Case Study: Weather
Station

This chapter begins an in-depth case study of a simple weather monitoring system.
Although this case study isficticious, it has neverthel ess been constructed with a high
degree of realism. We will encounter the problems of time-pressure, legacy code,
poor and mutating specifications, new untried technologies, etc. Our goal isto dem-
onstrate how object oriented design and UML are used in the real world of software
engineering.

-, The Cloud Company
The Cloud Company has been the leader in industrial weather monitor-

ing systems (WMYS) for the past several years. Their flagship product
has been aWM S that keepstrack of temperature, humidity, barometric pressure, wind
speed and direction, etc. The system displays these readingsin real time on adisplay.
It also keeps track of historical information on an hourly and daily basis. This histori-
cal data can be pulled up on the display at the request of the user.

The primary customers of Cloud Company products have been the aviation, maritime,
agricultural, and broadcast industries. For these industries, WM Ss are mission critical
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The Cloud Company:

applications. The Cloud Company has areputation for building highly reliable prod-
uctsthat can be installed in relatively uncontrolled environments. This makes the sys-
tems somewhat expensive.

The high cost of these systems has cut the Cloud Company off from customers that do
not need, and cannot afford, the high reliability systems that they sell. Cloud Com-
pany managers believe that thisis alarge potential market, and they would like to tap
into it.

The Problem. A competitor named Microburst Inc. has recently announced a prod-
uct line that starts at the low end, and can be incrementally upgraded to higher reli-
ability. Thisthreatens to cut the Cloud Company off from smaller but growing
customers. These customers will already be using Microburst products by the time
they grow to asize that would allow them to use Cloud Company products.

More frightening still, the Microburst product boasts the ability to be interconnected

at the high end. That is, the high end upgrades can be networked together into awide
area weather monitoring system. This threatens to erode the current Cloud Company

customer base.

The Strategy. Although Microburst Inc. has successfully demonstrated its low
end units at trade shows, they are not offering production quantity shipments for at
least six months. Thisindicates that there may be engineering or production problems
that Microburst has not solved. Moreover, the high reliability upgrades promised by
Microburst as part of the product line are currently not available. It may be that
Microburst has announced a product that it is not ready to market.

If The Cloud Company can announce alow-end upgradable and connectable product,
and begin shipping it within six months, then they may be able to capture, or at least
stall, customers who would otherwise buy Microburst’s products. By stalling the mar-
ket and thereby depriving Microburst of orders, they might be able to compromise
Microburst’s ability to solve their engineering and manufacturing problems; avery
desirable outcome.

The Dilemma. A new low cost and extendable product line requires a significant
amount of engineering. The hardware engineers have flatly refused to commit to a six
month development deadline. They believe that it will be twelve months before they
could see production quanity units.

The marketing managers believe that in twelve months, Microburst will be shipping
production quanity, and will be capturing an irretrievable part of Cloud Company’s
customers.
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The Plan. Cloud Company managers have decided to announce their new product
lineimmediately, and to begin accepting ordersthat will be shipped before six months
have elapsed. They have named the new product Nimbus-LC 1.0. Their planisto
repackage the old expensive high-reliability hardware into a new enclosure with a
nice LCD touch panel. The high manufacturing cost of these units means that the
company will actually lose money on each one that they sell.

Concurrently, the hardware engineers will begin to develop the true low cost hard-
ware which will be available in twelve months. This configuration of the product has
been called Nimbus-L C 2.0. When production quantities are available, the Nimbus-
LC 1.0 will be phased out.

When a Nimbus-L C 1.0 customer wants to upgrade to a higher level of service, his
unit will be replaced with a Nimbus-LC 2.0 at no additional cost. Thus, the company
iswilling to lose money on this product for six months in order to capture, or at least
stall, potential Microburst customers.

The WMS-LC Software

The software project for the Nimbus-L C project is complex. They must create a
software product that can use both the existing hardware as well asthe low cost 2.0
hardware. Prototype units of the 2.0 hardware will not be available for nine months.
Moreover, the processor on the 2.0 board is not likely to be the same as the processor
on the 1.0 board. Still, the system must operate identically regardless of which hard-
ware platform it uses.

The hardware engineers will be writing the lowest level hardware drivers, and they
need the application software engineers to design the API for these drivers. This AP
must be available to the hardware engineers within the next four months.

The software must be production ready in six months, and must be working with the
2.0 hardware in twelve months. They want at least six weeks of Q/A for the 1.0
device, so the software engineersreally have only twenty weeks to get the software
working. Since the hardware platform for the 2.0 version is new, they need eight to
ten weeks of Q/A. This eats up most of the three month period between first prototype
and final shipment. Thus the software engineers will have very little time to make the
new hardware work.

Software Planning Documents.  The software engineers have written several
documents that describe the Nimbus-L C project. They are:

1. “Nimbus-LC Requirements’ on page 101
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This document describes the operating requirements of the Nimbus-L C system, as
they were understood at the time the project was begun.l

2. “Nimbus-LC Elaboration Phase” on page 103

This document describes the actors and use cases derived from the requirements
document.

3. “Nimbus-LC Construction Plan” on page 109

This document describes the phased construction plan for the software. This plan
triesto address the major risks early in the project lifecycle, while assuring that the
software will be complete by the necessary deadlines.

Language Selection

The most important constraint upon the language is portability. The short develop-
ment time, and the even shorter contact that the software engineers will have with the
2.0 hardware demand that both the 1.0 and 2.0 versions use the same software. That
is, the source code needs to be identical; or nearly so. If the portability constraint can-
not be met by the language, the release of the 2.0 version at the twelve month mark
will bein severe jeaopardy.

Fortunately there are few other constraints. The softwareis not very large, so spaceis
not much of aproblem. There are no hard real-time deadlines that are shorter than one
second, so speed is not much of an issue. Indeed, the real-time deadlines are so weak
that a moderately fast garbage collecting language would not be inappropriate.

The portability constraints, and the lack of any other serious constraints, make the
selection of Java quite appropriate. Indeed, there are few languages which can satisfy
the portability constraint as well as Java.

However, Java comes with some risks. There must be a VM? for each of the plat-
forms, and both v Ms must work identically. Also, Javais an immature language that
istill changing rapidly. These risks are identified in the “Nimbus-L C Construction
Plan” on page 109.

1. Weal know that the requirements document is the most volatile document in any software project.
2. JavaVirtual Machine
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Nimbus-LC Software Design

According to the construction plan, one of the major goals of phase | isto create an
architecture that will allow the bulk of the software to be independent of the hardware
that it controls. Indeed, we want to separate the abstract behavior of the weather sta-
tion from its concrete implementation.

For example, the software must be able to display the current temperature regardless
of the hardware configuration. Thisimplies the design shown in Figure 3-1.

Temperature
Sensor

+ read() : double

A
Nimbus 1.0 Nimbus 2.0 Test
Temperature Temperature Temperature
Sensor Sensor Sensor

Figure 3-1
Initial Temperature Sensor Design.

An abstract base class named Tenper at ur eSensor supplies a polymorphic
read() function. Derivatives of this base class allow for separate implementations
of ther ead() function.

The Test Classes. Notice that there is one derivative for each of the two known
hardware platforms. Thereis also a specia derivative named Test Tenper at ur e-
Sensor . Thisclasswill be used to test the software in aworkstation which is not
connected to Nimbus hardware. This allows the software engineers to test their soft-
ware even when they don’'t have access to a Nimbus system.

Also, we have very little time to intergrate the Nimbus 2.0 hardware and software
together. The Nimbus 2.0 version will be at risk because of this short time frame. By
making the Nimbus software work with both the Nimbus 1.0 hardware, and with the
test class, we will have made the Nimbus software execute on multiple platforms.
Thislessens the risk of significant portability issues with the Nimbus 2.0.
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Tthe test classes also give us the opportunity to test features or conditions that are
hard to capture in the software. For example, we can set up the test classes to produce
failures that are difficult to simulate with the hardware.

Making Periodic Measurements. The most common mode of the Nimbus sys-
tem iswhen it is displaying current weather monitoring data. Each of the values are
updated at their own particular rate. Temperature is updated once per minute, while
barometric pressure is updated once every five minutes. Clearly we need some kind
of scheduler that will trigger these readings and communi cate them to the user. Figure
3-2 shows a possible structure.

Monitoring Screen

+ displayTemp(double)
+ displayPressure(double)

’—Z‘X Barometric
Pressure Sensor
Streaming Scheduler
Output
#tic()
Temperature
Sensor
Nimbus 1.0
o000 Scheduler
Figure 3-2

Initial Scheduler and Display architecture

Weimagine the Schedul er to be abase class that has many possible implementa-
tion, one for each of the hardware and test platforms. The Schedul er hasati c
function that it expects will be called once every 10ms. It is the responsibility of the
derived classto makethiscall. (See Figure 3-3.) The Schedul er countstheti c()
calls. Once per minute it callsther ead() function of the Tenper at ur eSensor,
and passes the returned temperature to the Moni t or i ngScr een. For phase | we
don’t need to show the temperature in a GUI, so the derivative of Moni t or i ng-
Scr een simply sends the result to an output stream.
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schd : Nimbus . : Temperature : Monitoring
1.0 Scheduler schd : Scheduler Sensor Screen
\ \ \ \
| 10 | | |
Every 10ms
[ read() [
Once per minute %
\ X \ \
temp
|
| displayTemp(temp) |
\ \

Figure 3-3
Initial Scheduler Sequence Diagram

Barometric Pressure Trend. The requirements document says that we must
report the trend of the barometric pressure. Thisis avalue that can have three states:
rising, falling, or stable. How do we determine the value of this variable?

According to the Federal Meteorological Handbook®, barometric pressure trend is
calculated asfollows:

If the pressureisrising or falling at arate of at least 0.06 inch per hour and the pres-
sure change totals 0.02 inch or more at the time of the observation [to be taken once
every three hours], a pressure change remark shall be reported.

Where do we put this algorithm? If we put itinthe Bar onet ri cPr essur e-
Sensor class, then that class will need to know the time of each reading, and it will
have to keep track of a series of readings going back three hours. Our current design
does not allow for this. We could fix this by adding the current time as an argment to
the Read function of the Bar onet ri cPr essur eSensor class, and guaranteeing
that that function will be called on aregular basis.

However, this couples the trend calculation to the frequency of user updates. It is not
inconceivable that a change to the user interface update scheme could affect the pres-
sure trend algorithm. Also, it isvery unfriendly for a sensor to demand that it be read
on aregular basisin order to function properly. A better solution needs to be found.

We could have the Schedul er keep track of barometric pressure history, and cal cu-
late trends at need. However, will we then also put temperature and wind speed his-

1. Federal Meteorological Handbook No. 1, Chapter 11, Section 11.4.6 (htt p: / /
WWW. NWS. hoaa. gov)
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tory in the Schedul er class? Every new kind of sensor or history requirement
would cause usto change the Schedul er class. Thisis hasthe makings of amainte-
nance nighmare™.

Reconsidering the Scheduler. Take another look at Figure 3-2. Notice that
the Schedul er isconnected to each of the sensors and to the user interface. As
more sensors are added, and as more user interface screens are added, they will have
to be added to the Schedul er too. Thus, the Schedul er isnot closed to the addi-
tion of new sensors or user interfaces. Thisis a problem. We would like to design the
Schedul er sothat it isindependent of changes and additions to the sensors and
user interfaces.

Decoupling the User Interface. User interfaces are volatile. They are subject
to the whims of customers, marketting people, and nearly everyone else who comesin
contact with the product. It seems very likely that if any part of the system suffers
requirements thrashing, it will be the user interface. Therefore we should decouple it
first.

Thereis astandard design pattern for decoupling user interfaces. It is called
OBSERVER. Theintent of the observer patternis:

Define a one-to-many dependency between objects so that when one object changes
state, al its dependents are notified and updated automa'[ically.1

Figure 3-4 and Figure 3-5 show the new design. We have made the Ul a dependent of
the sensor, so that when the sensor reading changes, the Ul will be automatically noti-
fied. Notice that the dependency is indirect. The actual observer is an ADAPTER?
named Tenper at ur eCbser ver . This object is notified by the Tenrper at ur e-
Sensor when the temperature reading changes. In reponse, the Tenper at ur e-
obsever calstheDi spl ayTenp function of the Moni t or i ngScr een object.

This design has nicely decoupled the Ul from the Schedul er. The Schedul er
now knows nothing of the Ul, and can focues solely upon telling the sensors when to
read. The Ul bindsitself to the sensors, and expects them to report any changes. How-
ever, the Ul does not know about the sensors themselves. It simply knows about a set
of objects that implement the Observable interface. Thiswill allow us to add sensors
without making signficant changes to this part of the UI.

1. [GOF95] p. 293
2. [GOF95] p. 139
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«creates»
Monitoring Screen Temperature
Observer Observer
+ displayTemp(double)
+ displayPressure(double) + update() .
Scheduler
Termperature Observable
r Sensor [ L
ticQ + addObserver()
+ notifyObservers()
Figure 3-4

Observer decouples Ul from Scheduler.

: Monitoring
Screen

ts : Temperature .
:Sc

ts: Observable
Sensor

heduler

create

Observer

t: Temperature

[ addObserver(t) [ [

update(val)

displayTemp(val)

Figure 3-5
Decoupled Ul sequence diagram
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We have a so solved the problem of the barometric pressure trend. This reading can
now be calculated by a seperate Bar onet ri cPr essur eTr endSensor that
observersthe Bar onet ri cPressur eSensor. (See Figure 3-6.).

Barometric
«creates» Pressure Trend
Observer
J/ + update()
Observer
Monitoring Screen «creates» Barometric
Pressure *
+ displayTemp(double) Observer
+ displayPressure(double) .
+ displayPressureTrend(double) update()
v
Barometric
Scheduler Pressure Sensor Observable
>
- tic() + addObserver()
+ notifyObservers()
Barometric
Pressure Trend
Sensor

Figure 3-6
Barometric Pressure Observers

Is this too complex? Have we overengineered the software? If we were certain
that the requirements were never going to change, then this solution is probably too
complex. However, weather monitoring isthe core of our business. We are embarking
upon the project because of a signficant change in theindustry. We are also entering a
new market and using a new technology. There is plenty of reason to suspect that the
requirements are going to change over time. Therefore, if our software is going to sur-
vive more than two releases, we' d better design it to be changed.

Rethinking the Scheduler -- yet again. One of the major principles of object
oriented design is the Open Closed Principle! (OCP). This principle says that a class
should be extensible without requiring modification. That is, you should be able to
change what a class does, without changing the class.

1. [Meyer97] p. 57
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The mgjor role of the Schedul er isto tell each of the sensors when they should
acquire anew value. However, if future requirements force usto add or remove a sen-
sor, the Schedul er will need to be changed. Indeed, the Schedul er will have to
change even if we simply want to change the rate of a sensor. Thisis an unfortunate
violation of the OCP. It seems that the knowledge of a sensor’s polling rate belongsto
the sensor itself, and not any other part of the system.

We can decouple the Scheduler from the sensors by using the Listener! paradigm
from the Java classlibrary. Thisissimilar to OBSERVER in that you register to be noti-
fied of something; but in this case we want to be notified when a certain event (time)
occurs. See Figure 3-7.

AlarmClock «interface»
* AlarmListener

+ wakeEvery(interval, AlarmListener)

+ wakeup()

«creates»

Temperature «anonymous»

Sensor

Figure 3-7
Decoupled Alarm clock

Sensors create anonymous® ADAPTER classes that implement the Al ar nLi st ener
interface. The sensors then register those adapters with the Al ar nCl ock (The class
we used to call the Schedul er). As part of the registration, they tell the Al ar m

Cl ock how often they would like to be woken up (e.g. every second, or every fifty
milliseconds). When that period expires, the Al ar nCl ock sendsthe wakeup mes-
sage to the adapter which then sends the r ead message to the sensor.

This has completely changed the nature of the Schedul er class. In Figure 3-2 it
formed the center of our system and knew about most of the other components. But
now it simply sits at the side of the system. It knows nothing about the other compo-

1. [JAVASS] p. 360

2. Anonymous classes are afeature of Java. However, the idea can be applied to just about any language. An anonymous
classisjust aclass that implements awell known interface, but which does not have a name of its own. It also has
access to the private elements of its creator.

ISTSapr |m|nar¥_c agero_ ] rien nalysis and Design with Applications, 2d. ed., Gr 0och, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-|

iduced without the written permission of Addison Wesley Longman, nc.




70

Nimbus-LC Software Design:Language Selection

nents. It does one job -- scheduling -- which has nothing whatever to do with weather
monitoring. Indeed, it could be reused in many different kinds of applications. In fact
the change is so dramatic, that we have changed the nameto Al ar mCl ock.

The Structure of the Sensors.  Having decoupled the sensors from the rest of
the system, we should look at their internal structure. Sensors now have three separate
functions. First, they have to create and register the anonymous derivative of the

Al ar mLi st ener . Second, they have to determine if their readings have changed,
and invokethenot i f yObser ver s method of the Cbser vabl e class. Thirdly,
they have to interact with the Nimbus hardware in order to read the appropriate val-
ues.

Figure 3-1 showed how these concerns might be separated. Figure 3-8 integrates that
design with the other changes we have made. The Tenper at ur eSensor base
class deals with the first two concerns, since they are generic. The derivative of
Tenper at ur eSensor can then deal with the hardware and perform the actual
readings.

Observable

+ addObserver(Observer)

AlarmClock + notifyObservers(Object)
Zﬁ private void check() AN
AarmList ) double val = read();
armListener Temperature Sensor if (val != itsLastReading)
o ey itsLastReading = val;

«anonymous» «crgates» itsLastReading : double o setChanged();

+ wakeup() - check() ae notifyObservers(val);
; - read() {abstract} }}

public void wakeUp() Nimbus 1.0 CAPI
{ Temperature [ «emne

check(): o Nimbus 1.0 C
} Api

- read() {native}

Figure 3-8
Sensor Structure

Figure 3-8 employs a pattern known as TEMPLATE METHOD? in order to achieve the
seperation between the between the generic and specific concerns of the
Tenper at ur eSensor . You can seethis patternin the private check andr ead
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functions of Tenper at ur eSensor . When the Al ar nTCl ock callswakeup on
the anonymous class, the anonymous class forward the call to the check function® of
the Tenper at ur eSensor . Thecheck function then callsthe abstract r ead func-
tion of Tenper at ur eSensor . Thisfunction will beimplemented by the derivative
to properly interact with the hardware and obtain the sensor reading. The check
function then determines whether the new reading is different from the previous read-
ingZ. If adifference is detected, then it notifies the waiting observers.

This nicely accomplishes the separation of concerns that we need. For every new
hardware or testing platform, we will be able to create a derivative of Temperature-
Sensor that will work with it. Morevoer, that derivative must simply override one very
simple function: r ead( ) . The rest of the functionality of the sensor remainsin the
base class where it bel ongs.3

Where is the API?  One of our phase Il goalsisthe creation of anew API for the
Nimbus 2.0 board. This API should be written in Java, be extensible, and provide
simple and direct access to the Nimbus 2.0 hardware. Furthermore this APl must
serve the Nimbus 1.0 board as well. Without this AP, all the simple debugging and
calibration tools that we write for this project will have to be changed when the new
board isintroduced. Where is this API within our current design?

It turns out that nothing we have created so far can serve as asimple APl. What we
are looking for is something like this:

public interface TenperatureSensor

public doubl e read();

We are going to want to write tool s that have direct accessto this APl without having
to bother with registering observers. We also don’t want sensors at this level to be
polling themselves automatically, or interacting with the Al ar mCl ock. We want
something very ssmple and isolated that acts as the direct interface to the hardware.

1. [GOF95] p. 325

1. Remember, in Java, anonymous classes have direct access to the private variables and functions of the classes that cre-
ate them.

2. Figure 3-8 uses the = operator to determine this. However, determination of floating point equality is usually more
complex than this. For example, the test: a/a== 1.0 will not often succeed because of errorsin the least significant bits.
Thisis actually asignificant problem for any program that makes heavy use of floating point numbers.

3. C++ programmers might make use of templates in order to further eliminate the duplication of code. Consider that the
code inside BarometricPressureSensor and TemperatureSensor is nearly identical. However, the fact that the type of
the sensor value is not guaranteed to be the same between the two sensors, forces them to be coded separately in Java.
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It may seem that we are reversing al our previous arguments. After al, Figure 3-1
shows exactly what we have just asked for. However, the changes we made subse-
guent to Figure 3-1 were made for sound reasons. What we need is a hybrid that
mixes the best of both schemes.

Figure 3-9 employs the BRIDGE? pattern to extract the true API from the

Tenper at ur eSensor . Theintent of this pattern is to separate an implementation
from an abstraction; so that both may vary independently. In our case the

Tenper at ur eSensor isthe abstraction, and the Tenper at ur eSensor | np is
the implementation. Notice that the word “implementation” is being used to describe
an abstract interface. And that the “implementation” isitself implemented by the

Ni mbus1. OTenper at ur eSensor class.

Observable

+ addObserver(Observer)
+ notifyObservers(Object)

* i

AlarmListener.

AlarmClock

Temperature Sensor

«anonymous» «creates»—| - itsLastReading : double
+ wakeup() - check()
+read()
Nimbus 1.0
Temperature
Temperature
Sensor Imp
Sensor

+ read() : double

+ read() {native}

"The API" N
«C-API»

Nimbus 1.0 C
Api

Figure 3-9
Temperature Sensor with API

1. [GOF95] p. 151
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So, where are we?  Perhapsit’stimeto sit back and examine what we have
accomplished. We have taken arather long a circuitous route to get to this point. Have
we accomplished our goals?

Those goals were:

1. Create adesign that would remain relatively unchagned for both versions of the
hardware.

2. Create adesign that will act asthe foundation for many other products of thiskind.
3. Lay afoundation for phase | that will migrate well to phasell.

Goals 1 and 2 were known before we began the design. Goal 3 presented itself later
on, but isaregular goal of any iterative design. Are there any other goals that we
missed?

Certainly we have some more functionality to add. We haven't dealt with history
information, nor have we described the phase | streaming output. But as far as soft-
ware engineering goals are concerned, we seem to be on track.

Again, was all this complexity worth it? Compare Figure 3-1 to Figure 3-9. The dif-
ference in complexity is striking. Yet that extra complexity is needed to ensure that
the software can evolve and be maintained. It decouples the various sections of the
system so that they can vary independently of each other, and can be independently
reused.

But we are not done yet. We still have more functionality to add, and some more
issues to resolve.

Creational issues. Look again at Figure 3-9. In order for thisto work, a
Tenper at ur eSensor object must be created and bound to a

Ni mbus1. OTenper at ur eSensor object. Who takes care of this? Certainly,
whatever part of the software is responsible for thiswill not be platform independent,
since it must have explicit knowledge of the platform dependent

Ni mbus1. OTenper at ur eSensor .

We could use the main program to do al this. We could writeit as shown in Listing 3-
1

Listing 3-1
public class Wather Station
{

public static void main(String[] args)

{
Al arnCl ock ac = new Al ar nCl ock(

ISTSapr |m|nar¥_c agero_ ] rien nalysis and Design with Applications, 2d. ed., Gr 0och, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-|

iduced without the written permission of Addison Wesley Longman, nc.




Nimbus-LC Software Design:Language Selection

Listing 3-1
new N nmbusl OAl ar nCl ock;

TenperatureSensor ts =
new Tenper at ur eSensor ( ac,
new Ni mbusl1l_ OTenper at ur eSensor);

Bar onmet ri cPressureSensor bps =
new Barometri cPressureSensor (ac,
new Ni mbusl OBaronetri cPressureSensor);

Barometri cPressureTrend bpt =
new Baromnetri cPressureTrend(bps)

}
}

Thisisaworkable solution, but requires an awful lot of clerical overhead. Isthere a
better way? There is a design pattern that is well known for helping to deal with crea-
toinal issues likethis. It is called ABSTRACTFACTORY L. Theintent of this pattern isto
provide an interface so that clients can create objects without knowing their concrete
classes. Factories can also perform some of the clerical overhead involved with that
creation. Figure 3-10 shows the structure.

We have named thefactory the St at i onTool ki t . Thisisan interface that presents
methods that offer to create instances of the API classes. Each platform will have its

own derivative of St at i onTool ki t, and that derivativewill create the appropriate
derivatives of the API classes.

Now we can rewrite the main function as shown in Listing 3-2. Notice that in order to
alter this main program to work with a different platform, all we haveto changeisthe
two linesthat createtheNi nbus1. OAl ar nCl ock andtheNi mbus1. OTool ki t .
Thisis adramatic improvement over Listing 3-1 which required a change for every
sensor it created..

Noticethat the St at i onTool ki t isbeing passed into each sensor. This allows the
sensors to create their own implementations. Listing 3-3 shows the constructor for
Tenper at ur eSensor .

Getting the Station Toolkit to create the AlarmClock. We canimprove
matters by having the StationToolkit create the appropriate derivative of the Alarm-

1. [GOF95] p. 87
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«interface»
Station Toolkit

+ makeTemperature() : TemperatureSensorimp
+ makeBarometricPressure() : BarometricPressureSensorimp

«interface» . «interface»
Nimbus 1.0
Temperature ] . ] i
"7 sensor |mup | Toolkit | PreiiLOeTeSt:r::sor <
| | imp
B
§ «cre&es» «Crt 1‘ b§
. | 1 Nimbus 1.0
Nimbus 1.0 | ! :
Telmpgrature - = =] B;::Srrslztrgc
Figure 3-10
Station Toolkit
Listing 3-2
public class WatherStation
{
public static void main(String[] args)
{
Al arnCl ock ac = new Al ar nCl ock(
new Ni nbusl OAl ar nCl ock;
StationTool kit st = new N nbusl OTool kit ();
Tenper atureSensor ts =
new Tenper at ur eSensor (ac, st);
Bar onetri cPressureSensor bps =
new Barometri cPressureSensor(ac, st);
Baronetri cPressureTrend bpt =
new Baronetri cPressureTrend(bps)
}
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Listing 3-3
public class TenperatureSensor extends Cbservabl e
{

publ i c Tenperat ureSensor (Al ar nCl ock ac,
StationTool kit st)

{
itslnp = st.nmakeTenperature();
}
private TenperatureSensorlnp itslnp;

}

Clock. Once again we will employ the BRIDGE pattern to separate the AlarmClock
abstraction that is meaningful to the Weather Monitoring Applications, from the
implementation that supports the hardware platform.

Figure 3-11 showsthe new Al ar nCl ock structure. The Al ar nCl ock now
receivest i ¢ messagesthroughitsCl ockLi st ener interface. These messages are
sent from the appropriate derivative of the Al ar mCl ockl np classin the API.

Figure 3-12 shows how the Al ar nCl ock gets created. The appropriate St at i on-
Tool ki t derivativeis passed into the constructor of the Al ar nCl ock. The

Al ar mCl ock directsit to create the appropriate derivative of Al ar nCl ockl np.
Thisis passed back to the Al ar mCl ock, and the Al ar mCl ock registers with it so
that it will receivet i ¢ messages from it.

Once again, this has an effect upon the main program in Listing 3-4. Notice that now
thereisonly one line that is platform dependent. Change that line, and the entire sys-
tem will use a different platform.

Thisis pretty good; but in Javawe can do even better. Javaallows usto create objects
by name. The main program in Listing 3-5 does not need to be changed in order to
make it work with anew platform. Thename of the St at i onTool ki t derivativeis
simply passed in as acommand line argument. If the name was correctly specified,
the appropriate St at i onTool ki t will be created, and the rest of the system will
behave appropriately,

Putting the classes into packages.

There are several portions of this software that we would like to release and distribute
separately. The API and each of itsinstantiations are resusable without the rest of the
application, and may be used by the testing and quality assurance teams. The Ul and
Sensors should be seperate so that they can vary indepedently. After al, newer prod-
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«interface»
Station Toolkit

+ getAlarmClock() : AlarmClockimp

parameter:

Nimbus 1.0
Toolkit

,,,,,,,,,,,

Figure 3-11

Station Toolkit and Alarm Clock

«interface»
Alarm Clock Imp

+ register(ClockListener)

«interface»
Clock Listener

+tic()

Alarm Clock

AlarmClock(StationToolkit st)

ucts may have better UI’ s on top of the same system architecture. In fact, Phase |1 will

be the first example of this.

In general, the rules for seperating classes into packages involve three principlest.

1. The Common Closure Principle (CCP) states that we want to put the classes
together that are likely to change together when the requirements change. This
principle tries to minimize the number of packages that will change when the
requirements change. Theideal isto get this number down to 1.

2. The Reuse Release Equivalency Principle (REP) states that the granule of release
is the same as the granule of reuse. That is, it isimpractical to reuse anything
smaller than a package. Therefore a package should contain one or more releas-

able units.

1. [Granularity96]
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ac : AlarmClock

aci : Nimbus 1.0

aci : Alarm Clock

st : StationToolkit

st : Nimbus 1.0

Alarm Clock Imp Station Toolkit
\ \ \ \ \
create getAlarmClock()
o | | |
st create
\ \
\ \ — \
| | aci : AlarmClockimp [ one time only, this
is a singleton.
it : ClockList
| ] regsiter(ac ( ockLis ener)ﬁ |
Figure 3-12
Creation of the Alarm Clock
Listing 3-4
public class WatherStation
public static void main(String[] args)

StationTool kit st = new Ni nmbusl OTool kit();
Al arnCl ock ac = new Al arntl ock(st);
Tenper atureSensor ts =

new Tenper at ur eSensor (ac, st);

Bar onmet ri cPressureSensor bps =
new Barometri cPressureSensor(ac, st);

Baronetri cPressureTrend bpt =
new Barometri cPressureTrend(bps)

}
}
Listing 3-5
public class WatherStation
{
public static void nmain(String[] args)
{

try
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Listing 3-5 (Continued)
{
Class tkClass = O ass.forName(args[0]);
StationTool kit st =
(StationTool kit)tkC ass. newl nstance();

Al arrCl ock ac = new Al arnt] ock(st);

Tenper atureSensor ts =
new Tenper at ur eSensor (ac, st);

Bar onet ri cPressureSensor bps =
new Baronetri cPressureSensor(ac, st);

Barometri cPressureTrend bpt =
new Baromnetri cPressureTrend(bps)
}
catch (Exception e)
{
}
}
}

3. The Common Reuse Principle (CRP) statesthat all the classesin a package should
be reused together. If it is possible for aclient to reuse only asubset of classesin a
package, then those classes should be removed into a seperate package.

Figure 3-13 shows a package structure for phase |. This package structure nearly falls
out of the classes we have designed so far. There is one package for each platform,
and the classesint hose packages derive from the classesin the APl package. The
sole client of the API package isthe Weat her Moni t or i ngSyst empackage,
which holds al the other classes.

Even though phase | has avery small Ul, it isunfortunate that it is mixed in with the
Weat her Moni t or i ngSyst emclasses. It would be better to put this classin asep-
erate package. However, we have a problem. Asthings stand, the Weat her -

St at i on object createsthe Moni t or i ngScr een object, but the

Moni t ori ngScr een object must know about all the sensors in order to add its
observersthrough their Cbser vabl e interface. Thus, if we were to pull the

Moni t ori ngScr een out into its own package, there would be a cyclic dependency
between that package and the Weat her Moni t or i ngSyst empackage. Thisvio-
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Nimbus 2.0

+ Nimbus2.0Toolkit

- Nimbus2.0Temperature

- Nimbus2.0BarometricPressure
- Nimbus2.0AlarmClock

Figure 3-13
Phase | Package Struct

\ Weather
- \ Monitoring
Test Nimbus 1.0 ! System
+ TestToolkit + Nimbus1.0Toolkit - TemperatureSensor
- TestTemperature - Nimbus1.0Temperature - BarometricPressureSensor
- TestBarometricPressure - Nimbus1.0BarometricPressure - AlarmClock
- TestAlarmClock - Nimbus1.0AlarmClock - MonitoringScreen
- + AlarmClockListener
+ WeatherStation

+ TemperatureSensorimp

+ BarometricPressureSensorimp
+ AlarmClockimp

+ StationToolkit

+ ClockListener

ure

lates a principle known as the Acyclic Depencencies Principle (ADP)*. Thiswould
make the two packages impossible to rel ease independently of each other.

We can fix this by pulling the main program out of the Weat her St at i on class.
Weat her St at i on dtill createsthe St ati onTool ki t and all the sensors, but

does not create the Mbni t or

i ngScr een. The main program will create the

Moni t ori ngScr een and theWWeat her St at i on. The main program will then
passthe Weat her sSt at i on totheMoni t ori ngScr een so that the
Moni t ori ngScr een can add its observers to the sensors.

How doesthe Moni t or i ngScr een get the sensors from the Weat her St ati on?
We need to add some methods to the Weat her St at i on that allow thisto take
place. See Listing 3-6 to see what this looks like.

Now we can redraw the package diagram as shown in Figure 3-14. We have omitted
most of the packages that aren’t concerned with the Moni t or i ngScr een. This

1. [Granularity96]
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Listing 3-6
public class Wather Station
{
public Weat her Station(String tkName)
{
//create station toolkit and sensors as
bef ore.
}
public void addTenpCbserver (Observer 0)
{
i tsTS. addCbserver (0);
}
public void addBPCbserver (Observer 0)
{
i t sBPS. addObser ver (0);
}

public void addBPTrendCbserver (Observer 0)
{
i t sBPT. addObser ver (0);

}

[l private variables...
private Tenperatuer Sensor itsTS;
private BaronetricPressureSensor itsBPS;
private BaronetricPressureTrend itsBPT;

}

looks pretty good. Certainly the Ul can be varied without affecting the WWeat her -
Moni t ori ngSyst em However, the dependency of the Ul upon Weat her -
Moni t ori ngSyst emwill cause problems whenever the

Weat her Moni t or i ngSyst emchanges.

Both Ul and Weat her Moni t or i ngSyst emare concrete. When one concrete
package depends upon another the Dependency Inversion Principle! (DIP). This prin-
ciple states that dependencies should point at abstract entities. In this case, it would be

1

[DIP96]
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Main

+ main() {static}

ul ;

+ MonitoringScreen
/
/

Weather

Monitoring /
System V

- TemperatureSensor
BarometricPressureSensor

- AlarmClock

+ WeatherStation

+ TemperatureSensorimp
+ BarometricPressureSensorimp

+ AlarmClockimp
+ StationToolkit

Figure 3-14
Package Diagram with Cycle Broken

better if the Ul depended upon something abstract rather than the Weat her -

Moni t ori ngSyst em
We can fix this by creating an interface that the Moni t or i ngScr een can use, and

that the Weat her St at i on derives from. See Figure 3-14
Now, if we put the Weat her St at i onConponent interfaceinto its own package
then we will achieve the separation we want. See Figure 3-16. Notice that now the Ul

and the WeatherM onitoringSystem are completely decoupled. They can both vary

independently of each other. Thisis agood thing

ober
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«interface»
Weather Station Component

«parameter» Monitoring
+ addTempObserver Screen

+ addBPObserver

+ addBPTrendObserver

WeatherStation

Figure 3-15
WeatherStation abstract interface

Main

+ main() {static}

ul

Weather
Monitoring
System

+ MonitoringScreen

T

| /

: /| - TemperatureSensor

: / - BarometricPressureSensor
| /
!

|

!

!

|

!

|

Weather /! - AlarmClock
Station / + WeatherStation
Component \/ P 1

+ WeatherStationComponent

API

+ TemperatureSensorimp

+ BarometricPressureSensorimp
+ AlarmClocklmp

+ StationToolkit

Figure 3-16
Weather Station Component Package Diagram
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24 Hour History and Persistence.

Points four and five of the phase | Deliverables section (see page 110) of the Con-
struction plan talk about the need for maintaining a persistent 24 hour history. We
know that both the Nimbus 1.0 and Nimbus 2.0 hardware have some kind of non-vol-
atile memory (NVRAM). On the other hand, the test platform will simulate the non-
volatile memory by using the disk.

We need to create a persistence mechanism that is independent of the indivitual plat-
forms, while still providing the necessary functionality. We a so need to connect this
to the mechanisms that maintain the 24 hour historical data.

Clearly the low level persistence mechanism should be defined as an interface in the
API package. What form should this interface take? The Nimbus | C-API provides
callsthat allow blocks of bytes to be read and written from particular offsets within
the non-volatile memory. While thisis effective, it is also somewhat primitive. Is
there a better way?

The Persistent API. The Javalanguage providesthefacilities that allow any object
to be immediately converted into an array of bytes. This processis called serializa-
tion. Such an array of bytes can be reconstituted back into an object through the pro-
cess of deserialization. It would be convenient if our low level API allowed usto
specify an object, and aname for that object. Listing 3-7 shows what this might look
like.

Listing 3-7
package api;
i mport java.io.Serializable;
i mport java.util.AbstractList;
public interface Persistentlnp
{
void store(String name, Serializable obj);
bj ect retrieve(String nane);
AbstractList directory(String regExp);

b

ThePer si st ent | np interface allowsyouto st ore andr et ri eve full objects
by name. The only restriction is that such objects must implement the
Seri al i zabl e interface; avery minimal restriction.

24 Hour History. Having decided upon the low level mechanism for storing persis-
tent data; lets look at the kind of data that will be persistent. Our spec says that we
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must keep arecord of the high and low readings for the previous 24 hour period. Fig-
ure 3-24 on page 102 shows a graph with this data. This graph does not seem to make
alot of sense. The high and low readings are painfully redundant. Worse, they come
from the last 24 hours on the clock, and not from the previous calendar day. Meteoro-
logically, when we want the last 24 hour high and low reading, we want it for the pre-
vious calendar day.

Isthisaflaw in the spec, or aflaw in our interpretation? It will do us no good to
implement something according to the spec, if the spec is not really what the cus-
tomer wants.

A quick verification with the stakehol ders shows our intuition to be correct. We do
indeed want to keep arolling history of the last 24 hours. However, the historical low
and high need to be for the previous calendar day.

The 24 hour high and low. Thedaily high and low values will be based upon
real-time readings of the sensors. For example, very time the temperature changes,
the 24 hour high and low temperatures will be updated appropriately. Clearly thisis
an observer relationship. Figure 3-17 shows the static structure, and Figure 3-18
shows the relevant dynamic scenarios.

Alarm Clock
+ wakeEveryDay(AlarmListener)
«creates»
Temperature «anonymous»
HiLo + wakeUp() AlarmListener
«interface»
«observes» HiLo Data
+ currentReading(double value, long time)
Temperature + newl_)ay(double initial, long time)
Sensor + getHighValue() : double
+ getHighTime() : long
+ getLowValue() : double
+ getLowTime() : long

Figure 3-17
Temperature Hi Lo structure.
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- Temperature - AlarmClock :Temperature - Temperature
HiLo I Sensor HiLo Data

T T
wakeEveryDay(AlarmListener)

\
Construct addObserver(this) |
\
|

temperature | upqate <—ovalue

change

| wakeup |

1
\
midnight read() <—ovalue ‘
\
\

| ‘ newDay(value, time)

\
\
|
\
| currentReading(value, time) |
1
|
\
\
\

Figure 3-18
Hi Lo Scenarios.

We have chosen to show the OBSERVER pattern using an association marked with the
«observes» stereotype. The details of this pattern were shown back in Figure 3-6 on
page 68. We have created aclass called Tenper at ur eHi Lo that iswoken up by
the Al ar nCl ock every day at midnight. Notice that the wakeEver yDay method
has been added to Al ar nTCl ock.

Upon construction of the Tenper at ur eH Lo object it registers with both the

Al ar nCl ock and with the Tenper at ur eSensor . Whenever the temperature
changes, the Tenper at ur eHi Lo object is notified through the OBSERVER pattern.
Tenper at ur eHi Lo theninformsthe Hi LoDat a interface usingthecur r ent -
Readi ng method. Hi LoDat a will have to be implemented with some class that
knows how to store the high and low values for the current 24 hour calendar day.

We have separated the Tenrper at ur eHi Lo classfromtheHi LoDat a classfor two
reasons. First of al, we wanted to separate the knowledge of the Tenrper at ur e-
Sensor and Al ar mCl ock from the algorithms that determined the daily highs and
lows. Secondly, and more importantly, the algorithm for determining the daily highs
and lows can be reused for barometric pressure, wind speed, dew point, etc. Thus,
though we will need Bar onet ri cPressur eHi Lo, DewPoi nt Hi Lo, W nd-
SpeedHi Lo, etc to observe the appropriate sensors; each will be able to use the

Hi LoDat a classto compute and store the data.

At midnight, the Al ar nCl ock sends the wakeup message to the Tenper at ur e-
Hi Lo object. Tenper at ur eHi Lo responds by fetching the current temperature
fromthe Tenper at ur eSensor and forwardingittotheH LoDat a interface. The
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implementation of Hi LoDat a will have to store the previous calendar day’s values
using the Per si st ent | np interface, and will also have to create a new calendar
day with the initial value.

Per si st ent | np accesses objects in the persistent store using a string. This string
acts as an access key. Our Hi LoDat a objects will be stored and retrieved with
strings that have the following format: “<t ype>+Hi Lo+<MW><dd><yyyy>". For
example: “t enper at ur eH Lo04161998".

Implementing the HiLo algorithms.

How do we implement the Hi LoDat a class? This seems pretty straightforward. List-
ing 3-8 shows what the Java code for this class looks like.

Listing 3-8
Implementation of HiLoData interface.
public class Hi LoDatal nmp

i mpl ements Hi LoDat a
,java.io. Serializable

{

public Hi LoDatal np(StationTool kit st, String type,
Date theDate, double init,
[ ong initTinme)

itsPl = st.getPersistentlnp();

itsType = itsType;

i tsStoragekKey = cal cul at eSt or ageKey(t heDat e) ;
try

{

Hi LoData t =(Hi LoData)itsPl.retrieve(
i t sSt orageKey);

itsH ghTime = t.getH ghTine();
itsLowTime = t.getLowTinme();
i tsHi ghVal ue = t. get H ghVal ue();
itsLowal ue = t.getlLowal ue();
current Readi ng(init, initTine);

}

catch (RetrieveException re)

{
itsHi ghValue = itsLowalue = init;
itsH ghTime = itsLowTinme = initTine;

}

}
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Listing 3-8 (Continued)
Implementation of HiLoData interface.

public | ong get Hi ghTine() {return itsH ghTine;}
public doubl e get Hi ghVal ue() {return itsH ghVal ue;}
public | ong get LowTi me() {return itsLowTi re;}
public doubl e getLowal ue() {return itsLowval ue;}

/] Determine if a new readi ng changes the
/1 hi and lo and return true if readi ng changed.
public void current Readi ng(doubl e current,

long tine)
{
if (current > itsHi ghVval ue)
{
i tsHi ghVval ue = current;
itsH ghTime = tinme
store();
}
else if (current < itsLowval ue)
{
i tsLowal ue = current;
i tsLowTime = tine;
store();
}
}
public void newDay(double initial, long tine)
{
store();

/1 now clear it out and generate a new key.
itsLowal ue = itsHi ghValue = intial;

itsLowTime = itsH ghTine = tine;

/1 now cal cul ate a new storage key based on

/'l the current date, and store the new record.

i tsStorageKey = cal cul at eSt or ageKey(new Date());
store()

}

private store()

{

ISTSapr mnarz_c agero_ ] ren nays's and Design with Applications, 2d. ed., Gr 0och, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.




Chapter 3:

89

Listing 3-8 (Continued)
Implementation of HiLoData interface.

try
{
itsPl.store(itsStorageKey, this);
}
catch (StoreException)
{
/1 log the error sonehow.
}

}

private String cal cul at eSt orageKey(Dat e d)

{
Si mpl eDat eFor mat df =
new Si npl eDat eFor mat (“ Mviddyyyy”) ;

return(itsType + “HiLo” + df.format(d));

}
private doubl e itsLowal ue;
private |ong it sLowTi ne;

private doubl e itsHi ghtVal ue;

private | ong i tsH ghTi me;

private String itsType;

/1 we don’'t want to store the foll ow ng.
transient private String itsStorageKey;
transient private api.Persistentinp itsPl;

}

Well, maybe it wasn't all that straightforward. Let’s walk through this code to see
what it does.

At the bottom of the class you' Il see the private member variables. Thefirst four vari-
ables are expected. They record the high and low values, and the times at which those
values occurred. Thei t sType variable remembers the type of readings that this
HiLoDataiskeeping. Thisvariablewill havethevalue“Tenp” for temperature, “ BP”
for barometric pressure, “DP” for dew point, etc. The last two variables are declared
transient. This means that they will not be stored in the persistent memory. They
record the current storage key and areference to the Per si st ent | np.

The constructor takes five arguments. The St at i onTool ki t isneeded to gain
accessto the Per si st ent | np. Thet ype and Dat e arguments will be used to
build the storage key used for storing and retrieving the object. Finally, thei ni t and
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i ni tTi me arguments are used to initialize the object in the event that Per si s-
t ent | mp cannot find the storage key.

The constructor triesto fetch the datafrom Per si st ent | np. If the datais present,
it copies the non transient data into its own member variables. Then it callscur -

r ent Readi ng with theinitial value and time to make sure that these readings get
recorded. Finally, if cur r ent Readi ng discovered that there was a change in the
high or low data, it will return true, and the St or e function will be invoked to make
sure that the persistent memory is updated.

Thecur r ent Readi ng method isthe heart of this class. It compares the old high
and low value with the new incoming reading. If the new reading is higher than the
old high, or lower than the old low, it replaces the appropriate value, records the
appropriate time and stores the changesin persistent memory.

The newDay method isinvoked at midnight. First it stores the current Hi LoDat a in
persistent memory. Then it resets the values of the Hi LoDat a for the beginning of a
new day. It recomputes the storage key for the new date, and then stores the new

Hi LoDat a in persistent memory.

The St or e function simply uses the current storage key to writethe Hi LoDat a
object into persistent memory through the Per si st ent | np object.

Finally, thecal cul at eSt or ageKey method builds a storage key from the type of
the Hi LoDat a, and the date argument.

Ugliness. Certainly the codein Listing 3-8 is not too difficult to understand. How-
ever there is ugliness for another reason. The policy embodied in the functions cur -
r ent Readi ng and newDay have to do with managing the high-low data and are
independent of persistence. On the other hand, the st or e, and cal cul at e-

St or ageKey methods, the constructor, and thet r ansi ent variables are al spe-
cific to persistence and have nothing to do with the management of the highs and
lows. It seems a shame to comingle these concepts in asingle class. After al, you
don’t see the plumbing in your house!

Inits current comingled state, this class is the makings of a maintenance nightmare. If
something fundemental about the persistence mechanism changes, to the extent that
thecal cul at eSt or ageKey and st or e functions become inappropriate, then
new persistence facilities will have to be grafted into the class. Functions like new-
Day and currentReading will have to be altered to invoke the new persistence facili-
ties.
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Decoupling persistence from policy. We can avoid these potential problems
by decoupling the high-low data management policy from the persistence mechanism.
using the Proxy? pattern.

Persistence is one of those issues that generates heat in conference rooms. Decoupling
policy from persistence is certainly a desirable thing to achieve. However, it is never
trivial. The conference rooms heat up because the risks of comingling are severe but
deferred; while the cost of decoupling ishigh and immediate. It is often difficult to
pay a high price for protection that you won't need for many months, and hope you
won't need at all.?

The Nimbus 2.0 project represents a certain level of volatility. The company istrying
for anew product in a new market. We can expect the requirements to remain in flux
for some time to come.® Therefore we do not feel that it iswise to hope that the per-

sistence mechanism will remain unaffected. We had better decouple persistence from

policy.

Creating a Persistence Interface Layer. One of the most common techniques
for seperating persistence from policy the division of the softare into layers that con-
tain policy and persistence, and the interposition of a persistence interface layer
between the two. However, what is often neglected about such a structure is the direc-
tion of the relationships. See Figure 3-19.

— Policy Layer

Persistence

Interface Layer

Persistence |
Mechanism = [<---
Layer

Figure 3-19

1. [GOF95] p. 207
2. It'srather like buying life insurance. You probably won’t need it for years, and you hope you never need it.
3. Theonly projects that enjoy stable requirements are projects without customers.
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The structure we desire is one in which the policy and mechanism layers have no
dependence at all upon the interface layer. Rather the interface layer depends upon
both. This gives us a significant amount of insulation. Changes in the persistence
mechanism have no direct effect upon the policy layer. Schema changes or logic
changes that do not affect the business logic do not require alterations in the policy
layer. And, by the same token, changesin the policy layer have no direct effect upon
the persistence mechanism either.

On the other hand, the persistence interface layer is subject to changesin both other
layers. Thislayer isanightmare, changing every time either of the other two layers
changes. This may sound like a disadvantage, but it is not. Wewant to know where
are nightmares live.

If we did not create the interface layer, then the nightmares would still exist; but they
would be intertangled with our business rules and policies. The nightmares would
leak out and contanimate everything.

How can we build a persistence interface layer with the appropriate dependencies?
That iswhat the PRoXxY pattern isal about. See Figure 3-20.

Temperature
HiLo
«interface» X X
HiLoData Java.io.
Serializable
+ currentReading A
+ newDay
HiLoDataProxy HiLoDatalmp
- itsStorageKey - itsHighValue
- itsType - itsLowValue
Persistent Imp - itsHighTime
+ currentReading - itsLowTime
+ newDay
- store + currentReading
- calculateStorateKey + newDay

Figure 3-20
Proxy pattern applied to HiLo persistence.

Figure 3-20 differs from Figure 3-17 on page 85 by the addition of the Hi LoDat a-
Pr oxy class. Itisthe proxy classthat the Tenper at ur eHi Lo object actually holds
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areferenceto. The proxy inturn holds areferenceto aH LoDat al np object, and
delegates callstoit. Listing 3-9 shows the implemention of the critical functions of
both Hi LoDat aPr oxy and Hi LoDat al np.

Listing 3-9
Snippets of the Proxy solution
cl ass Hi LoDat aProxy i npl enents Hi LoDat a

{
publ i c bool ean current Readi ng(doubl e current,
long tine)
{
bool ean change;
change = itslnp. current Readi ng(current, tinme);
i f (change)
store();
return change;
}
public void newDay(double initial, long tine)
{
store();
itslnp.newDay(initial, tine);
cal cul at eSt or ageKey(new Date(tine));
store();
}
private H LoDatal mp itslnp;
}

cl ass Hi LoDatal np inplenments Hi LoDat a
,java.io. Serializable
{
publ i c bool ean current Readi ng(doubl e current,
long tine)
{
bool ean changed = fal se;
if (current > itsHi ghVval ue)
{
i tsHi ghVval ue = current;
itsH ghTinme = tine;
changed = true;
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Listing 3-9 (Continued)
Snippets of the Proxy solution

else if (current < itsLowval ue)

{
i tsLowal ue = current;
i tsLowTime = tine;
changed = true;
}
return changed;
}
public void newDay(double initial, long tine)
{
itsH ghTime = itsLowTline = tine;
itsHi ghvValue = itsLowalue = initial;
}

H

Notice how the Hi LoDat al np class has no inkling of persistence. Notice also that
the Hi LoDat aPr oxy classtakes care of al the persistence ugliness and then dele-
gagestothe Hi LoDat al np. Thisis nice. Furthermore, notice how the proxy
depends upon both Hi LoDat al np (the policy layer) and Per si st ent | np (the
mechanism layer). Thisis exactly what we were after.

But all is not perfect. The astute reader will have caught the change that we made to
thecur r ent Readi ng method. We changed it to return abool ean. We need this
boolean in the Proxy so that the Proxy knowswhen to call st or e. Why don’t we call
storeevery timecur r ent Readi ng is called? There are many varieties of NV Ram.
Some of them have an upper limit on the number of times you can write to them.
Therefore, in order to prolong the life of the NVRam, we only storeinto it when the
values change. Real life intrudes, yet again.

Factories and Initialization. Clearly we don't want Tenper at ur eHi Lo to
know anything about the proxy. It should know only about Hi LoDat a ( See Fig-
ure 3-20.) Yet somebody is going to have to create the Hi LoDat aPr oxy for the
Tenper at ur eHi Lo object to use. Also, someoneis going to have to create the

Hi LoDat al np that the proxy delegates to.

What we need isaway to create objects, without knowing exactly what type of object
we are creating. We need away for Tenper at ur eHi Lo to createaHi LoDat a
without knowing that it isreally creating aHi LoDat aPr oxy and aHi LoDat a-
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| mp. Mechanisms like this are commonly implemented with the ABSTRACT FAC-
Tory?! pattern. SeeFigure 3-21.

«interface»
DataToolkit Temperature
- HiLo
+ getTempHiLoData() : HiLoData
J/ java.io.
i «interface» Serializable
| HiLoData
. + currentReading
DataToolkit Imp + newDay
&
«creates» : 1 H
| HiLoDataProxy HiLoDatalmp
R 1. itsStorageKey - itsHighValue
- itsType - itsLowValue
- itsHighTime
+ currentReading - itsLowTime
. + newDay
Persistent Imp _ store + currentReading
- calculateStorateKey + newDay

Figure 3-21
Using Abstract Factory to create the Proxy.

Tenper at ur eHi Lo usestheDat aTool ki t interface to create an object that con-
formsto the Hi LoDat a interface. Theget TenpHi LoDat a method gets deployed
toaDat aTool ki t | np object which createsaHi LoDat aPr oxy, whosetype code
is“Tenp”, andreturnsit asaHi LoDat a.

This solves the creation problem nicely. Tenper at ur eH Lo does not need to
depend upon the Hi LoDat aPr oxy in order to createit. But how does Tenper a-
t ur eHi Lo gain accessto the Dat aTool ki t | np object. We don’t want
Tenper at ur eHi Lo to know anything about Dat aTooki t | np because that
would cerate a dependency from the policy layer to the mechanism layer.

Package Structure. To answer this question, letslook at the package structurein
Figure 3-22. The abbreviation WMS stands for the Weather Monitoring System pack-
age that was described in Figure 3-16 on page 83.

1. [GOF95] p. 87
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wms

data imp wms Nimbus 1.0

+ TemperatureHiLo
+ TemperatureSensor

\\\ T \\\
L \ .
S \ AN
\ wmsdata apl
\
\

+ HiLoData
+ DataToolkit

+ HiLoDatalmp

+ Persitentimp

\\\ \

N !

\ |

\\\ !
persistence

N+ HiLoDataProxy
+ DataToolkitimp

Figure 3-22
Proxy and Factory package structure

Figure 3-22 reenforces our desire for the Persistence Interface Layer to depend upon
the policy and mechanism leyars. It also shows how we have deployed the classes
into the packages. Notice that the abstract factory: Dat aTool ki t , isdefined in the
WVSDat a package along with Hi LoDat a. Hi LoDat a isimplemented in the WS-
Dat al np package, whereas Dat aTool ki t isimplemented inthe per si st ence
package.

Who creates the factory? Now, we ask the question once again. How does the
instance of wirs. Tenper at ur eHi Lo gain access to an instance of per si s-

t ence. Dat aTool ki t | np so that it can call theget TenpHi LoDat a method
and create instances of per si st ence. H LoDat aPr oxy?

What we need is some statically allocated variable, accessible to the classes in wirs -
dat a, that is declared to hold awnrsdat a. Dat aTool ki t but which isinitialized
tohold aper si st ence. Dat aTool ki t | np. Since, in Java, all variables, includ-
ing static variables, must be allocated in some kind of class, we can create a class
named Scope that will have the static variables that we need. We will put this class
inthewnsdat a package.

Listing 3-10 and Listing 3-11 show how thisworks. The Scope classinwrsdat a
declares a static member variable that holdsaDat aTool ki t reference. The Scope
classintheper si st ence package declaresani ni t () function that creates a
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Dat aTool ki t | mp instance and storesitinthewnrsdat a. Scope. i t sDat a-
Tool ki t variable.

Listing 3-10
package wrsdat a;

public class Scope

{
}

Listing 3-11
package persi stence;

public static DataTool kit itsDataTool kit;

public class Scope

{
public static void init()
{
wnsdat a. Scope. i t sDat aTool kit =
new Dat aTool kit ();
}
}

Thereis an interesting symmetry between the packages and the scope classes. All
the classes in thewnsdat a package, other than Scope, areinterfaces that have
abstract methods and no variables. But thewnsdat a. Scope class hasavariable
and no functions. On the other hand, all the classesin the per si st ence package,
other than Scope, are concrete classes that have variables. But per si s-

t ence. Scope hasafunction and no variables.

Figure 3-23 shows how this might be depicted in a class diagram. The Scope classes
are «utility» classes. All the members of such classes, whether variables or functions,
are static. Thus, afinal element to the symmetry. It would appear that packages that
contain abstract interfaces tend to contain utilities that have data and no functions.
Whereas packages that contains concrete classes tend to contain utilities that have
functions and no data.

So, who calls persistence.Scope.init()? Probably thenai n() func-
tion. The class that holds that main function must be in a package that does not mind a
dependency upon per si st ence. We often call the package that contains main the
r oot package.
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«interface» «utility»
DataToolkit wmsdata.Scope
«utility»
DataToolkitimp <=-----; | persistence.
«creates» Scope

Figure 3-23

But you said... The persistenceimplementation layer should not depend upon the
policy layer. However, a close inspection of Figure 3-22 shows a dependency from
theper si st ence townsDat al np. This dependency can be traced back to Figure
3-21inwhich Hi LoDat aPr oxy dependsupon Hi LoDat al np. Thereason for this
dependency isso that Hi LoDat aPr oxy can create the Hi LoDat al np that it
depends upon.

In most cases, the proxy will not have to create the imp because the proxy will be
reading the imp from persistent store. That is, the Hi LoDat al np will be returned to
the Proxy by acall to Per si st ent | np. r et ri eve. However, in those rare cases
where the retrieve function does not find an object in the persistent store, Hi Lo-

Dat aPr oxy isgoing to have to create an empty Hi LoDat al np.

So, it looks like we need another factory that knows how to create Hi LoDat al np
instances, and that the proxy can call. This means more packages and more Scope
classes, etc.

Is this really necessary? Probably not in this case. We created the factory for the
proxy because we wanted Tenper at ur eHi Lo to be able to work with many differ-
ent persistence mechanisms. Thuswe had a solid benefit to justify the Dat aTooki t
factory. But what benefit would be obtain from interposing a factory between Hi Lo-
Dat aPr oxy and Hi LoDat al np?If there could be many different implementations
of HiLoDatalmp, and if we wanted the proxy to work with them all, then we might be
justified.

However, we don’t believe that the requirements are quite that volatile. The

wns Dat al np package contains weather monitoring policies and business rules that
have remained unchanged for quite awhile. It seems unlikely that they will be chang-
ing any timein the future. This may sound like famous last words, but you have to
draw the line somewhere. In this case, we have decided that the dependency from the
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proxy to the imp does not represent a big maintenance risk; and we will live without
the factory.

Conclusion

The design so far sets the stage for keeping the rest of the historical datain persistent
store. We will create other proxies and imps that will continue the separation of per-
sitence mechanisms and policy.

The reader should take note of our use of design diagrams and code as away to ana
lyze the problem. We have pursued the understanding of this problem using any and
every tool at our disposal, including class diagrams, sequence diagrams, and even
code. Thisis normal and healthy.

But the time for exploratory diagrams has passed. We have a good understanding of
theissuesfacing us, and it is now timeto start developing in earnest. We will continue
with phase || of the weather monitoring system in another chapter.

(The code for Phase | of the Weather Monitoring System is available at http://
www.oma.com/ooadwa3/code/wm1)
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Nimbus-LC Requirements

Usage Requirements

This system shall provide automatic monitoring of various weather conditions. Spe-
cifically, it must measure:

* Wind speed and direction

* Temperature

* Barometric pressure

* Relative Humidity

e Wind chill

* Dew point temperature
The system shall also provide an indication of the current trend in the barometric

pressure reading. The three possible valuesinclude stable, rising, and falling. For
example, the current barometric pressureis 29.95 inches of mercury (I0M) and fall-

ing.

The system shall have a display which continuously indicates all measurements, as
well as the current time and date.

24-Hour History

Through the use of atouch screen the user may direct the system to display the 24
hour history of any of the following measurements:

* Temperature
* Barometric Pressure
* Relative Humidity

This history shall be presented to the user in the form aline chart (see Figure 3-24

User Setup

The system shall provide the following facilities to the user to allow the station to be
configured during installation.

* Setting the current time, date, and time zone.
* Setting the units that will be displayed (english or metric)
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Figure 3-24

Temperature History

Administrative Requirements

The system shall provide a security mechanism for access to the administrative
functions of the weather station. These functions include:

* Cadlibrating the sensors against known values
* Resetting the station
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Nimbus-LC Elaboration Phase

Introduction

This document describes the deliverable for the elaboration phase of the Weather
Monitoring Station project. This phase of the project takes attempts to transform the
requirements document into a set of use cases. The deliverable for this phase of the
project are as follows:
* Actors
This phase of the project identifies the actors for the weather station.
* Use Cases (primary and secondary)

The use cases specify the interaction that occurs between the actors and the sys-
tem. It isimportant to note that use cases do not describe the details of how the
system will accomplish the task.

Referenced Documents

* Weather Monitoring Station - Requirements
* Weather Monitoring Station - Hardware Description

Actors

In this system there are two distinct roles played by users.

User.  Thisactor views the real-time weather information that
the station is measuring. It also interacts with the system to dis-
play the historical data associated with the individual sensors.

User

Administrator.  Therole played by this actor is one of admin-

istering the system. This administration includes controlling the

security aspects of the system, calibrating the individual sensors,

setting the time/date, setting units of measure, and resetting the
Administrator station when required.
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Use Cases

Once the actors have been defined the next step isto synthesize thisinformation with
the regquirements document to describe the interaction between the newly identified

actors and the system.

Use Case #1: Monitor Weather
Data.  The system will display the

RS
¢ ;< Monitor Weather> current temperature, barometric pres-
pata sure, relative humidity, wind speed,

v . . . . .
wind direction, wind chill temperature,
User dew point, and barometric pressure
trend.

Measurement History

The system will display a chart depicting the previous 24 hours of readings from the
sensors in the system. Thetype of chart isline oriented. In addition to the chart the
system will display the current time and date and the highest and lowest readings
from the previous 24 hours.

Use Case #2: View Tempera-
— ture History. The system will dis-
. 5 Tem{;;“;mre> play the history of the temperature
_ History _ readings.

User Case #3: View Baromet-

o rig Pressu re Hi_sto ry. Thesystem
: 5 <View Barometric> will display the history of the baromet-
Pressure History . .
ric pressure readings.

v

User
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Use Case #4: View
Relative Humidity

/\ -

View Relative H.I Sto.ry' : The. system

Humidity History will display the history of

~_ the relative humidity read-
ings.

User

Setup

Use Case #5: Set

Units. Theadministrator
sets the type of units that
will be displayed. The
choices are between english
and metric values. The
User default is metric.

Use Case #6: Set

Date. The administrator
will set the current date.

Set Date

User

Use Case #7: Set

Time. The administrator
will set the current time and
time zone for the system.

P

User
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Administration

Reset Weather
Station

Administrator

Use Case #8: Reset

Weather Station. The
administrator has the ability
to reset the station back to
it's factory default settings.
It is important to note that
this will erase all of the his-
tory that is stored in the sta-
tion and remove any

calibration that may have occurred. As one last check it will inform the administrator
of the consequences and prompt for a go/no go to reset the station.

— T
Calibrate
%Temperature>
Sensor

-~

Administrator

Use Case #9: Cali-

brate Temperature

Sensor.  Theadministra-
tor using a known good
source for the temperature
will enter that value into to
the system. The system shall
accept the value and use it
internally to calibrate that

actual reading with the readings it is currently measuring. For a detailed look at cali-
brating the sensors see the hardware description document.

— T

Calibrate
H Barometric >
Pressure Sensor

_—

Administrator

Use Case #10: Cali-
brate Barometric
Pressure Sensor. The
administrator using aknown
good source for the pressure
will enter that value into to
the system. The system shall
accept the value and use it
internally to calibrate that

actual reading with the readingsit is currently measuring.
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Use Case #11: Cali-
brate Relative
N Humidity Sensor. The
Calibrate Relative . .
H Humidity Sensor > administrator using aknown
~_ good source for the humid-
ity will enter that value into
Administrator to the system. The system
shall accept the value and
useit internally to calibrate
that actual reading with the readingsit is currently measuring.

Use Case #12: Cali-
brate Wind Speed
Sensor.  Theadministra-
tor using a known good
source for the wind speed
will enter that value into to
Administrator the system. The system shall
accept the value and use it
internally to calibrate that

actual reading with the readingsit is currently measuring.

Calibrate Wind
Speed Sensor

Use Case #13: Cali-

brate Wind Direction
TN Sensor.  Theadministra-
Calibrate Wind .
HDirection Sensor> tor using aknown good
~_ - sourcefor thewind direction
will enter that value into to
Administrator the system. The system shall
accept the value and use it
internally to calibrate that

actual reading with the readingsit is currently measuring.

.Use Case #14: Cali-
brate Dew Point Sen-
sor.  Theadministrator
using a known good source
for the dew point will enter
that value into to the system.

Administrator The system shall accept the

Calibrate Dew
Point Sensor
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value and use it internally to calibrate that actual reading with the readingsit is cur-
rently measuring

Use Case #15: Cali-
bration Log. Thesys
W tem will show the adminis-
H Log > trator the calibration history
~_ of the unit. This history
includesthetime and date of
Administrator the calibration, the sensor
calibrated, and the valuethat
was used to calibrate the

Sensor.
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Nimbus-LC Construction Plan

Introduction

The implementation of the weather station will be donein a series of iterations. Each
iteration will build on what has been done previously until we have provided the func-
tionality which isrequired for release to the customer. This document outlines three
construction phases for this project. Some argue there should be a strong correlation
between the explicit use cases and the outputs of the construction phases. Thisis
often at odds with | believe the main goal of the small construction phases, the reduc-
tion of risk. Asisthe casein most real projects there is a mixture between the two.
Thefirst phase of this project will complete no use casesin their entirety. However, it
does reduce what is believed to be the main set of risks for the project.

Construction Phase |

Thefirst phase of construction hastwo goals. Thefirst isto create an architecture that
will support the bulk of the application in amanner that isindependent of the Nimbus
hardware platform. The second goal isto manage the two biggest risks.

1. Getting the old Nimbus 1.0 API to work on the processor board with a new operat-
ing system.
Thisis certainly doable, but it is very hard to estimate how long thiswill take
because we cannot anticipate all the incompatibilities.

2. TheJavaVirtua Machine.
We have never used aJVM on an embedded board before. We don’'t know if it will
work with our operating system; or even if it correctly implements all of the Java
byte codes properly. Our suppliers assure us that everything will be fine, but we
il percieve asignificant risk.

Theintegration of the JVvM with the touch screen and graphics subsystem is proceed-
ing in parallel with this construction phase. It is expected to be complete prior to the
beginning of the second phase.

Risks

1. Operating System upgrade - We currently use an older version of this OS on our
board. In order to use the VM we need to upgrade to the latest version of the OS.
This also requires usto use the latest version of the development tools.
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2. TheOSvendor isproviding the latest version of the JVM on thisversion of the OS
In order to stay current we want to usethe 1.2 version of the VM. However, V1.2
iscurrently in beta and will change during the construction of the project.

3. JavaNative Interface to the board level “C” API needs to be verified in the new
architecture.
4. Basic changesin the Javalanguage and libraries that may occur as part of the pro-

cess from beta to released version of the VM, which should occur in the middle
of the year.

Deliverable(s)

1. Our hardware running the new OS along with the latest version of the VM.

2. A streaming output which will display the current temperature and barometric
pressure readings (throw away code not used in final release)

3. When ther is a change in the barometric pressure the system will inform us if the
pressure isrisong, falling or stable.

4. Every hour the system will display the past 24 hours of measurements for the tem-
perature and barometric pressure. Thisdatawill be persistent in that we can cycle
the power on the unit and the data will be saved.

5. Every day at 12:00 AM the system will display the high and low temperature and
brometric prerssure for the previous day.

6. All measurementswill be in the metric system.

Construction Phase |l

During this phase of the project the basis for the user interface is added to the first
construction phase. No additional measurements are added. The only change to the
measurements themselves is the addition of the calibration mechanism. The primary
focusin this phase is on the presentation of the system. The major risk isthe software
interface to the LCD panel/Touch Screen. Also, sincethisisthefirst release that will
display the Ul in aform that can be shown to the user we may begin to have some
churn in the requirements. In addition to the software, we will also be delivering a
specification for the new hardware. Thisisthe main reason for the addition of the cal-
ibration to this phase of the project. This API will be specified in Java.

Use Cases Implemented

* #2 - View Temperature History
e #3- View Barometric Pressure History
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e #5- Set Units

#6 - Set Date

#7 - Set Time/Time Zone

* #9 - Calibrate Temperature Sensor

#10 - Calibrate Barometric Pressure Sensor

Risks

1. The LCD Panel/Touch Screen interface to the Java Virtual Machine needs to be
tested on the actual hardware.

2. Requirements Changes

3. Changesinthe VM. Along with changesin the Java Foundation Classes as they
proceed from betato released form.

Deliverable(s)
1. A system that executes and provides all of the functionality specified in the use
cases listed above.

2. The Temperature, Barometric Pressure, and Time/Date portion of Use Case #1
will also be implemented.

3. The GUI portion of the software architecture will be completed as part of this
phase.

4. The administrative portion of the software will be implemented to support the
temperature and barometric pressure calibrations.

5. A specification for the new hardware API specified in Javainstead of “C".

Construction Phase Il

Thisisthe final construction phase prior to customer release of the product. Inthis
phase we round out the implementation providing the balance of the functionality
required to release the product.

Use Cases Implemented
* #1 - Monitor Weather Data
* #4 - View Relative Humidity History
* #8 - Reset Weather Station
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Nimbus-LC Construction Plan:Risks

* #11 - Cdlibrate Relative Humidity Sensor
e #12 - Calibrate Wind Speed Sensor

* #13 - Cdlibrate Wind Direction Sensor

* #14 - Calibrate Dew Point Sensor

* #15- Cdlibration Log

Risks
1. Requirements Changes - It is expected as more of the product is completed there
may be changes required.

2. Completion of the entire product may indicate changes to the Hardware API that
was specified at the end of Construction Phase 1.

3. Limits of Hardware - Aswe complete the product we may run into limitations of
the hardware (i.e. memory, CPU, etc.)

Deliverable(s)

1. The new software running on the old hardware platform.

2. A specification for the new hardware that has been validated with thisimplemen-
tation.
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