contributed by clusters that vis-
ited the site. It shows that 10% of clusters contributed a
majority of requests—60% to the Play-along site and 90%

to the Chile site. The distribution of requests across clusters
is indeed highly skewed and reflects the skewed distribution
of cluster sizes [20]. This suggests that client distribution in
an FE follows user distribution across networks.

3.4 Characterizing File Reference

Understanding file reference patterns before and during a
flash event is important for devising methods to handle FE
effectively. With two traces described above, we observed
the following file referencing behaviors in flash events.

(a) Over 60% (61% and 82% for Play-along and Chile, re-
spectively) of documents are accessed only during flash
events. This observation forms the basis of our insight
of Section 5 that some current CDNs may not provide
the desired level of protection against FE. Indeed, most
CDN caches will not have these documents at the be-
ginning of the FE; hence most of the requests at the
beginning of the event would miss in the caches and be
forwarded to the origin server. Although subsequent re-
quests would be served from the caches, a CDN with
many caches can send a large number of initial misses
to the origin server in a short time.

Figure 6: Cumulative distribution of document re-
quests

(b) To deduce the popularity of documents during flash
events in our traces, we plot the cumulative fraction of
the requests accounted for by distinct documents, most
popular first, in Figure 6. For both traces, less than 10%
of most popular documents account for more than 90%
of requests. This is a promising result, since it indicates
that in principle, intelligent caching of these documents
might be able to address the FE problem.

- tﬁ L 1400
§ +
g 000 * h £ 1200 ;
g et
S 6000 o = *
e + 2 1000
5000 .
800
4000 +
p w00 L4
3000 %
+ #?

Number of clusts
g 8

i3

B

Number of clusters
8 B8

g 8
\\\

0 100000 1e+06 1e+07 1 10 10 1000 10000 100000
esses per document Number of accesses per document

Number

(a) Play-along (b) Chile

Figure 7: Correlation between document popularity
and the number of clusters accessing the document

(c) Requests for popular documents come from a large num-
ber of clusters as shown in Figure 7. This again has

implications for current CDNs with a large number of
servers because requests from a large number of different
clusters are likely to arrive at a large number of different
CDN servers, and these requests will therefore generate
a large number of misses that will seep through to origin
servers.

4. DOS ATTACKS
4.1 Password Cracking

While attempts to crack passwords technically do not
fall under the rubric of DoS attacks, our proposed strat-
egy treats them similarly, namely, to identify and discard
these requests as early as possible (see Section 4.3. Thus, it
is appropriate to study these attacks together.

gl

R N R

0 100000 200000 300000 400000 500000 600000 700000 0 100000 200000 300000 400000 500000 600000 700000
Time (second) Time (second)

(a) The number of re-
quests per second (esg)

(b) The number of re-
quests per second (ol)

Figure 8: Request rates in password cracking DoS
attacks to esg and ol

We analyzed two log files, esg and ol, which recorded
more than 1 million requests within 60 days. Table 2 sum-
marizes high-level statistics for those traces. As shown in
Figure 8(a) and 8(b), both recorded several peaks through-
out the period. On closer examination, it turned out that
those were attempts to access resources that required a pass-
word authorization. Interestingly, each peak was made by
the same IP address which sent from 600 to 1,000 HEAD
requests in a minute in most cases. The pattern resulting
from this activity is two-fold:

(a) The surge in request rate during the attack occurs due
to the increase in a per-client request rate. Comparisons
of Figures 8(a) and 9(a) for the esg site and Figures 8(b)
and 9(b) for the ol site show that peaks in the request
rates match those in the per-client average request rates.
This is a deviation from the behavior we observed in
flash events.

(b) An overwhelming majority of client clusters that gener-
ated requests during the attack were new clusters not
seen by the site before the attack. Only 0.6% of the
clusters seen at the esg site during the attack were also
seen before, and the percentage of these clusters drops
to 0.1% for the ol site.

With respect to file referencing, most of the malicious re-
quests were toward one of three resources on either site.
There was one exceptional client whose requests were across
tens of documents all of which yielded a 401 response indi-
cating an unauthorized request. That exception aside, the

Data size . R
Trace (Mbyte) Duration Requests | Documents | Clients | Clusters
01/06/01:00:00:06 -
esg 30.5 Total 26,07 /01:00:00:00 3,501,468 19,456 | 88,078 17,043
401 439,585 2 241 185
01/06/01:00:04:50 -
ol 9.3 Total 25/07/01:23:50:41 1,162,675 25,083 | 39,799 10,259
401 377,330 3 16 14

Table 2: Basic statistics for esg and ol. Requests with the response code 401 Unauthorized are considered

password-cracking attempts and listed in the 401 row.

18 14
o 16
Z

5 10

Average per client request rate

8
%6
g
2 4
H

2

0

PRI WO TR AT | :L IR T |
5100000 200000 300000 400000 500000 600000 70000 0100600 200000 300000 400000 500000 6000GD 700000
Time (second) Time (second)

(a) The number of re-
quests per clients in a
second (esg)

(b) The number of re-
quests per clients in a
second (ol)

Figure 9: The average per-client request rates to esg
and ol

concentration of malicious requests to just three documents
was unique to this type of attack.

4.2 Web Server Disabling

The Code Red worm utilizing a previously disclosed buffer
overflow flaw [19] disables vulnerable Microsoft IIS Web
servers by sending a very large Request-URI (beginning with
default.ida?...). We analyze 5 traces where each log file
recorded a number of accesses from infected computers. Ta-
ble 3 lists basic statistics for each trace. The trace for bit.nl
contained only accesses by infected computers so we could
not compute cluster overlap for this site.

Figure 10 plots characteristics of the bit.nl trace, the
largest among the traces we considered. As Figure 10(a)
shows, the attack started with few requests followed by a
surge of requests later. However, one can observe from Fig-
ure 10(b) that, this surge occurred because of new clusters
joining in the attack. This is different from FEs which did
not exhibit any surge in new cluster arrivals (see Figure 3).
Figure 10(c) confirms this observation by showing that the
request rate per cluster did not change during the surge in
the request rate. The per-client request rate is three for all
cases except for bit.nl where the ratio is three or six.

With respect to client distribution, we found that DoS re-
quests came from clients widely distributed across clusters
in the Internet. In fact, each client came from a unique clus-
ter in the fullnote and creighton traces. The percentage
of clusters with just one DoS client was 72% for the bit.nl
trace, 84% for the rellim trace and 79% for the spccctxus
trace. The distribution of DoS attackers is more broad than
in the case of flash events. Two corresponding figures, Fig-

8 clients.
< clusters -
g o7
g 06
S o5
5 03
g 02
S o1
g
g
8

Number of requests p d (1ps)

° . ~

o @ e & o~ &

300000 ————————————————
Number of distinct clients ters pe

° °

° = &

350000
400000
450000

500000

550000
600000
650000
700000
350000
400000
450000

500000

550000
600000
650000
700000

Time Recon

El

ime fRecon

(a) The number of re- (b) The number of
quests per second clients vs. clusters in a
second

Average per-client request rats
S 8 8 & ¢
s 8 ' 8 8 2
300000 ————r
Fraction of request
s o o
g 8 &8 .

0 02 04 06 08 1
Fraction of clusters

350000
400000
450000
500000
S550000
600000
650000
700000
°

ime Recor

(c) The number of re-

quests per client in a
second

(d) Cluster contribution
to requests

Figure 10: Characteristics of a DoS attack to bit.nl

ure 10(b) and Figure 3(a) highlight the difference: while Fig-
ure 3(a) shows many fewer clusters than clients, the cluster
and client curves in Figure 10(b) almost match. It is also
noticeable that the distribution of requests among clusters
are more spread across a number of clusters as shown in
Figure 10(d).

Interestingly, for traces that contained both DoS and non-
DoS accesses, not a single DoS client had previously accessed
the Web site. The percentage of overlap increases slightly
for clusters but still remains far below what we have seen for
FEs. Among the traces where we could calculate the cluster
overlap, its value was 0.6% in the creighton site, 0% in the
fullnote site, 1.8% in the spccctxus site and 14.3% rellim
site. With the exception of the rellim site, these overlaps
are are similar to the password-cracking attacks.

4.3 Comparative Characterizationand Server
Guidelines

We analyzed the behavior of flash events and DoS attacks

Trace Data size Duration Requests | Documents | Clients | Clusters
(Kbyte)
) 15/07/01:18:06:43 -
bit.nl 764 DoS | 5007)01:05:19:11 35,657 1| 11,092 6,155
12/07/01:01:00:41 -
. " Total | 50/07/01:14:42:25 3,925 565 394 225
& Dos | 19/07/0T:1T:48:18 - a1 1 a1 51
19/07/01:18:57:03
Total | 01/05/01:17:28:29 3,935 462 175 117
19/07/01:19:55:50
fullnote 36
DoS 19/07/01:11:45:44 - 28 1 28 28
2> | 19/07/01:19:55:50
12/07/01:14:56:24 -
e Y Total | 5007/01:13:02:30 474 79 172 73
19/07/01:12:13:14 -
DoS 1 90/07/01:08:45:31 143 1 143 67
Total | 11/07/ 01:20:00:28 - | 39 (g3 17,810 | 5,269 1,687
specctzus | 3,360 19/07/01:21:23:43
’ 19/07/01:10:39:55 -
DoS | 90707/01:19:56:58 192 ! 192 186

Table 3: Basic statistics for the traces containing a Code Red attack. A request is classified as DoS if it requests

the URL generated by an infected host when Code Red spreads

in the previous sections and observed several differences be-
tween FEs and DoS events. These observations lead to a
better understanding of the nature of FE and DoS. Table 4
summarizes properties of FE and DoS and their differences
in broad terms.

An important difference is that the Web site sees a much
larger number of previously seen clusters during a flash event
than during a DoS attack. For the Play-along and Chile
events, 42.7% and 82.9% of all clusters that sent requests
during the flash event had also sent requests before the flash
event. This contrasts with only 0.6-14% of such old clusters
seen in the Code Red attack. We should note that clustering
is essential to draw this distinction because the percentage
of previously seen individual clients was small in all events.
This difference can be intuitively explained by the fact that
legitimate requests are more likely to come from clusters
where at least some clients had been interested in the Web
site even before the flash event, whereas DoS attacks rely on
random machines that the attacker was able to hijack.

Another difference is that in DoS attacks that involve a
large number of clients (such as the Code Red attack), distri-
bution of clients among clusters is much more uniform than
in a flash event. The highly skewed distribution of clients
among clusters in a flash event reflects the highly skewed dis-
tribution of cluster sizes [20]. However, an attack does not
reflect the cluster size distribution. While password cracking
has too few clients to infer the distribution, server disabling
exhibits a more even distribution of clients over clusters than
FEs. The same aspect can be seen when considering the dis-
tribution of requests among clusters: legitimate requests are
more concentrated in a few most active clusters while DoS
requests are more scattered across numerous clusters.

A third difference is in the regularity of request rate from
individual clients in a DoS attack. In the Code Red at-
tack each cluster produces exactly either 3 or 6 requests
per minute. In the password-cracking attack, a single client
generates a huge number of requests during a short period
of time. On the other hand, the per-client request rates get
lower during an FE than usual, which suggests that the time

gap between successive requests from a client is larger due
to a increased server processing time and a possible trans-
mission delay by network congestion.

A fourth difference is in the pattern of requested files. In
a flash event, unlike that of DoS attacks, the requested file
distribution is Zipf-like. In the attacks we considered, all
malicious requests were to a small set of files - three files
in the password-cracking attack and one file in the server-
disabling attack.

4.4 Server Strategy

A server approaching its capacity of handling requests
tends to discard some requests. An intelligent strategy should
select the requests that are to be discarded. By exploiting
the differences between legitimate and malicious requests,
the server can discard requests that are more likely to be
malicious. Some legitimate requests may also be discarded
but since the server cannot process all requests anyway, the
overall behavior will be more desirable.

The server can exploit the differences that we have iden-
tified so far. Cluster overlap and per-client request rates are
the two characteristics that offer especially strong differenti-
ation between an FE and DoS and are also easy to monitor.
Consequently, a server can adopt the following simple pro-
cedure for choosing requests to ignore:

e Monitor the clients that access the site and their re-
quest rate.

e Periodically perform network aware clustering over the
client set accumulated over the past period without
flash or DoS events. We will call these clusters “old
clusters”.

e When performance degrades to an unacceptable level,
discard packets (including initial TCP SYNs) that come
from clients that do not belong to old clusters as well
as from those nonproxy clients whose request rate de-
viates significantly from average.

Implementation of the strategy can be done without re-
quiring too many CPU cycles or modifying TCP stacks on

Characteristic

Flash Events

DoS Attacks

Traffic volume

Both have a noticeable increase in terms of the number of requests. The length of peaks can be

large or small depending on the episode.

Number of
clients and their
distribution

Caused mostly by an increase in the number
of clients accessing the site. Client distribution
can be expected to follow population distribution
among ISPs and networks.

Caused either by an increase in the number of
clients or a particular client sending requests in
a high rate. Client distribution across ISPs and
networks does not follow population distribution.

Cluster overlap

Significant overlap between clusters a site sees be-
fore and during the FE.

Cluster overlap is very small.

Per-client re-
quest rates

Because a server usually gets slower during the
FE, per-client request rates are lower during the
FE than usual. This indicates that legitimate
clients are responsive to the performance of a
server unlike DoS attackers who generate requests

Some DoS attacks involve a few clients emitting
very high request rates and some a large number
of clients generating a low request rate, but in
both cases per-client request rate is stable during
the attack and significantly deviate from normal.

by a pre-determined time distribution.

Requested files

File popularity follows Zipf-like distribution.

The distribution of files used by attackers is un-
likely to be Zipf-like. In many cases, a large num-
ber of compromised hosts stress a Web server by
requesting the same small set of files. It is also
possible that a particular host repeatedly requests
a large set of files (which may not even exist on
the server). Both behaviors result in distributions
that are not Zipf-like.

Table 4: Comparative characteristics of flash events vs. DoS attacks

a web server. The cluster to which an IP address belongs
can be located via our clustering library that takes three
orders of magnitude less time than the time for a typical
HTTP request processing. Thus the overhead on the server
is negligible.

There are well known techniques to use dynamic shared
libraries that function as system call filters [18, 17] that
can be used selectively when the load on the Web server
exceeds a certain threshold. The system call filter can use
a modified accept() which decides if a requesting IP remote
address meets the criteria for being dropped.

However, it is impossible to anticipate and defeat all DoS
attacks and this is not our goal. DoS attacks often flood
the links and rarely make it to the application level but if
they do, we believe we have a way of dealing with them. We
also realize disclosing techniques help attackers in finding
ways to circumvent it. We believe that increasing the cost
to DoS attackers without a corresponding increase on the
server side is a potential alternative. Since a Web site does
not make available the list of IP addresses (and thus clusters)
of its frequent visitors, the DoS attackers would potentially
have to send requests from a very large number of clusters.
Additionally, since many of the newer DoS attackers don’t
bother to spoof addresses [13], we believe that our technique
becomes advantageous.

This strategy is unfortunately biased against clients in
small clusters: these clusters are less likely to be seen by the
site before the FE than large clusters. Thus, the site is more
likely to discard requests by clients from small clusters. Still,
the strategy is beneficial overall because it allows to service
more legitimate requests under overload conditions.

5. FLASH CROWDS AND CDNS

So far we have considered characteristics of flash events

and denial of service attacks and how the two could be dis-
tinguished by Web servers. Let us now assume that a Web
site is able to deal with the denial of service attacks, perhaps
using our approach to discard DoS requests early. To deal
with flash events, the site might turn to CDNs, which cite
the protection against a flash crowd as one of their main
benefits. This section analyzes CDN behavior under a flash
event and shows that the protection some current CDNs
offer might be weaker than claimed. We then propose an
approach for improved flash crowd protection, which we call
an adaptive CDN.

5.1 The Behavior of Current CDNs during a
Flash Event

We observed in Section 2 that a small number of objects
are responsible for a large percentage of request during a
flash event. This suggests that caching would be an effective
way to deal with a flash event. However, many of these
objects are new to the flash event, that is, they were not
recently accessed before the flash event. In the initial phase
of the flash event, requests for these objects will miss in most
caches and be forwarded to the origin server. This section
analyzes the effect of a CDN on the origin site during a flash
event.

We perform our analysis by means of trace-driven simula-
tion using the two traces described earlier, Play-along and
Chile. We assume an infinite lifetime for cached objects.
This makes our results conservative in terms of the request
rate at the origin server because this request rate would only
grow if objects were allowed to expire in the cache.

Since clusters group topologically close clients, we assume
that CDN caches are assigned to clients at the granularity
of clusters: all clients in the same cluster are assigned to the
same cache. In our simulations, each client cluster is ran-

domly assigned to one of the caches as soon as it generates
the first request and uses that cache afterward. In this sub-
section, our focus is on cache misses that reach the origin
server and hence a different cache assignment will not change
our results in any noticeable way.! In Section 5.2.1, where
we consider load balancing among caches, more intelligent
cache assignment would further improve the performance of

our scheme.

of caches (limit) | # of caches | Average # of | Average # of
(actual) documents clusters

1 1 7084.00 14100.00

10 10 1479.60 1410.00

100 100 470.31 141.00

500 500 312.70 28.20

1000 1000 270.20 14.10

5000 4725 163.92 2.98

10000 7589 130.34 1.86

15000 9102 118.80 1.55

cache per cluster 14100 94.03 1.00

Table 5:

trace

Cache

configurations for the Play-along

of caches (limit) | # of caches | Average # of | Average # of
(actual) documents clusters

1 1 10303.00 1737.00

10 10 3031.30 173.70

100 100 834.84 17.37

500 482 293.66 3.60

1000 823 203.90 2.11

5000 1490 135.77 1.17

10000 1606 128.88 1.08

15000 1643 127.00 1.06

cache per cluster 1737 122.80 1.00

Table 6: Cache configurations for the Chile trace

Tables 5 and 6 show cache configurations considered for
each trace. The first column indicates the number of caches
from which the system selects caches to assign to clusters.
The second column gives the number of caches that were
actually assigned. The third column provides the average
number of objects each cache contains at the end of the run
and the last column shows the average number of clusters
assigned to a cache. The last row in the tables corresponds
to the case when each cluster has a designated cache.

Figure 11(a) and 11(b) show the peak request rate at the
origin server during the run for different numbers of caches
in the system. It is this characteristic that determines the
ability of the Web site to withstand the flash event in the
presence of a CDN. This request rate increases rapidly with
the number of caches because each cache must obtain an

Tndeed, with infinite cached object lifetime and infinite ca-
pacity, each cache has a miss only once per object for the
entire run. Because each cache is likely to see requests for
most FE objects at the start of the flash event regardless of
the cache assignment, cache assignment will not have much
effect on the miss rate at the origin server.

object from the server when the cache receives the first re-
quest for the object. The peak occurs in the beginning of FE,
when clients request objects which are not yet cached, and
reaches about 450 requests per second for thousand caches
in the case of Play-along. Depending on the complexity of
the processing involved in servicing a request, this rate can
easily pose a problem for a server. Also note that the FEs
we studied were rather modest (due to the unavailability
of larger logs), with peak request rates in single thousands.
For more significant FEs, the peak request rate at the origin
in the presence of a thousand caches can be expected to be
higher. Thus, we can conclude that a CDN with a thousand
caches might not be able to provide an absolute protection
against an FE.

One could keep the request rate at the origin server man-
ageable by limiting the number of caches but that increases
the load on individual caches, as Figures 11(c) and 11(d)
illustrates.>

This situation calls for an approach that would lower the
peak rate at both the origin server and at caches. One tech-
nique is cooperative caching, where caches forward missed
requests to other caches rather than to the origin server (see,
e.g., [9, 22]). This imposes an extra overhead for missed re-
quests even when the origin server is not overloaded. A
rough indication of this overhead is provided in [26], which
reported that a Squid campus proxy cache took up to 150
ms to send cached responses to clients. (Although CDNs are
more likely to use commercial cache products, we are not
aware of similar data for commercial caches.) We therefore
propose a different technique that allows a CDN to break
the above tradeoff between the request rate at the cache
and the origin server without adding the extra overhead of
cache cooperation when it is not warranted.

5.2 Adaptive CDN: Improved Protection of
Origin Server

Figure 12 illustrates our proposed adaptive CDN architec-
ture. Like all existing CDNs we are aware of, our architec-
ture uses its Domain Name Server (DNS) to distribute client
requests among CDN caches. As in most existing CDN ar-
chitectures, we assume that there is a control component
which collects feedback from caches and updates correspond-
ing entries in the CDN’s DNS server®. Many commercial
DNS implementations provide the functionality to to sup-
port frequent changes of an entry in a seamless way, although
this functionality would have to be added to the prevalent
open-source DNS implementation — BIND [15]. Caches are
organized into groups, with one cache within a group se-
lected to be the primary cache for a given Web site. Pre-
sumably, groups comprise topologically close caches, such
as those on a LAN in a data center. To spread the load,
different caches in the group serve as primaries for different
sites.

Normally, a CDN’s DNS server distributes client requests

2Given the small scale of Play-along FE, the absolute lev-
els of per-cache request rate these FEs generate would not
overload modern caches: these rates only reach about 250
req/sec without load balancing and 65 req/sec with perfect
load balancing across 100 caches. However, the tradeoff in
question that our traces illustrate can cause cache overload
in a higher-scale FE.

3 Although CDNs can have multiple DNS servers controlling
their network, we use a single DNS server in the rest of the
paper without loss of generality.

10000 1000

8

5

Peak request rate (1ps)

- =1 g g

o S 3 B

1000
5000

10000
1000
h

Number of caches Number of caches

(a) Peak request rate

forwarded to the origin
(Play-along)

(b) Peak request rate

forwarded to the origin
(Chile)

1e+07 1e407
1e+06 1406
100000 100000
10000

1000

Peak request rate (1ps)

H
&

8

s

- 3 R

1000
5000
10000

- B g8 g8

Number of caches Number of caches

(c) Average number of
requests to each cache
(Play-along)

(d) Average number of
requests to each cache
(Chile)

Figure 11: Simulated behavior of current CDN dur-
ing a flash event. We assume a CDN that deploys
caches in some of the clusters.

only among primary caches for respective Web sites. When
the load on a primary cache reaches a dangerous level, the

primary requests the DNS to start distributing requests among

other members of the group called delegates. However, when
a delegate receives a missed request, it forwards the request
not to the origin server but to the delegate’s primary. In
this way, the number of caches that can forward misses to
the origin server remains limited to the primaries and at
the same time the load is spread among both primaries and
delegates. When the flash event ends, the primary sends
another report to the DNS server asking it to stop using
delegates for future requests. When delegates are engaged,
the system behaves similar to cooperative caching. However,
such behavior occurs only during a flash event, so that the
cooperative caching overhead is not incurred during normal
operation. We call this technique dynamic delegation.

Note that a delegate for one Web site could be a primary
cache for another Web site. Thus, with an appropriate al-
location of primaries among Web sites, an adaptive CDN
utilizes all available caches even when no delegates are en-
gaged. Also, for efficiency, it makes sense for a primary to
allocate delegates that are topologically close to the primary,
e.g., on the same local area network (LAN).

The simple idea behind dynamic delegation comes from
the two factors. First, flash crowd traffic are generated for
a small set of hot documents from many individual clients
scattered over the Internet. Secondly, a hierarchical caching
absorbs a number of requests at the lower level of caches
and only missed requests are forwarded to the caches in the
upper level. In the case of a perfect hierarchical caching
where trees are balanced with one top level caches, we can

Origin
A Server

Figure 12: Architecture of an adaptive CDN

reduce the number of requests to be served from an origin
server to the number of hot documents. In our architecture,
a number of cache trees are dynamically constructed per
server basis assuming that not every server becomes busy at
the same time and some caches are available and take a role
as a delegate to the other busy server.

There are a variety of algorithms to implement dynamic
delegation. As a first approach, we simulated an algorithm
where a primary decides whether to add a delegate at the
time of request processing. This involves executing a light-
weight protocol similar to ICP [14] except that our protocol
is performed among topologically close caches (on a LAN)
and it does not wait for the slowest response from a group of
caches as ICP does on a miss. Equally possible is an asyn-
chronous approach where each primary periodically consid-
ers its load and the load of its delegates and decides if adding
or releasing delegates is warranted. We leave exploring this
and other possible dynamic delegation algorithms for future
work.

Specifically, our current dynamic delegation algorithm is
as follows. Each cache retains load information during last
6 seconds. The other two parameters of the algorithm are
high and low load watermarks, l;, and [;. Initially every
primary p is in underloaded state. When a request arrives
at a primary p, the following cases are possible:

1. If p is in underloaded state and the load on p has not
exceeded [;, in the last § seconds, p processes the re-
quest.

2. If p’s load has exceeded I; in the past § seconds, p
queries all members of its group that are not its del-
egates already for their load and adds the first cache
d that responds with load below [; as a new delegate.
To this end, p informs the DNS server to add d to the
set of current delegates of p. In addition, p responds
to the current request with HTTP redirect to new del-
egate d.* Finally, p enters the overloaded state. When
there is no cache available to perform as a delegate, the
request is dropped with a 503 Service Unavailable
response.

“The idea is that such a response would be generated en-
tirely from main memory and take less processing than re-
sponding to the request in a normal way.

3. If p is in overloaded state and its load is between I,
and [;, then p selects an existing delegate d to redirect
the request to, queries the delegate for its load and
redirects the request to d unless d’s load exceeds lp,
in which case p adds a new delegate and redirects the
request to it.

4. If p’s load has not reached /; in the past d seconds, p
processes the request, releases all delegates (that is, in-
forms the DNS server to stop using delegates for future
requests), and enters the underloaded state.

5.2.1 Smulation Results

This section presents our preliminary results from the
trace-driven simulation that evaluates our adaptive CDN. In
our simulations, there are IV total number of caches. Among
them, n are primary caches which can have up to N —n del-
egates from cache pools. Clients are redirected by the DNS
server to one of n primary caches at the granularity of clus-
ters, assigning all clients from the same cluster to the same
cache. The DNS server randomly assigns a cluster to a cache
when the first client from this cluster visits the site for the
first time. After that, all clients from this cluster use this
cache for the time-to-live (ttl) period of the DNS assignment,
which is set to 10 seconds in our experiments. After that,
the DNS will use the same primary cache for the cluster un-
less delegates have been engaged for this primary. In the
latter case, the DNS assigns to the cluster the delegate that
has the lowest load at the time of the request. Again, all
clients in the cluster will use this delegate for the ¢ period.

N n ttl [lh ll
300 | 100 | 10sec | 30 sec | 50 | 25

Table 7: Parameter settings for the simulation.

Table 7 shows the simulation configuration for each trace.
Load on caches is computed as requests per second averaged
over two-second intervals.

Considering the request rate at the origin server, the adap-
tive CDN with n primary caches generates exactly the same
request rate as that of the conventional CDN with n caches
(see Figures 11(a) and 11(b)). However, the conventional
CDN with n caches will place much higher load on indi-
vidual caches. To precisely compare the load on individual
caches placed by conventional and adaptive CDNs would re-
quire knowing the exact load balancing algorithm used by
conventional CDNs—information that is not publicly avail-
able. The simulation shows that with 100 primary caches,
the number of delegates used is 116 for the Play-along trace
and 6 for the Chile trace. The number of primary caches
that ever had a delegate is 65 for the Play-along, while
only two primary caches reached [, and actively engaged
delegates throughout FE for the Chile trace. This suggests
that request sources are more skewed to a few busy clusters
for the Chile case. It is also noticeable that none of the
caches including delegates experienced the load above [, .

Figure 13 shows the simulation results plotting the num-
ber of requests per second at the origin server when there are
100 primary caches. Comparing this with Figure 1, which
shows the request rate at the origin server without a CDN,
we see that peak request rates are reduced by a factor of 50

bdiadilsi i
o i
010000 20000 30000 40000 50000 60000 70000 80000 90000 0 20000 40000 60000 80000 100000 120000
Time (second) Time (second)

(b) Chile (dynamic del-
egation)

(a) Play-along (dy-
namic delegation)

Figure 13: Request rate at the origin server with
adaptive CDN

for the Play-along trace and 20 for the Chile trace. There
are still peaks in the beginning of FE but they are as small
as 150 requests per second for the Play-along trace and 30
requests per second for the Chile trace. This suggests that
an adaptive CDN effectively lowers peak request rates of an
origin server in the case of FE. At the same time, by using
dynamic delegation, the adaptive CDN also ensures that
load on each cache remains low and that proximity-based
cache selection is not compromised.

6. CONCLUSIONS

In this paper we have defined a flash event, a phenomenon
that can severely cripple a Web server. Even in cases where
servers may anticipate significantly increased load, they need
help in proper provisioning to handle a flash crowd. Both
flash crowds and denial of service attacks have the potential
to have similar impact on Web servers. We demonstrate a
way to distinguish between them using network aware clus-
tering, so that Web servers can attempt to serve normal
clients and drop requests from clients involved in DoS at-
tacks.

In the second half of the paper we explore the role of
CDNs that claim to offer protection against flash crowds.
We show that some CDNs as they are currently structured
may not offer maximum protection and we propose an al-
ternative architecture that uses adaptive techniques. In ad-
dition, we present trace-driven simulation results evaluat-
ing our proposed adaptive CDN architecture. By contrast-
ing against an idealized allocation mechanism we show that
adaptive CDNs can help handle extreme situations such as
flash crowds. As future work, we would like to obtain larger
flash crowd logs from diverse places and experiment against
instrumented servers. In our proposed adaptive CDNs, we
plan to prepopulate caches and experiment with alternate
dynamic delegation algorithms. The dynamic delegation al-
gorithm could also use alternate redirection mechanisms.

7. ACKNOWLEDGMENTS

We would like to thank all those who gave us access to
their logs without which such research would be impossi-
ble. Included among them are the University of Chile, Sabri
Berisha, Mike Hendrickson, Dan Klein, Brian Miller, and
Gary Miller, and Tim Winders. We would like to thank Lee
Breslau and Fred Douglis for their comments on an earlier

version of the paper. We thank Shubho Sen for his detailed
comments.

8.
[1]

[2]

3]

[4]

[5]

[6]

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

CERT Advisory CA-1996-21 TCP SYN Flooding and
IP Spoofing Attacks.
http://www.cert.org/advisories/CA-1996-21.html,
Sept. 1996.

Denial of Service Attacks. http://wuw.cert.org/
tech_tips/denial_of_service.html, 1999. CERT
Coordination Center.

G. Abdulla, E. A. Fox, M. Abrams, and S. Williams.
WWW Proxy Traffic Characterization with
Application to Caching. Technical Report TR-97-03,
Computer Science Dept., Virginia Tech, Mar. 1997.
V. Almeida, D. Menasce, R. Reidi, F. Peligrinelli,

R. Fonseca, and W. M. Jr. Analyzing Web Robots and
their Impact on Caching. In Proceedings of the 6th
Web Caching and Content Delivery Workshop, June
2001.

M. Arlitt and T. Jin. Workload Characterization of
the 1998 World Cup Web Site. HPL-1999-35R 1.

M. F. Arlitt and C. L. Williamson. Internet Web
servers: workload characterization and performance
implications. IEEE/ACM Transactions on
Networking, 5(5):631-645, 1997.

P. Barford and M. Crovella. Generating
Representative Web Workloads for Network and
Server Performance Evaluation. In Measurement and
Modeling of Computer Systems, pages 151-160, 1998.
P. Barford and D. Plonka. Characteristics of Network
Traffic Flow Anomalies. In Proceedings of the ACM
SIGCOMM Internet Measurement Workshop, Nov.
2001.

A. Chankhunthod, P. Danzig, C. Neerdaels, M. F.
Schwartz, and K. J. Worrell. A Hierarchical Internet
Object Cache. In Proceedings of the USENIX 1996
Annual Technical Conference, January 1996.

M. E. Crovella, R. Frangioso, and M. Harchol-Balter.
Connection Scheduling in Web Servers. In Proceedings
of the USENIX Symposium on Internet Technologies
and Systems (USITS’99), Oct. 1999.

F. Douglis, A. Feldmann, B. Krishnamurthy, and J. C.
Mogul. Rate of Change and other Metrics: a Live
Study of the World Wide Web. In USENIX
Symposium on Internet Technologies and Systems,
1997.

S. Floyd, S. Bellovin, J. Ioannidis, K. Kompella,

R. Mahajan, and V. Paxson. Pushback Messages for
Controlling Aggregates in the Network.
http://search.ietf.org/internet-drafts/
draft-floyd-pushback-messages-00.txt.

K. J. Houle, G. M. Weaver, N. Long, and R. Thomas.
Trends in Denial of Service Attack Technology.
http://www.cert.org/archive/pdf/DoS_trends.pdf.
Internet Cache Protocol (ICP), version 2. RFC 2186,
Sept. 1997.

Internet Software Consortium. The Berkeley Internet
Name Daemon.
http://www.isc.org/products/BIND/.

A. K. Iyengar, M. S. Squillante, and L. Zhang.
Analysis and characterization of large-scale Web

[17]

(18]

[19]

[20]

21]

[22]

(23]

[24]

25]

[26]

[27]

28]

server access patterns and performance. World Wide
Web, June 1999.

M. B. Jones. Interposition Agents: Transparently
Interposing User Code at the System Interface. In
Symposium on Operating Systems Principles, pages
80-93, 1993. http://www.research.microsoft.com/
“mbj/papers/sosp93.ps.

E. Krell and B. Krishnamurthy. COLA: Customized
Overlaying. In Proceedings of the USENIX San
Francisco Winter 1992 Conference, pages 3—7, 1992.
B. Krishnamurthy and M. Arlitt. PRO-COW:
Protocol Compliance on the Web, Nov. 1999. Invited
plenary session talk at 46th IETF meeting,
Washington D.C. http://www.research.att.com/
“bala/papers/ietf99.ps.

B. Krishnamurthy and J. Wang. On Network-Aware
Clustering of Web Clients. In Proceedings of the ACM
SIGCOMM, Aug. 2000.

S. Lorenz. Is your Web site ready for the flash crowd?
http://www.serverworldmagazine.com/sunserver/
2000/11/flash.shtml.

S. Michel, K. Nguyen, A. Rosenstein, L. Zhang,

S. Floyd, and V. Jacobson. Adaptive Web caching:
towards a new global caching architecture. Computer
Networks And ISDN Systems, 30(22-23):2169-2177,
Nov. 1998.

D. Moore. The Spread of the Code-Red Worm
(CRv2). http://www.caida.org/analysis/security/
code-red/coderedv2_analysis.xml, Aug. 2001.

L. Niven. Flash crowd. In The Flight of the Horse.
Ballantine Books, 1971.

K. Park and H. Lee. On the Effectiveness of
Route-Based Packet Filtering for Distributed DoS
Attack Prevention in Power-Law Internets. In
Proceedings of the ACM SIGCOMM, Aug. 2001.

A. Rousskov and V. Soloviev. A Performance Study of
the Squid Proxy on HT'TP/1.0. World Wide Web,
pages 4767, June 1999.

B. Trott. Victoria’s Secret for Webcasts is IP
multicasting, August 1999.
http://www.infoworld.com/articles/hn/xml/99/
08/16/990816hnmentors.xml.

D. Wessels. Report on the effect of the Independent
Council Report on the NLANR Web Caches.
http://www.ircache.net/Statistics/ICreport/.

