
DAFS – Enabling Data Center Applications Page 1 of 5

December 2000

DAFS-Enabling Data Center Applications

Jeffrey Carter, Matt DeBergalis, John Gillono, and Arthur Lent, Network Appliance

The Direct Access File System (DAFS) protocol is a new file access method designed
to provide application servers with high performance low latency access to shared
storage pools over Fibre Channel, Gigabit Ethernet, InfiniBand and other VI-compliant
transports in data center environments.

Designed from the ground up to take full advantage of these next generation
interconnect technologies, DAFS is a lightweight protocol that enables applications to
directly access transport resources. Consequently, a DAFS-enabled application can
transfer data from its application buffers to the network transport, bypassing the
operating system while still preserving file semantics. In addition, since DAFS is
designed specifically for data center environments, it provides data integrity and
availability features such as consistent high speed locking, graceful recovery and fail-
over of clients and servers, fencing, and enhanced data recovery.

All of this translates into high-performance file I/O, significantly improved CPU
utilization, and greatly reduced system overhead due to data copies, user/kernel
context switches, thread context switches, interrupts and network protocol processing.

DAFS vs. Traditional File Access Methods

As mentioned above, DAFS greatly reduces the overhead normally associated with file
access methods. Figure 1 compares three file access methods: local file system
access, network file system access, and DAFS access. In the case of local or network
file systems, data is copied from the disk or network subsystem into a buffer cache, and
then copied into the application’s private buffer. File access over network file systems
incurs additional data copies in the networking stack. Some operating systems can
bypass the buffer cache copy in certain cases, but all reads over a traditional network
file system require at least one data copy.

DAFS – Enabling Data Center Applications Page 2 of 5

December 2000

Figure 1 – Data Transfer Overhead

DAFS has a fundamental advantage over other file access methods when reading data.
By using the remote memory addressing capability of transports like VI (Virtual Interface
Architecture) and InfiniBand, an application using the DAFS API can read a file without
requiring any copies on the client side. Using the “direct” DAFS operations, a client’s
read or write request causes the DAFS server to issue remote DMA requests back to
the client, so data can be transferred to and from a client application’s buffers without
any CPU overhead at all on the client side. The DAFS write path is also efficient; to
avoid extra data copies on write requests, a traditional local or remote file system must
lock down the application’s I/O buffers before each request. A DAFS client allows an
application to register its buffers with the NIC once, which avoids the per-operation
registration overhead.

DAFS Client Implementations

Applications can take advantage of these capabilities in several ways. The first is
through a user library that implements the DAFS protocol and is loaded as a DLL or
shared library. Alternatively, an application may access a DAFS server transparently
through a loadable kernel module. These two client implementations are shown in
Figure 2.

User

Kernel

Hardware Data

Control

Memory

NIC

NFS

TCP/IP

FS Switch

NIC Driver

Buffers

Buffer
Cache

Packet
Buffers

Application

NFS

HBA

File
System

SCSI
Driver

FS Switch

HBA Driver

Buffer
Cache

Local FS

NIC

VI NIC
Driver

Buffers

Application

DAFS

VIPL

DAFS

Application

Buffers

User

Kernel

Hardware Data

Control

Memory

Data

Control

Data

Control

Memory

NIC

NFS

TCP/IP

FS Switch

NIC Driver

Buffers

Buffer
Cache

Packet
Buffers

Application

NFS

HBA

File
System

SCSI
Driver

FS Switch

HBA Driver

Buffer
Cache

Local FS

NIC

VI NIC
Driver

Buffers

Application

DAFS

VIPL

DAFS

NIC

VI NIC
Driver

Buffers

Application

DAFS

VIPL

DAFS

Application

Buffers

DAFS – Enabling Data Center Applications Page 3 of 5

December 2000

The first method shown is a user library that implements the DAFS protocol. A user
space implementation of DAFS offers the greatest potential for increased I/O
performance, by taking advantage of its transport’s ability to directly access the
networking hardware from user space and providing an appropriate API for
asynchronous zero-copy I/O. The DAFS library calls into the kernel to set up an initial
end-to-end connection, which can then be safely accessed from user space. The NIC
(Network Interface Card) implements the necessary protection to prevent any other
processes from accessing or interfering with the connection, so applications can
transfer data directly to the NIC, avoiding the overhead of data copies and system call
context switches while still enjoying the security benefits of traditional kernel-based
networking implementations. The combination of direct initiation of I/O and the
elimination of data copies reduces operation latency and increases bulk data transfer
throughput.

To maximize performance, the DAFS library exports an API that gives the user
application explicit control over NIC DMA access to its address space. The library API
also exposes the asynchronous nature of the server interaction, allowing an intelligent
application to manage overlapped data transfers.

The disadvantage of the user library approach is its lack of compatibility with the usual
system call interface to the host OS file systems, requiring applications to be modified
to take advantage of these capabilities. The benefit is optimal performance. This
approach, therefore, is intended for high-performance applications that are sensitive to
either throughput or latency, or applications that can make use of the extended DAFS
services made available through the user API.

DAFS – Enabling Data Center Applications Page 4 of 5

December 2000

User

Kernel

Hardware

* VI Provider Layer specification maintained by the VI Developers Forum

Data

Control

Memory

NIC

Buffers

Application

DAFS

VIPL*

User Library

VI NIC
Driver

NIC

VI NIC
Driver

Buffers

Application

DAFS

VIPL*

Kernel File System

FS Switch

File I/O
Syscalls User

Kernel

Hardware

* VI Provider Layer specification maintained by the VI Developers Forum

Data

Control

Memory

Data

Control

Data

Control

Memory

NIC

Buffers

Application

DAFS

VIPL*

User Library

VI NIC
Driver

NIC

VI NIC
Driver

Buffers

Application

DAFS

VIPL*

Kernel File System

FS Switch

File I/O
Syscalls

NIC

VI NIC
Driver

Buffers

Application

DAFS

VIPL*

Kernel File System

FS Switch

File I/O
Syscalls

Figure 2 – DAFS Client Implementations

The second client implementation shown in Figure 2 is a loadable kernel module. In the
Unix world, this takes the form of a Virtual File System (VFS). In the Win32 world it is
called an Installable File System (IFS). The VFS/IFS fits in the traditional place in the
operating system architecture where new file systems are added. It is a peer both to
the other "remote/redirector" file system implementations (e.g. NFS and CIFS), and to
the local file systems (e.g. ufs, FFS, NTFS, FAT, VxFS). Under this approach, when an
application uses the standard kernel interface to read from or write to a file, the VFS/IFS
layer passes the request on to the individual file system responsible for that particular
file. If the file is on a DAFS file system, then the kernel passes the I/O request to the
DAFS VFS/IFS, which issues DAFS requests to a server. Like other remote file
systems, each call to the VFS/IFS layer may map to one or more over-the-wire protocol
requests to a remote file server.

The advantage of this type of DAFS client implementation is that applications can use it
transparently, just like other remote file system implementations (NFS, AFS, DFS for
Unix, CIFS for WinNT/Win2k). Applications can enjoy many of the advantages of DAFS
without having to be rewritten to the DAFS API. Performance is limited by the kernel

DAFS – Enabling Data Center Applications Page 5 of 5

December 2000

transitions involved in any operation to a VFS/IFS, but the kernel DAFS implementation
still uses remote DMA and other VI capabilities, so it consumes significantly fewer CPU
cycles compared to other remote file systems under similar loads for a given client
platform. Even in the worst case, over-the-wire data transfer rates (both single stream
and aggregate) will be comparable to local file system access to Fibre Channel
connected (direct attached) block storage arrays. Finally, the application still benefits
from the non-performance advantages of DAFS, including improved locking and fail-
over semantics.

Summary

Applications can take advantage of DAFS in several different ways. Applications that
run directly on top of DBMS systems automatically benefit once the database program
is DAFS-enabled. Applications that are sensitive to either throughput or latency
achieve maximum performance by using a user DAFS library. Alternatively, for
applications where transparent access to DAFS is more appropriate, a Loadable Kernel
Module delivers all the data management and ease of use advantages of file mode
access, with similar or better performance than local access to Fibre Channel
connected (direct attached) block storage arrays.

The DAFS Collaborative was formed in June 2000 by Network Appliance, Intel, and
other leading systems and storage networking vendors, with the goal of making the
Direct Access File System protocol available to the industry. The group is soliciting
industry review and feedback before submitting the new file system to an appropriate
standards body.

The DAFS Collaborative encourages broad industry participation. Additional
participants are welcome and can join online.

For additional information, contact

Werner Glinka
Executive Director
DAFS Collaborative
650 851 5909
fax 851 5987
werner.glinka@dafscollaborative.org

or visit www.dafscollaborative.org

