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Abstract

The ability of attackers to rapidly gain control of vast
numbers of Internet hosts poses an immense risk to the
overall security of the Internet. Once subverted, these
hosts can not only be used to launch massive denial of
service floods, but also to steal or corrupt great quantities
of sensitive information, and confuse and disrupt use of
the network in more subtle ways.

We present an analysis of the magnitude of the threat.
We begin with a mathematical model derived from em-
pirical data of the spread of Code Red I in July, 2001. We
discuss techniques subsequently employed for achiev-
ing greater virulence by Code Red II and Nimda. In this
context, we develop and evaluate several new, highly vir-
ulent possible techniques: hit-list scanning (which cre-
ates aWarholworm), permutation scanning (which en-
ables self-coordinating scanning), and use of Internet-
sized hit-lists (which creates aflashworm).

We then turn to the to the threat ofsurreptitiousworms
that spread more slowly but in a much harder to detect
“contagion” fashion. We demonstrate that such a worm
today could arguably subvert upwards of 10,000,000 In-
ternet hosts. We also consider robust mechanisms by
which attackers can control and update deployed worms.

In conclusion, we argue for the pressing need to de-
velop a “Center for Disease Control” analog for virus-
and worm-based threats to national cybersecurity, and
sketch some of the components that would go into such
a Center.
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1 Introduction

If you can control a million hosts on the Internet, you
can do enormous damage. First, you can launch dis-
tributed denial of service (DDOS) attacks so immensely
diffuse that mitigating them is well beyond the state-of-
the-art for DDOS traceback and protection technologies.
Such attacks could readily bring down e-commerce sites,
news outlets, command and coordination infrastructure,
specific routers, or the root name servers.

Second, you can access any sensitive information
present on any of those million machines—passwords,
credit card numbers, address books, archived email,
patterns of user activity, illicit content—even blindly
searching for a “needle in a haystack,” i.e., information
that might be on a computer somewhere in the Internet,
for which you trawl using a set of content keywords.

Third, not only can you access this information, but you
can sow confusion and disruption by corrupting the in-
formation, or sending out false or confidential informa-
tion directly from a user’s desktop.

In short, if you could control a million Internet hosts,
the potential damage is truly immense: on a scale where
such an attack could play a significant role in warfare
between nations or in the service of terrorism.

Unfortunately it is reasonable for an attacker to gain con-
trol of a million Internet hosts, or perhaps even ten mil-
lion. The highway to such control lies in the exploita-
tion of worms: programs that self-propagate across the
Internet by exploiting security flaws in widely-used ser-
vices.1 Internet-scale worms are not a new phenomenon
[Sp89, ER89], but the severity of their threat has rapidly
grown with (i) the increasing degree to which the In-

1 We distinguish between the worms discussed in this paper—
active worms—andviruses(or email worms) in that the latter require
some sort of user action to abet their propagation. As such, they tend to
propagate more slowly. From an attacker’s perspective, they also suf-
fer from the presence of a large anti-virus industry that actively seeks
to identify and control their spread.

http://www.silicondefense.com/aboutus/founder.htm
http://www.icir.org/vern
http://www.cs.berkeley.edu/~nweaver
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Figure 1: Onset of Code Red I v2, Code Red II, and Nimda:
Number of remote hosts launching confirmed attacks corre-
sponding to different worms, as seen at the Lawrence Berkeley
National Laboratory. Hosts are detected by the distinct URLs
they attempt to retrieve, corresponding to the IIS exploits and
attack strings. Since Nimda spreads by multiple vectors, the
counts shown for it may be an underestimate.

ternet has become part of a nation’s critical infrastruc-
ture, and(ii) the recent, widely publicized introduction
of very large, very rapidly spreading Internet worms,
such that this technique is likely to be particularly cur-
rent in the minds of attackers.

We present an analysis of the magnitude of the threat.
We begin with a mathematical model derived from em-
pirical data of the spread of Code Red I v2 in July and
August, 2001 (Section2). We then discuss techniques
employed for achieving greater effectiveness and viru-
lence by the subsequent Code Red II and Nimda worms
(Section3). Figures1 and2 show the onset and progress
of the Code Red and Nimda worms as seen “in the wild.”

In this context, we develop the threat of three new
techniques for highly virulent worms: hit-list scanning,
permutation scanning, and Internet scale hit-lists (Sec-
tion 4). Hit-list scanning is a technique for accelerat-
ing the initial spread of a worm. Permutation scanning
is a mechanism for distributed coordination of a worm.
Combining these two techniques creates the possibility
of aWarholworm,2 seemingly capable of infecting most
or all vulnerable targets in a few minutes to perhaps an
hour. An extension of the hit-list technique creates a
flashworm, which appears capable of infecting the vul-
nerable population in 10s of seconds:so fast that no
human-mediated counter-response is possible.

We then turn in Section5 to the threat of a new class of

2So named for the quotation “In the future, everyone will have 15
minutes of fame.”
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Figure 2: The endemic nature of Internet worms: Number
of remote hosts launching confirmed attacks corresponding to
different worms, as seen at the Lawrence Berkeley National
Laboratory, over several months since their onset. Since July,
139,000 different remote Code Red I hosts have been con-
firmed attacking LBNL; 125,000 different Code Red II hosts;
and 63,000 Nimda hosts. Of these, 20,000 were observed to
be infected with two different worms, and 1,000 with all three
worms. (Again, Nimda is potentially an underestimate because
we are only counting those launching Web attacks.)

surreptitiousworms. These spread more slowly, but in a
much harder to detect “contagion” fashion, masquerad-
ing as normal traffic. We demonstrate that such a worm
today could arguably subvert upwards of 10,000,000 In-
ternet hosts.

Then in Section6, we discuss some possibilities
by which an attacker could control the worm using
cryptographically-secured updates, enabling it to remain
a threat for a considerable period of time. Even when
most traces of the worm have been removed from the
network, such an “updatable” worm still remains a sig-
nificant threat.

Having demonstrated the very serious nature of the
threat, we then in Section7 discuss an ambitious but
we believe highly necessary strategy for addressing it:
the establishment at a national or international level
of a “Center for Disease Control” analog for virus-
and worm-based threats to cybersecurity. We discuss
the roles we envision such a Center serving, and offer
thoughts on the sort of resources and structure the Cen-
ter would require in order to do so. Our aim is not to
comprehensively examine each role, but to spur further
discussion of the issues within the community.



2 An Analysis of Code Red I

The first version of the Code Red worm was initially
seen in the wild on July 13th, 2001, according to Ryan
Permeh and Marc Maiffret of Eeye Digital Security
[EDS01a, EDS01b], who disassembled the worm code
and analyzed its behavior. The worm spread by compro-
mising Microsoft IIS web servers using the .ida vulner-
ability discovered also by Eeye and published June 18th
[EDS01c] and was assigned CVE number CVE-2001-
0500 [CV01].

Once it infected a host, Code-Red spread by launching
99 threads which generated random IP addresses, and
then tried to compromise those IP addresses using the
same vulnerability. A hundredth thread defaced the web
server in some cases.

However, the first version of the worm analyzed by
Eeye, which came to be known as CRv1, had an apparent
bug. The random number generator was initialized with
a fixed seed, so that all copies of the worm in a particular
thread, on all hosts, generated and attempted to compro-
mise exactly the same sequence of IP addresses. (The
thread identifier is part of the seeding, so the worm had a
hundred different sequences that it explores through the
space of IP addresses, but it only explored those hun-
dred.) Thus CRv1 had a linear spread and never com-
promised many machines.

On July 19th, 2001, a second version of the worm began
to spread. This was suspected informally via mailing list
discussion, then confirmed by the mathematical analysis
we present below, and finally definitively confirmed by
disassembly of the new worm. This version came to be
known as CRv2, or Code Red I.

Code Red I v2 was the same codebase as CRv1 in al-
most all respects—the only differences were fixing the
bug with the random number generation, an end to web
site defacements, and a DDOS payload targeting the IP
address ofwww.whitehouse.gov .

We developed a tentative quantitative theory of what
happened with the spread of Code Red I worm. The new
version spread very rapidly until almost all vulnerable
IIS servers on the Internet were compromised. It stopped
trying to spread at midnight UTC due to an internal con-
straint in the worm that caused it to turn itself off. It then
reactivated on August 1st, though for a while its spread
was suppressed by competition with Code Red II (see
below). However, Code Red II died by design [SA01]
on October 1, while Code Red I has continued to make

a monthly resurgence, as seen in Figure2. Why it con-
tinues to gain strength with each monthly appearance re-
mains unknown.3

We call this model the Random Constant Spread (RCS)
model. The model assumes that the worm had a good
random number generator that is properly seeded. We
defineN as the total number of vulnerable servers which
can be potentially compromised from the Internet. (We
make the approximation thatN is fixed—ignoring both
patching of systems during the worm spread and normal
deploying and removing of systems or turning on and
off of systems at night. We also ignore any spread of the
worm behind firewalls on private Intranets).

K is the initial compromise rate. That is, the number
of vulnerable hosts which an infected host can find and
compromise per hour at the start of the incident, when
few other hosts are compromised. We assume thatK is
a global constant, and does not depend on the processor
speed, network connection, or location of the infected
machine. (Clearly, constantK is only an approxima-
tion.) We assume that a compromised machine picks
other machines to attack completely at random, and that
once a machine is compromised, it cannot be compro-
mised again, or that if it is, that does not increase the
rate at which it can find and attack new systems. We
assume that once it is compromised, it stays that way.

T is a time which fixes when the incident happens.

We then have the following variables:

• a is the proportion of vulnerable machines which
have been compromised.

• t is the time (in hours).

Now, we analyze the problem by assuming that at
some particular timet, a proportion of the machines
a have been compromised, and then asking how many
more machines,Nda, will get compromised in the next
amount of timedt. The answer is:

Nda = (Na)K(1− a)dt. (1)

The reason is that the number of machines compromised
in the next increment of time is proportional to the num-
ber of machines already compromised (Na) times the
number of machines each compromised machine can

3One possibility is that, since the default install of Windows 2000
server includes IIS, new vulnerable machines have been added to the
Internet.

http://www.whitehouse.gov
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Figure 3: Hourly probe rate data for inbound port 80 at the
Chemical Abstracts Service during the initial outbreak of Code
Red I on July 19th, 2001. Thex-axis is the hour of the day
(CDT time zone), while they-axis is probe rate, the number
of different IP addresses seen, and a fit to the data discussed in
the text.

compromise per unit time (K(1 − a)), times the incre-
ment of time (dt). (Note that machines can compromise
K others per unit time to begin with, but onlyK ·(1−a)
once a proportion of other machines are compromised
already.)

This give us the differential equation:

da

dt
= Ka(1− a) (2)

with solution:

a =
eK(t−T )

1 + eK(t−T )
, (3)

whereT is a constant of integration that fixes the time
position of the incident. This equation has been well
known for many years as thelogistic equation, and gov-
erns the rate of growth of epidemics in finite systems
when all entities are equally likely to infect any other
entity (which is true for randomized spreading among
Internet-connected servers, in the absence of firewall fil-
tering rules that differentially affect infectability from or
to different addresses).

This is an interesting equation. For earlyt (significantly
beforeT ), a grows exponentially. For larget (signifi-
cantly afterT ), a goes to1 (all vulnerable machines are
compromised). The rate at which this happens depends
only onK (the rate at which one machine can compro-
mise others), and not at all on the number of machines.

This is interesting because it tells us that a worm like this
can compromise all vulnerable machines on the Internet
fairly fast.

Figure3 shows hourly probe rate data from Ken Eich-
mann of the Chemical Abstracts Service for the hourly
probe rate inbound on port 80 at that site. Also shown
is a fit to the data withK = 1.8, T = 11.9, and with
the top of the fit scaled to a maximum probe rate of
510,000 scans/hour. (We fit it to fall slightly below the
data curve, since it seems there is a fixed background
rate of web probes that was going on before the rapid
rise due to the worm spread.) This very simple theory
can be seen to give a reasonable first approximation ex-
planation of the worm behavior. See also Section4.3for
validation of the theory via simulation.

Note that we fit the scan rate, rather than the number of
distinct IPs seen at this site. The incoming scan rate seen
at a site is directly proportional to the total number of in-
fected IPs on the Internet, since there is a fixed probabil-
ity for any worm copy to scan this particular site in the
current time interval. However, the number of distinct
IPs seen at a site is distorted relative to the overall in-
fection curve. This is because a given worm copy, once
it is infected, will take some amount of time before it
gets around to scanning any particular site. For a small
address space, this delay can be sizeable and causes the
distinct IP graph at the given site to lag behind the over-
all Internet infection rate graph.

Two implications of this graph are interesting. One is
that the worm came close to saturating before it turned
itself off at midnight UTC (1900 CDT), as the num-
ber of copies ceased increasing a few hours before the
worm’s automatic turnoff. Thus it had found the bulk of
the servers it was going to find at this time. Secondly,
the infection rate was about1.8 per hour—in the early
stages of the infection, each infected server was able to
find about1.8 other servers per hour.

Although Code Red I turned itself off at midnight UTC
on July 19th, hosts with inaccurate clocks kept it alive
and allowed it to spread again when the worm code al-
lowed it to re-awaken on August 1st. Figure4 shows
similar data and fit for that incident. TheK here is about
0.7. Since the worm code-base was the same, this lower
spread rate indicates that the number of vulnerable sys-
tems was a little less than 40% as many as the first time
around. That is, the data appears consistent with slightly
more than half the systems having been fixed in the11
days intervening.
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Figure 4: Hourly probe rate data for inbound port 80 at the
Chemical Abstracts Service, for Code Red I’s reemergence on
August 1st. The x-axis the time of day on August 1st (Central
US Time). The y-axis shows the monitored probe rate and a fit
for the data discussed in the text.

3 “Better” worms—practice

In this section, we explore the strategies adopted by the
two major worms released subsequent to Code Red I:
“Code Red II” and “Nimda.”

3.1 Localized scanning—Code Red II

The Code Red II worm was released on Saturday August
4th, 2001 and spread rapidly [CE01, SA01]. The worm
code contained a comment stating that it was “Code
Red II,” but it was an unrelated code base. It did use the
same vulnerability, however—a buffer overflow in Mi-
crosoft’s IIS Web server with CVE number CVE-2001-
0500. When successful, the payload installed a root
backdoor allowing unrestricted remote access to the in-
fected host. The worm exploit only worked correctly
when IIS was running on Microsoft Windows 2000; on
Windows NT it caused a system crash rather than an in-
fection.

The worm was also a single-stage scanning worm that
chose random IP addresses and attempted to infect them.
However, it used a localized scanning strategy, where it
was differentially likely to attempt to infect addresses
close to it. Specifically, with probability3/8 it chose a
random IP address from within the class B address space
(/16 network) of the infected machine. With probability
1/2 it chose randomly from its own class A (/8 network).

Finally, with probability1/8 it would choose a random
address from the whole Internet.

This strategy appears quite successful. The localized
spreading allows the worm to quickly infect parts of the
Internet that contain many vulnerable hosts, and also
means that the infection often proceeds quicker since
hosts with similar IP addresses are often close together
in the network topology also. This strategy also allows a
worm to spread very rapidly within an internal network
once it manages to pass through the external firewall.

Unfortunately, developing an analytic model for the
spread of a worm employing this type of localized scan-
ning strategy is significantly more difficult than the mod-
eling effort in Section2, because it requires incorpo-
rating potentially highly non-homogeneous patterns of
population locality. The empirical data is also harder
to interpret, because Code Red I was quite active when
Code Red II was released. Indeed, it appears that Code
Red II took a while to overcome Code Red I (see Fig-
ure 1), but fully determining the interplay between the
two appears to be a significant undertaking.

3.2 Multi-vector worms—Nimda

As well illustrated by the Nimda worm/virus (and, in-
deed, the original Internet Worm [Sp89, ER89]), malev-
olent code is not restricted to a single technique. Nimda
began on September 18th, 2001, spread very rapidly,
and maintained itself on the Internet for months after it
started. Nimda spread extensively behind firewalls, and
illustrates the ferocity and wide reach that a multi-mode
worm can exhibit. The worm is thought to have used at
least five different methods to spread itself.

• By infecting Web servers from infected client ma-
chines via active probing for a Microsoft IIS vul-
nerability (CVE-2000-0884).

• By bulk emailing of itself as an attachment based
on email addresses determined from the infected
machine.

• By copying itself across open network shares

• By adding exploit code to Web pages on com-
promised servers in order to infect clients which
browse the page.

• By scanning for the backdoors left behind by Code
Red II and also the “sadmind” worm [CE03].
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Figure 5: HTTP connections per second seen at the
Lawrence Berkeley National Laboratory, rising due to the on-
set of Nimda, September 18.

Figure 5 illustrates how rapidly the worm tried to in-
fect one site, the Lawrence Berkeley National Labora-
tory. Thex-axis plots hours past midnight, PDT, while
they-axis plots HTTP connection attempts per second.
Only connections from hosts confirmed to have harbored
Nimda are counted, to avoid possible confusion with
concurrent Code Red connection attempts. After the on-
set of the infection, the total rate of probing was about
3 times that from the hosts subsequently confirmed to
harbor Nimda.

Clearly, onset was quite rapid, rising in just half an hour
from essentially no probing to a sustained rate of nearly
100 probes/sec.

There is an additional synergy in Nimda’s use of mul-
tiple infection vectors: many firewalls allow mail to
pass untouched, relying on the mail servers to re-
move pathogens. Yet since many mail servers remove
pathogens based on signatures, they aren’t effective dur-
ing the first few minutes to hours of an outbreak, giving
Nimda a reasonably effective means of crossing firewalls
to invade internal networks.

Finally, we note that Nimda’s full functionality isstill
not known: all that is known is how it spreads, but not
what it might be capable of doing in addition to spread-

ing, if it receives the right trigger, or a prearranged time
rolls around. We return to this point in Section7.

4 “Better” worms—theory

There are several techniques which, although not yet em-
ployed, could further significantly increase the virulence
of a worm. Beyond the obvious factors of discover-
ing more widespread security holes and increasing the
scanning rate, some additional strategies a worm author
could employ are:(i) hit-list scanning,(ii) permutation
scanning,(iii) topologically aware worms, and(iv) In-
ternet scale hit-lists. The goal is very rapid infection—in
particular, considerably faster than any possible human-
mediated response.

A worm’s scanner can obviously be made significantly
faster than the ones seen today, by careful use of thread-
ing and an understanding of the protocols. By having
many requests outstanding, a worm should be capable
of scanning targets at a rate proportional to its access
bandwidth. Since it only takes 40 bytes for a TCP SYN
packet to determine if a service is accessible, and often
only a few hundred bytes to attempt an exploit, the po-
tential scans per second can easily exceed 100 for even
poor Internet connections. This increasesK by allow-
ing a worm to search for a greater number of targets in a
given period of time.

Similarly, the more widespread the vulnerable software
is, the faster a worm using that vulnerability can spread,
because each random scan of the network is more likely
to pick up a target, also increasingK. We should there-
fore expect that worm authors will devote considerable
scrutiny to highly homogeneous, highly deployed ser-
vices, both for the faster spreading and for the greater
number of machines that could be compromised in a sin-
gle attack.

4.1 Hit-list Scanning

One of the biggest problems a worm faces in achieving
a very rapid rate of infection is “getting off the ground.”
Although a worm spreads exponentially during the early
stages of infection, the time needed to infect say the first
10,000 hosts dominates the infection time, as can be seen
in Figure3.

There is a simple way for an active worm to overcome



this obstacle, which we termhit-list scanning. Before
the worm is released, the worm author collects a list of
say 10,000 to 50,000 potentially vulnerable machines,
ideally ones with good network connections. The worm,
when released onto an initial machine on this hit-list, be-
gins scanning down the list. When it infects a machine,
it divides the hit-list in half, communicating half to the
recipient worm, keeping the other half.

This quick division ensures that even if only 10–20% of
the machines on the hit-list are actually vulnerable, an
active worm will quickly go through the hit-list and es-
tablish itself on all vulnerable machines in only a few
seconds. Although the hit-list may start at 200 kilo-
bytes, it quickly shrinks to nothing during the partition-
ing. This provides a great benefit in constructing a fast
worm by speeding the initial infection.

The hit-list needn’t be perfect: a simple list of machines
running a particular server type may suffice, although
greater accuracy will improve the spread. The hit-list
itself can be generated using one or several of the fol-
lowing techniques, prepared well in advance, generally
with little fear of detection.

• Stealthy scans.Portscans are so common and so
widely ignored that even a fast scan of the entire
Internet would be unlikely to attract law enforce-
ment attention or more than mild comment in the
incident response community. However, for attack-
ers wishing to be especially careful, a randomized
stealthy scan taking several months would be very
unlikely to attract much attention, as most intrusion
detection systems are not currently capable of de-
tecting such low-profile scans. Some portion of the
scan would be out of date by the time it was used,
but much of it would not.

• Distributed scanning.An attacker could scan the
Internet using a few dozen to a few thousand
already-compromised “zombies,” similar to what
DDOS attackers assemble in a fairly routine fash-
ion. Such distributed scanning has already been
seen in the wild—Lawrence Berkeley National
Laboratory received 10 during the past year.

• DNS searches.Assemble a list of domains (for ex-
ample, by using widely available spam mail lists, or
trolling the address registries). The DNS can then
be searched for the IP addresses of mail-servers
(via MX records) or Web servers (by looking for
www.domain.com).

• Spiders. For Web server worms (like Code Red),
use Web-crawling techniques similar to search en-

gines in order to produce a list of most Internet-
connected Web sites. This would be unlikely to at-
tract serious attention.

• Public surveys. For many potential targets there
may be surveys available listing them, such as the
Netcraft survey [Ne02].

• Just listen. Some applications, such as peer-to-
peer networks, wind up advertising many of their
servers. Similarly, many previous worms effec-
tively broadcast that the infected machine is vul-
nerable to further attack. For example, because of
its widespread scanning, during the Code Red I in-
fection it was easy to pick up the addresses of up-
wards of 300,000 vulnerable IIS servers—because
each one came knocking on everyone’s door!

Indeed, some individuals produced active counter-
measures to Code Red II by exploiting this obser-
vation, when combined with the backdoor which
Code Red II installs [DA01]. However, it is not a
given that future worms will broadcast their pres-
ence, and we also note that worms could readily fix
the very security holes they exploit (such as is often
already observed for attackers performing break-
ins manually), which undermines the superficially
appealing countermeasure of using the worm’s vec-
tor as a means by which to disable it.

4.2 Permutation Scanning

Another limitation to very fast infection is the general
inefficiency of random scanning: many addresses are
probed multiple times. Similarly there is no means for a
randomly scanning worm to effectively determine when
all vulnerable machines are infected.Permutation scan-
ningsolves these problems by assuming that a worm can
detect that a particular target is already infected.

In a permutation scan, all worms share a common
pseudo random permutation of the IP address space.
Such a permutation can be efficiently generated using
a 32-bit block cipher and a preselected key: simply en-
crypt an index to get the corresponding address in the
permutation, and decrypt an address to get its index.

Any machines infected during the hit-list phase (or lo-
cal subnet scanning) start scanning just after their point
in the permutation, working their way through the per-
mutation, looking for vulnerable machines. Whenever
the worm sees an already infected machine, it chooses a
new, random start point and proceeds from there. Worms



infected by permutation scanning would start at a ran-
dom point.

This has the effect of providing a self-coordinated, com-
prehensive scan while maintaining the benefits of ran-
dom probing. Each worm looks like it is conducting a
random scan, but it attempts to minimize duplication of
effort. Any time an instance of the worm,W , encounters
an already-infected host, it knows thatW ′, the original
infector of the host, is already working along the cur-
rent sequence in the permutation, and is further ahead.
Hence, there’s no need forW to continue working on
the current sequence in addition toW ′.

Self-coordination keeps the infection rate high and guar-
antees an eventual comprehensive scan. Furthermore, it
allows the worm to make a local decision that further
scanning is of little benefit. After any particular copy
of the worm sees several infected machines without dis-
covering new vulnerable targets, the worm assumes that
effectively complete infection has occurred and stops the
scanning process.

A timer could then induce the worms to wake up, change
the permutation key to the next one in a prespecified se-
quence, and begin scanning through the new permuta-
tion, starting at its own index and halting when another
instance is discovered. This process insures that every
address would be efficiently rescanned at regular inter-
vals, detecting any machines which came onto the net
or were reinstalled but not patched, greatly increasing a
worm’s staying power. Otherwise, the worms are silent
and difficult to detect, until they receive attack orders
(see Section6).

A further optimization is apartitioned permutation scan.
In this scheme, the worm has a range of the permutation
that it is initially responsible for. When it infects another
machine, it reduces its range in half, with the newly in-
fected worm taking the other section. When the range
gets below a certain level, it switches to simple permu-
tation scanning and otherwise behaves like a permuta-
tion scan. This scheme offers a slight but noticeable
increase in scanning efficiency, by dividing up the ini-
tial workload using an approximate divide-and-conquer
technique.

Permutation scanning interacts particularly well with a
worm which attacks multiple security holes: after de-
ciding that the initial exploit is exhausted, the worm re-
sets the permutation to its current address, changes the
permutation key, and exploits the second security hole.
Thus, even relatively rare secondary holes can be effi-
ciently and quickly scanned once the worm has estab-
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Figure 6: The spread of a simulated worm capable of 10
scans/second in a population of 300,000 vulnerable machines
and its comparison to the model developed in Section2. The
simulation and theoretical results overlap completely.

lished itself on the network.

It may seem that the permutation scanning algorithm is
spoofable, but only to a very limited degree. If an unin-
fected machine responds to the scan in the same way as
a worm, by falsely claiming to be infected, it will tem-
porarily protect those machines which exist later in the
current permutation from being scanned by the worm.
However, since the permutation itself changes on ev-
ery rescan, the set of machines protected is constantly
changing. The result is that unless a very large number
of uninfected machines respond to probes like an actual
worm, the protection is almost nonexistent.

4.3 Simulation of a Warhol Worm

A combination of hit-list and permutation scanning can
create what we term aWarhol worm, capable of attack-
ing most vulnerable targets in well under an hour, possi-
bly less than 15 minutes. Hit-list scanning greatly im-
proves the initial spread, while permutation scanning
keeps the worm’s infection rate high for much longer
when compared with random scanning.

In order to evaluate the effects of hit-list and permuta-
tion scanning, we wrote a small, abstract simulator of a
Warhol worm’s spread. The simulator assumes complete
connectivity within a232 entry address space4 using a
pseudo-random permutation to map addresses to a sub-

4In general, the Internet address space isn’t completely connected.
If a machine is not reachable from an arbitrary point on the external
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Figure 7: The spread of three simulated worms in a popu-
lation of 300,000 vulnerable machines:(i) a Code Red-like
worm capable of 10 scans/second,(ii) a faster scanning worm
capable of 100 scans/second, and(iii) a Warhol worm, capable
of 100 scans/second, using a 10,000 entry hit-list and permu-
tation scanning which gives up when 2 infected machines are
discovered without finding a new target. All graphs stop at
99.99% infection of the simulated address space.

set of vulnerable machines. We used a 32-bit, 6-round
variant of RC5 to generate all permutations and random
numbers.

We can parameterize the simulation in terms of: the
number of vulnerable machines in the address space;
scans per second; the time to infect a machine; num-
ber infected during the hit-list phase; and the type of
secondary scan (permutation, partitioned permutation,
or random). The simulator assumes multithreaded scan-
ning.

To ensure that the simulator produces reasonable re-
sults, Figure6 shows a comparison between the simu-
lator’s output and the model developed in Section2, for
a worm capable of 10 scans/second in a population of
300,000 vulnerable machines. The simulation results fit
the model forK = 2.6 andT = 5.52. This represents a
worm which is slightly faster (less than50%) than Code
Red I.

Figure7 then shows how both faster scanning and the
Warhol strategies affect the propagation time. The faster
scanning worm (capable of 100 scans/second) reduces
the infection time down to under an hour, while the com-
bination of hit-list scanning, permutation scanning, and
fast scanning, further reduces infection time to roughly

network, it is usually not reachable directly by a worm except through
local scanning.
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Figure 8: A closeup of the behavior of the Warhol worm
seen in Figure7. The infection initially progresses rapidly—
effectively all worms are actively scanning the net—but as in-
fection rates near 100%, many worms have gone dormant, cor-
rectly concluding that there are few vulnerable machines re-
maining and should therefore cease scanning.

15 minutes.

Figure8 shows in more detail the behavior of the Warhol
strategies. It gets a huge boost from the hit-list during the
first few seconds of propagation, quickly establishing it-
self on the network and then spreading exponentially. As
the infection exceeds the 50% point, some of the worms
begin recognizing that saturation is occurring and stop
scanning. By the time the graph ends (at 99.99% of
the simulated population), most of the worms have gone
silent, leaving a few remaining worms to finish scanning
the last of the address space.

4.4 Topological Scanning

An alternative to hit-list scanning is topologically aware
scanning, which uses information contained on the vic-
tim machine in order to select new targets. Email worms
have used this tactic since their inception, as they harvest
addresses from their victim in order to find new poten-
tial targets, as did the Morris worm (necessary because
of the very sparse address space when it was released)
[Sp89, ER89].

Many future active worms could easily apply these tech-
niques during the initial spread, before switching to
a permutation scan once the known neighbors are ex-
hausted. An active worm that attacked a flaw in a peer-
to-peer application could easily get a list of peers from



a victim and use those peers as the basis of its attack,
which makes such applications highly attractive targets
for worm authors. Although we have yet to see such a
worm in the wild, these applications must be scrutinized
for security. These applications are also vulnerable to
contagion worms, as discussed in Section5.

Similarly, a worm attacking web servers could look for
URLs on disk and use these URLs as seed targets as well
as simply scanning for random targets. Since these are
known to be valid web servers, this would tend to greatly
increase the initial spread by preferentially probing for
likely targets.

4.5 Flash Worms

We further observe that there is a variant of the hit-list
strategy that could plausibly result in most of the vul-
nerable servers on the Internet being infected in tens of
seconds. We term this aflash worm.

The nub of our observation is that an attacker could plau-
sibly obtain a hit-list of most servers with the relevant
service open to the Internet in advance of the release of
the worm.5

In addition to the methods already discussed for con-
structing a hit-list in Section4.1, a complete scan of the
Internet through an OC-12 connection would complete
quickly. Given a rate of 750,000 TCP SYN packets per
second (the OC-12 provides 622 Mbps, the TCP seg-
ment takes 40 bytes, and we allow for link-layer fram-
ing), and that the return traffic is smaller in volume
than the outbound (it is comprised of either same-sized
SYN ACKs or RSTs, smaller ICMPs, or, most often, no
response at all), it would take roughly 2 hours to scan
the entire address space. Faster links could of course
scan even faster. Such a brute-force scan would be easily
within the resources of a nation-state bent on cyberwar-
fare.

Given that an attacker has the determination and fore-
sight to assemble a list of all or most Internet connected
addresses with the relevant service(s) open, a worm can
spread most efficiently by simply attacking addresses on
that list. For example, there are about12.6 million Web
servers on the Internet (according to Netcraft [Ne02]), so
the size of that particular address list would be 48 MB,
uncompressed. The initial copy of the worm can be pro-

5Servers behind load balancers create complications here, as do
machines that connect to the Internet with variable IP addresses but
nonetheless have vulnerable services open.

grammed to divide the list inton blocks, and then to find
and infect the first address in each block (or an especially
chosen high-bandwidth address in that block), and then
hand the child worm the list of addresses for that block.
That copy of the worm can then re-iterate the process to
infect everything in its block. A threaded worm could
begin infecting hosts before it had received the full host
list from its parent to work on, to maximize the paral-
lelization process, and it could start work on looking for
multiple children in parallel.

This design is somewhat fragile if an early copy of the
worm is neutralized very quickly, or infects a site from
which it cannot scan out. To mitigate this, the worm
copies could overlap in their scanning so that all ad-
dresses were scanned a small number of times, with
every target address being scanned by different paths
through the infection tree. This has the additional side-
effect of removing the need for further parent-to-child
communication after initial infection occurs.

A related design would call for most of the address list
to be located in pre-assigned chunks on one or a num-
ber of high-bandwidth servers that were well-known to
the worm. Each copy of the worm would receive an as-
signment from its parent, and then fetch the address list
from there. The server would only have to send outpor-
tionsof the list, not the entire list; in principle, it should
only have to transmit each address in the list once. In ad-
dition, after the worm has propagated sufficiently that a
large number of copies are attempting to fetch their (now
quite small) lists, at that point the worm collective could
switch to sending around the address list with each new
infection, rather than having the infectees each contact
the server.

This process will result in relatively little wasted effort.
For example, if the worm had a list of Web servers, and
a zero-day IIS vulnerability, about26% of the list would
be vulnerable. No server would be probed twice. If
n = 10, then the infection tree for the3 million vulner-
able servers would be just7 layers deep.

The spread rate of such a worm would likely be con-
strained by one of two things. The worm itself is likely
to be small (Code Red I was about 4 KB, and a highly
malicious worm could easily be less than 100 KB, even
allowing for a complex payload). Thus, at the start, the
address list is much larger than the worm itself, and the
propagation of the worm could be limited by the time re-
quired to transmit the host list out of the initial infection
site or servers where it was stored. Since all the children
of the infection will have much smaller lists to transmit,
these later lists are less likely to limit the worm spread



(unless a first generation child has less than1/n of the
initial copy’s bandwidth available to it). The exact time
required to transmit the list will depend on the available
bandwidth of the storage sites. As an example, however,
we point out that a 48 MB address list could be pushed
down an OC-12 link in less than a second.6

Thus, starting the worm on a high-bandwidth link is
desirable for the attacker, and bandwidth is probably a
concern at the next layer or two. Compression of the
list could make the list delivery much faster. Indeed,
we took a sorted list of the 9 million server addresses
discussed in Section5 and found thatgzipcompression
shrinks the list from 36 MB to 13 MB, and differencing
the addresses prior to compression reduced it to 7.5 MB.

Another possible limitation is simply the latency re-
quired to infect each new layer in the tree. Given that
probes can be issued in parallel, and substantially more
threads can be spawned thann (the number of children),
we do not have to add up the time required for a given
copy to cycle through its list, but simply take the maxi-
mum infection latency. A single second is a reasonable
latency, but withn = 10 and a large hit-list to trans-
fer, it might take a little longer to get 10 copies of the
worm through a given site’s link. However, not much
longer—if a 5 KB worm can get 50% utilization through
a 256 Kbps DSL uplink, it can transmit ten copies of it-
self in three seconds. That leads to a sub-thirty-second
limit on the total infection time, given an infection tree
seven layers deep and a design where the new worm chil-
dren go to a server for their addresses. (An additional
concern here is the possibility of elements of the worm
interfering with one another, either directly, by induc-
ing congestion, or indirectly, for example by overflowing
ARP tables, as happened during the Code Red I outbreak
[SA01]. These possibilities are difficult to analyze.)

In conclusion, we argue that a compact worm that be-
gins with a list including all likely vulnerable addresses,
and that has initial knowledge of some vulnerable sites
with high-bandwidth links, appears able to infect almost
all vulnerable servers on the Internet in less than thirty
seconds.

6 Or, if we model TCP slow start, then assuming an RTT of
100 msec (high), 1500 byte segments, an initial window of 1 segment,
and the use by the receiver of delayed acknowledgments, the transfer
takes 2.3 seconds, using equation (10) of [CSA00]. Since we con-
trol the receiver, we could perhaps turn off delayed acknowledgments,
which lowers this to 1.5 seconds. We could even skip congestion con-
trol entirely, but that runs the serious risk oflengtheningthe transfer
time by inducing packet loss, requiring retransmission.

5 Stealth worms—contagion

The great speed with which the worms described in the
previous sections can propagate presents a grave threat
to the Internet’s security, because there is so little time
available to react to their onset. Still, there might be
a possibility of devising mechanisms that automatically
detect the spread of such worms and shut them down
in some fashion [MSVS02]. Such mechanisms would
likely be triggered by the singular communication pat-
terns the worms evince—hosts generating much more
diverse and rapid Internet traffic than they usually do.

We now turn to a different paradigm of worm prop-
agation,contagion, which, while likely spreading sig-
nificantly slower than the rapidly-propagating worms,
evinces almostno peculiar communication patterns. As
such these worms could prove much more difficult to de-
tect and counter, allowing a patient attacker to slowly but
surreptitiously compromise a vast number of systems.

The core idea of the contagion model can be expressed
with the following example. Suppose an attacker has
attained a pair of exploits:Es, which subverts a popular
type of Web server; andEc, which subverts a popular
type of Web client (browser). The attacker begins the
worm on a convenient server or client (it doesn’t matter
which, and they could start with many, if available by
some other means), and then they simply wait. If the
starting point is a server, then they wait for clients to visit
(perhaps baiting them by putting up porn content and
taking care that the large search engines index it). As
each client visits, the subverted server detects whether
the client is vulnerable toEc. If so, the server infects it,
sending alongbothEc andEs. As the client’s user now
surfs other sites, the infected client inspects whether the
servers on those sites are vulnerable toEs, and, if so,
again infects them, sending alongEc andEs.

In this fashion, the infection spreads from clients to
servers and along to other clients, much as a contagious
disease spreads based on the incidental traffic patterns of
its hosts.

Clearly, with the contagion model there are no unusual
communication patterns to observe, other than the larger
volume of the connections due to the worm sending
along a copy of itself as well as the normal contents of
the connection—in the example, the URL request or the
corresponding page contents. Depending on the type of
data being transferred, this addition might be essentially
negligible (for example, for MP3s). Thus, without an
analyzer specific to the protocol(s) being exploited, and



which knows how to detect abnormal requests and re-
sponses, the worm could spread very widely without de-
tection (though perhaps other detection means such as
Tripwire file integrity checkers [Tw02] might discover
it).

In addition to exploiting the natural communication pat-
terns to spread the worm, these might also be used by the
attacker to then control it and retrieve information from
the infected hosts, providing that the endemic traffic pat-
terns prove of sufficient frequency and volume for the
attacker’s purposes. (Or, of course, the attacker might
more directly command the infected hosts when the time
is ripe, “blowing their cover” in the course of a rapid
strike for which keeping the hosts hidden can now be
sacrificed.)

As described above, one might find contagion worms a
clear theoretical threat, but not necessarily such a grave
threat in practice. The example requires a pair of ex-
ploits, and will be limited by the size of the populations
vulnerable to those attacks and the speed with which
Web surfing would serve to interconnect the populations.
While some argue the Web exhibits the “small world”
phenomenon [Br+00], in which the distance between
different Web items in the hypertext topology is quite
low, this doesn’t necessarily mean that the dynamic pat-
terns by which usersvisit that content exhibit a similar
degree of locality.

We now present a more compelling example of the la-
tent threat posed by the contagion model, namely lever-
agingpeer-to-peer(P2P) systems. P2P systems gener-
ally entail a large set of computersall running the same
software. Strictly speaking, the computers need only all
run the same protocol, but in practice the number of
independent implementations is quite limited, and it is
plausible that generally a single implementation heavily
dominates the population.

Each node in the P2P network is both a client and a
server.7 Accordingly, the problem of finding a pair of
exploits to infect both client and server might likely be
reduced to the problem of finding asingleexploit, signif-
icantly less work for the attacker. P2P systems have sev-
eral other advantages that make them well suited to con-
tagion worms:(i) they tend to interconnect with many
different peers,(ii) they are often used to transfer large
files,(iii) the protocols are generally not viewed as main-
stream and hence receive less attention in terms of moni-
toring by intrusion detection systems and analysis of im-

7Of particular interest are flaws which can only be exploited to in-
fect hosts thatinitiate a connection. Such flaws cannot be effectively
used for fast-spreading worms, but are suitable for contagion worms.

plementation vulnerabilities,(iv) the programs often ex-
ecute on user’s desktops rather than servers, and hence
are more likely to have access to sensitive files such
as passwords, credit card numbers, address books, and
(v) the use of the P2P network often entails the transfer
of “grey” content (e.g., pornography, pirated music and
videos), arguably making the P2P users less inclined to
draw attention to any unusual behavior of the system that
they perceive.

The final, sobering quality of P2P networks for form-
ing contagion worms is theirpotentially immense size.
We obtained a trace of TCP port 1214 traffic recorded
in November, 2001, at the border of a large university.
Port 1214 is used by theKaZaA [Ka01] and Morpheus
[Mu01] P2P sharing systems (both8 built on the Fast-
Track P2P framework [Fa01]). As of January, 2002,
theKaZaAdistributors claim that more than 30,000,000
copies have been downloaded [Ka01]. Since our data
does not allow us to readily distinguish betweenKaZaA
andMorpheustraffic, for ease of exposition we will sim-
ply refer to all of the traffic asKaZaA.

Our KaZaA trace consists of summaries of TCP con-
nections recorded by a passive network monitor. We
have restricted the data to only those connections for
which successful SYN and FIN handshakes were both
seen (corresponding to connections reliably established
and terminated, and eliminating unsuccessful connec-
tions such as those due to scanning).

The volume ofKaZaA traffic at the university is im-
mense: it comprises 5–10 million established connec-
tions per day. What is particularly striking, however, is
the diversity of the remote hosts with which hosts at the
university participated inKaZaA connections. During
the month of November,9 million distinct remote IP ad-
dresses engaged in successfulKaZaAconnections with
university hosts. (There were 5,800 distinct university
KaZaAhosts during this time.)

Distinct addresses do not directly equate to distinct com-
puters. A single address can represent multiple comput-
ers due to the use of NAT, DHCP, or modem dialups ac-
cessed by different users. On the other hand, the same
computer can also show up as different addresses due
to these mechanisms. Thus, we do not have a precise
sense of the number of distinct computers involved in the
November trace, but it appears reasonable to estimate it
as around 9 million.

KaZaAuses a variant of HTTP for framing its applica-

8 In early 2002,Morpheusswitched to instead use the Gnutella P2P
framework [Re02].



tion protocol. Given HTTP’s support for variable-sized
headers, it would not be surprising to find that a buffer
overflow exploit ofKaZaA exists. Given such an ex-
ploit, it is apparent that if an attacker started out having
infected all of the university’sKaZaAhosts, then after a
month they would have control of about 9 million hosts,
assuming that theKaZaAclients are sufficiently homo-
geneous that a single exploit could infect them all.9

How plausible is it that the attacker could begin with
control over all of the university’sKaZaAhosts? Quite:
while the goal of the contagion worm is to evade detec-
tion, the attacker can likely risk a more blatant attack on
a single university. If they can find a university lacking
in diligent security monitoring (surely there must be a
few of these!), they can then compromise a single host
at the university, engage in “noisy” brute-force scanning
of the internal hosts to find all of theKaZaAclients, and
infect them. Theythen switch into contagion spread-
ing.10

While the above argues that the attacker could gain the
9 million hosts within a month, the actual spread is likely
muchfaster, because once a remote host is infected, it
too contributes to spreading the contagion. Not only
does this accelerate the epidemic, but it also likely turns
it into a pandemic, because the remote hosts can connect
with other remote hosts that wouldn’t happen to visit the
university. Furthermore, depending on the protocol, a
single infected node could pretend to have information it
doesn’t have, in order to appear highly attractive and in-
crease the number of connections received, although that
would somewhat disrupt the normal patterns of commu-
nication.

We would like therefore to better understand the rate at
which a KaZaA contagion worm could spread, and to
what breadth. To estimate this from just the university
trace is difficult, because we don’t know the total size
of the KaZaA population. Doubtless it is larger than
9,000,000—but is it as high as 30,000,000, as indicated
in [Ka01]? How many of those copies were redundant
(same user fetching the software multiple times), or are
no longer in use? On the other hand, could the popula-
tion be higher, due to users getting copies of the clients
from other sources than [Ka01]?

Another problem is that we do not know the degree to

9 It is actually worse than this. It turns out [Bd02, We02] that
KaZaA alreadyhas a remote access backdoor installed! But for the
purposes of our discussion here, we put aside this fact.

10We note that some P2P networks are also amenable to constructing
flash worms, because they include mechanisms by which an attacker
can monitor portions of the global query stream in order to compile a
hit-list of clients.
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Figure 9: Complementary distribution of number of distinct
local university hosts to which different remoteKaZaAhosts
connected. Both axes are log-scaled; the linear fit shown in the
plot corresponds to a Pareto distribution with shape parameter
α = 2.1.

which the university’s hosts are “typical.” We also lack
any traces of their internal peer-to-peer traffic, which, if
frequent, would have major implications for the rate at
which the worm could infect an entire remote site.

We are pursuing further work in this area. First, we are
attempting with colleagues to develop graph-based mod-
els with which we can then extrapolate properties of the
spread of the contagion based on different sets of as-
sumptions about the hosts in our trace. Second, we have
obtained traces ofKaZaAtraffic from another university
(in another country), and will be analyzing these to de-
termine the degree of overlap and cross-talk between the
two universities, with which to then better estimate the
totalKaZaApopulation and its communication patterns.
Finally, we are building a simulator for both active and
contagion worms within various peer-to-peer topologies.

As a last comment, we have evidence that theKaZaA
network may behave like a “scale-free” topology in
terms of its interconnection. Figure9 shows the dis-
tribution of the degree of the remote hosts in the trace,
i.e., the number of distinct local hosts to which each re-
mote host connected during November, 2001. The plot is
shown as a log-logcomplementary distribution function:
thex-axis showslog10 of the remote host’s degree, and
they-axis showslog10 of the probability of observing a
remote host with that outdegree or higher. (Due to the
immense size of the dataset, we plot a subset rather than
the entire dataset, randomly sampled withp = 0.01.)

A straight line on such a plot corresponds to aPareto
distribution. While the majority of the remote hosts con-



nected to only one or two local hosts, for those con-
necting to three or more hosts, the fit to a Pareto dis-
tribution (with shape parameterα = 2.1) is compelling.
That the degree has such a distribution is then strongly
suggestive that the underlyingKaZaAnetwork may ex-
hibit a scale-free (or Zipf-like) topology. The propaga-
tion of contagion through such networks has recently
been studied [PV01]. While the discussion in that ar-
ticle is flawed—it confounds the Internet’s underlying
IP topology with email and Web application topology—
the general framework the authors develop gives hope
that we can leverage it to better understand the behav-
ior of a KaZaAcontagion worm. That said, we add that
the degree of thelocal hosts is clearlynot Pareto, so the
analysis might not in fact apply.

6 Updates and Control

The last facet of worm design we examine concerns
mechanisms by which the attacker can control and mod-
ify a worm after its dissemination. The ease and re-
siliency with which an attacker can do so has serious
consequences for both how the threat of a deployed
worm can evolve, and the potential difficulty in detect-
ing the worm’s presence and operation after the initial
infection.

Some previous worms such as the Goner mail worm
[CE02] contained primitive remote control code, similar
to many common “zombies”, allowing the authors and
others to issue commands to a distributed DOS mod-
ule through an IRC [OR93] channel. (Indeed, the root
backdoor installed by Code Red II also offered a form
of unlimited remote control.) Others worms have at-
tempted to download updates and payloads from web
pages, such as W32/sonic [Sy00]. Both of these mech-
anisms, when employed, were quickly countered by re-
moving the pages and tracking the channels. Similarly,
previously seen DDOS tools such as Stacheldraht [Di99]
have included both encrypted communication and up-
date mechanisms for directly controlling the zombies.

Here we briefly explore a more sophisticated
method—direct worm-to-worm communication and
programmable updates—which, while not yet observed
in the wild, is a natural evolution based on the previous
updatable worms and DDOS tools.

6.1 Distributed Control

In a distributed-control worm, each worm has a list of
other known, running copies of the worm and an ability
to create encrypted communication channels to spread
information. Any new command issued to the worms
has a unique identifier and is cryptographically signed
using an author’s key. Once a worm has a copy of the
command, the command is first verified by examining
the cryptographic signature, spread to every other known
instance of the worm, and then executed. This allows
any command to be initially sent to an arbitrary worm
instance, where it is then quickly spread to all running
copies.

The key to such a network is the degree of connectivity
maintained, in order to overcome infected hosts being
removed from the network, and to hasten the spread of
new commands. Although it is clear that a worm could
spread information to its neighbors about other worm in-
stances in order to create a more connected, highly re-
dundant network, it is useful to estimate the initial de-
gree of connectivity without these additional steps.

If each worm node only knows about other nodes it has
probed, infected, or been probed by, the average con-
nectivity is still very high. With 1M hosts, using permu-
tation scanning (with no halting), our simulator shows
that the average degree of nodes in the worm network
is 4 when 95% infection is achieved, and 5.5 when 99%
infection is achieved. Additionally, each permutation-
based rescan will add 2 to the degree of every worm, rep-
resenting the copy discovered by each instance, and the
copy which discovers each instance. Thus, after a couple
of rescans, the connectivity becomes very high without
requiring additional communication between the worm
instances.

Such a network could be used to quickly pass updates to
all running copies, without having a single point of com-
munication like that seen in previous worms, increas-
ing the staying power by preventing the communica-
tion channel from being disrupted or co-opted by others,
while still allowing the author to control their creation in
a difficult-to-track manner.

6.2 Programatic Updates

The commands to a worm can of course be arbitrary
code. Many operating systems already support conve-
nient dynamic code loading, which could be readily em-



ployed by a worm’s author. Another possibility has the
bulk of the worm written in a flexible language com-
bined with a small interpreter. By making the worm’s
commands be general modules, a huge increase in flexi-
bility would be achieved.

Of particular interest are new attack modules and seeds
for new worms. If the author discovers a new security
hole and creates a new attack module, this could be re-
leased into the worm network. Even if only a few thou-
sand copies of the worm remain, this is enough of an
installed base for a hit-list like effect to occur upon in-
troduction of a new attack module, quickly spreading the
worm back through the network.

It is an interesting question whether it is possible for
a worm author to release such a worm with the cryp-
tographic modules correctly implemented. From expe-
rience, if the worm author attempts to build their own
cryptographic implementation, this could well suffer
from a significant weakness that could be exploited for
countering the worm. Yet there are a number of strong
cryptographic applications and libraries that could be
used by a worm author to provide the cryptographic
framework, a good example being OpenSSL [Op01],
which includes an encrypted session layer, symmetric
ciphers, hash functions, and public key ciphers and sig-
natures to provide for code signing.

7 Envisioning a Cyber “Center for Disease
Control”

Given the magnitude of Internet-scale threats as devel-
oped in the previous sections, we believe it is impera-
tive for the Internet in general, and for nations concerned
with cyberwarfare in particular, to attempt to counter the
immense risk. We argue that use of biological metaphors
reflected in the terms “worms” and “viruses” remains apt
for envisioning a nation-scale defense: the cyber equiva-
lent of the Centers for Disease Control and Prevention in
the United States [CDC02], whose mission is to monitor
the national and worldwide progression of various forms
of disease, identify incipient threats and new outbreaks,
and actively foster research for combating various dis-
eases and other health threats.

We see an analogous “Cyber-Center for Disease Con-
trol” (CDC) as having six roles:

• Identifying outbreaks.

• Rapidly analyzing pathogens.

• Fighting infections.

• Anticipating new vectors.

• Proactively devising detectors for new vectors.

• Resisting future threats.

In the remainder of this section, we discuss each of these
in turn, with our aim being not to comprehensively ex-
amine each role, but to spur further discussion within the
community.

7.1 Identifying outbreaks

As discussed earlier in this paper, to date Internet-scale
worms have been identified primarily via informal email
discussion on a few key mailing lists. This process takes
hours at a minimum, too slow for even the “slower” of
the rapidly-propagating worms, much less the very fast
worms developed in Section4. The use of mailing lists
for identification also raises the possibility of an attacker
targeting the mailing lists for denial-of-service in con-
junction with their main attack, which could greatly de-
lay identification and a coordinated response. Present
institutions for analyzing malicious code events are not
able to produce a meaningful response before a fast ac-
tive worm reaches saturation.

CDC Task: develop robust communication mechanisms
for gathering and coordinating “field information.” Such
mechanisms would likely be(i) decentralized, and(ii)
span multiple communication mechanisms (e.g., Inter-
net, cellular, pager, private line).

For flash worms, and probably Warhol worms, arguably
no human-driven communication will suffice for ade-
quate identification of an outbreak before nearly com-
plete infection is achieved.

CDC Task: sponsor research in automated mechanisms
for detecting worms based on their traffic patterns; fos-
ter the deployment of a widespread set of sensors. The
set of sensors must be sufficiently diverse or secret such
that an attacker cannot design their worm to avoid them.
This requirement may then call for the development of
sensors that operate within the Internet backbone, as op-
posed to at individual sites, and actuators that can re-
spond to various threats (see below).



Clearly, widespread deployment and use of sensors
raises potentially immense policy issues concerning pri-
vacy and access control. Present institutions lack the au-
thority and mandate to develop and deploy Internet-wide
sensors and actuators.

7.2 Rapidly analyzing pathogens

Once a worm pathogen is identified, the next step is to
understand(i) how it spreads and(ii) what it does in ad-
dition to spreading.

The first of these is likely easier than the second, be-
cause the spreading functionality—or at least a subset
of it—will have manifested itself during the identifica-
tion process. While understanding the pathogen’s addi-
tional functionality is in principle impossible—since it
requires solving the Halting Problem—it is important to
keep in mind that the Halting Problem applies to ana-
lyzing arbitrary programs: on the other hand, there are
classes of programs that are fully analyzable, as revealed
by extensive past research in proving programmatic cor-
rectness.

The question is then to what degree can worm authors
write programs that are intractable to analyze. Certainly
it is quite possible to take steps to make programs dif-
ficult to understand; indeed, there is a yearly contest
built around just this theme [NCSB01], and our own un-
funded research in this regard has demonstrated to us the
relative ease of transforming a non-trivial program into
an incomprehensible mess [Pa92].

CDC Task: procure and develop state-of-the-art pro-
gram analysis tools, to assist an on-call group of experts.
These tools would need to go beyond simple disassem-
bly, with facilities for recognizing variants from a library
of different algorithms and components from a variety of
development toolkits, and also components from previ-
ous worms, which would be archived in detail by a CDC
staff librarian.

The tools would also need to support rapid, distributed
program annotation and simulation. Furthermore, the
team would need access to a laboratory stocked with vir-
tual machines capable of running or emulating widely-
used operating systems with support for detailed execu-
tion monitoring. (Less widely-used systems do not pose
much of a threat in regards to Internet-scale worms.) In
addition, code coverage analysis tools coupled with sam-
ple execution of the pathogen could help identify unex-
ecuted portions of the code, which in turn might reflect

the pathogen’s additional functionality, and thus merit
detailed analysis. (Or such unused regions could simply
reflect “chaff” added by the worm author to slow down
the analysis; an “arms race” seems inevitable here.)

Admittedly, any analysis involving humans might be too
slow to match the pace of a rapidly-propagating worm.
But clearly it will always prove beneficial to know ex-
actly how a worm spread and what it did, even after the
fact; and for a large-scale cyberwarfare situation, speed
will remain of the essence, especially as the “fog of war”
may well retard the attacker’s full use of the worm. This
is especially true if the worm is designed to accept up-
dates, for although the worm’s spread may be extremely
fast, the threat may continue as long as there are a sig-
nificant number of infected machines remaining on the
Internet. Furthermore, for contagion worms, there may
be significantly more time available for analysis, if the
worm is detected sufficiently early.

7.3 Fighting infections

Naturally, we would want the CDC to help as much as
possible in retarding the progress or subsequent applica-
tion of the worm.

CDC Task: establish mechanisms with which to prop-
agate signatures describing how worms and their traffic
can be detected and terminated or isolated, and deploy
an accompanying body ofagentsthat can then apply the
mechanisms.11

It is difficult to see how such a set of agents can be ef-
fective without either extremely broad deployment, or
pervasive backbone deployment. Both approaches carry
with them major research challenges in terms of co-
ordination, authentication, and resilience in the pres-
ence of targeted attack. As with sensors, the policy is-
sues regarding the actual deployment of such agents are
daunting—who controls the agents, who is required to
host them, who is liable for collateral damage the agents
induce, who maintains the agents and ensures their se-
curity and integrity?

7.4 Anticipating new vectors

We would want the CDC to not only be reactive, but also
proactive: to identify incipient threats.

11Such techniques should also be applied to the numerous strains of
zombies present on the Internet, as they too are a significant resource
for an attacker.



CDC Task: track the use of different applications in the
Internet, to detect when previously unknown ones begin
to appear in widespread use. Unfortunately, Internet ap-
plications sometimes can “explode” onto the scene, very
rapidly growing from no use to comprising major traffic
contributors [Pa94]. Accordingly, tracking their onset
is not a simple matter, but will require diligent analysis
of network traffic statistics from a variety of sources, as
well as monitoring fora in which various new applica-
tions are discussed (since some of them may have traffic
patterns that are difficult to discern using conventional
traffic monitoring variables such as TCP/UDP port num-
bers).

CDC Task: analyze the threat potential of new appli-
cations. How widely spread might their use become?
How homogeneous are the clients and servers? What are
likely exploit strategies for subverting the implementa-
tions? What are the application’s native communication
patterns?

7.5 Proactively devising detectors

Once a new potential disease vector has been identified,
we would then want to deploy analyzers that understand
how the protocol functions, to have some hope of detect-
ing contagion worms as they propagate.

For example, to our knowledge there is noKaZaAmod-
ule (one specific to howKaZaAfunctions) available for
network intrusion detection systems in use today. With-
out such a module, it would be exceedingly difficult to
detect whenKaZaA is being exploited to propagate a
contagion worm.

CDC Task: foster the development of application anal-
ysis modules suitable for integration with the intru-
sion detection systems in use by the CDC’s outbreak-
identification elements.

7.6 Resisting future threats

Devising the means to live with an Internet periodically
ravaged by flash or contagion worms is at best an uneasy
equilibrium. The longer-term requirement is to shift the
makeup of Internet applications such that they become
much less amenable to abuse. For example, this may
entail broader notions of sandboxing, type safety, and
inherent limitations on the rate of creating connections
and the volume of traffic transmitted over them.

CDC Task: foster research into resilient application
design paradigms and infrastructure modifications that
(somehow) remain viable for adaptation by the commer-
cial software industry, perhaps assisted by legislation or
government policy.

CDC Task: vet applications as conforming to a certain
standard of resilience to exploitation, particularly self-
propagating forms of exploitation.

7.7 How open?

A final basic issue regarding the CDC is to what degree
should it operate in an open fashion. For example, dur-
ing an outbreak the CDC could maintain a web site for
use by the research community. Such an approach would
allow many different people to contribute to the analy-
sis of the outbreak and of the pathogen, perhaps adding
invaluable insight and empirical data. This sort of coor-
dination happens informally today, in part; but it is also
the case that currently a variety of anti-viral and secu-
rity companies analyze outbreaks independently, essen-
tially competing to come out with a complete analysis
first. This makes for potentially very inefficient use of
a scarce resource, namely the highly specialized skill of
analyzing pathogens.

A key question then is the cost of operating in an open
fashion. First, doing so brings with it its own set of secu-
rity issues, regarding authenticating purported informa-
tion uploaded into the analysis database, and preventing
an attacker from crippling the analysis effort by launch-
ing a side-attack targeting the system. Second, the at-
tacker could monitor the progress made in understand-
ing the worm, and perhaps gain insight into how it has
spread beyond what they could directly gather for them-
selves, allowing them to better hone their attack. Third,
some sources of potentially highly valuable empirical
data might refuse to make their data available if doing
so is to release it to the public at large.

Given these concerns, it seems likely that the CDC
would pursue a “partially open” approach, in which
subsets of information are made publicly available,
and publicly-attained information is integrated into the
CDC’s internal analysis, but the information flow is scru-
tinized in both directions. Unfortunately, such scrutiny
would surely involve manual assessment, and could
greatly slow the collection of vital information.

A related question is how international in scope such a
facility should be. A national facility is likely to have



a simpler mission and clearer management and account-
ability. However, there are real benefits to an interna-
tional approach to this problem; one’s allies are awake
and working while one sleeps. A worm released in the
middle of the night in the US would be far more likely
to receive intense early research and attention in Europe
or Asia than in the US itself. Thus, at a minimum, na-
tional level CDCs are likely to need to maintain strong
linkages with one another.

8 Conclusion

In this paper we have examined the spread of several re-
cent worms that infected hundreds of thousands of hosts
within hours. We showed that some of these worms re-
main endemic on the Internet. We explained that better-
engineered worms could spread in minutes or even tens
of seconds rather than hours, and could be controlled,
modified, and maintained indefinitely, posing an ongo-
ing threat of use in attack on a variety of sites and infras-
tructures. Thus, worms represent an extremely serious
threat to the safety of the Internet. We finished with a
discussion of the urgent need for stronger societal in-
stitutions and technical measures to control worms, and
sketched what these might look like.
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