
59
This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

CHAPTER 3

Case Study: Weather
Station
This chapter begins an in-depth case study of a simple weather monitoring system.
Although this case study is ficticious, it has nevertheless been constructed with a high
degree of realism. We will encounter the problems of time-pressure, legacy code,
poor and mutating specifications, new untried technologies, etc. Our goal is to dem-
onstrate how object oriented design and UML are used in the real world of software
engineering.

The Cloud Company

The Cloud Company has been the leader in industrial weather monitor-
ing systems (WMS) for the past several years. Their flagship product

has been a WMS that keeps track of temperature, humidity, barometric pressure, wind
speed and direction, etc. The system displays these readings in real time on a display.
It also keeps track of historical information on an hourly and daily basis. This histori-
cal data can be pulled up on the display at the request of the user.

The primary customers of Cloud Company products have been the aviation, maritime,
agricultural, and broadcast industries. For these industries, WMSs are mission critical

TCC

60 The Cloud Company:

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

applications. The Cloud Company has a reputation for building highly reliable prod-
ucts that can be installed in relatively uncontrolled environments. This makes the sys-
tems somewhat expensive.

The high cost of these systems has cut the Cloud Company off from customers that do
not need, and cannot afford, the high reliability systems that they sell. Cloud Com-
pany managers believe that this is a large potential market, and they would like to tap
into it.

The Problem. A competitor named Microburst Inc. has recently announced a prod-
uct line that starts at the low end, and can be incrementally upgraded to higher reli-
ability. This threatens to cut the Cloud Company off from smaller but growing
customers. These customers will already be using Microburst products by the time
they grow to a size that would allow them to use Cloud Company products.

More frightening still, the Microburst product boasts the ability to be interconnected
at the high end. That is, the high end upgrades can be networked together into a wide
area weather monitoring system. This threatens to erode the current Cloud Company
customer base.

The Strategy. Although Microburst Inc. has successfully demonstrated its low
end units at trade shows, they are not offering production quantity shipments for at
least six months. This indicates that there may be engineering or production problems
that Microburst has not solved. Moreover, the high reliability upgrades promised by
Microburst as part of the product line are currently not available. It may be that
Microburst has announced a product that it is not ready to market.

If The Cloud Company can announce a low-end upgradable and connectable product,
and begin shipping it within six months, then they may be able to capture, or at least
stall, customers who would otherwise buy Microburst’s products. By stalling the mar-
ket and thereby depriving Microburst of orders, they might be able to compromise
Microburst’s ability to solve their engineering and manufacturing problems; a very
desirable outcome.

The Dilemma. A new low cost and extendable product line requires a significant
amount of engineering. The hardware engineers have flatly refused to commit to a six
month development deadline. They believe that it will be twelve months before they
could see production quanity units.

The marketing managers believe that in twelve months, Microburst will be shipping
production quanity, and will be capturing an irretrievable part of Cloud Company’s
customers.

Chapter 3: 61

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

The Plan. Cloud Company managers have decided to announce their new product
line immediately, and to begin accepting orders that will be shipped before six months
have elapsed. They have named the new product Nimbus-LC 1.0. Their plan is to
repackage the old expensive high-reliability hardware into a new enclosure with a
nice LCD touch panel. The high manufacturing cost of these units means that the
company will actually lose money on each one that they sell.

Concurrently, the hardware engineers will begin to develop the true low cost hard-
ware which will be available in twelve months. This configuration of the product has
been called Nimbus-LC 2.0. When production quantities are available, the Nimbus-
LC 1.0 will be phased out.

When a Nimbus-LC 1.0 customer wants to upgrade to a higher level of service, his
unit will be replaced with a Nimbus-LC 2.0 at no additional cost. Thus, the company
is willing to lose money on this product for six months in order to capture, or at least
stall, potential Microburst customers.

The WMS-LC Software

 The software project for the Nimbus-LC project is complex. They must create a
software product that can use both the existing hardware as well as the low cost 2.0
hardware. Prototype units of the 2.0 hardware will not be available for nine months.
Moreover, the processor on the 2.0 board is not likely to be the same as the processor
on the 1.0 board. Still, the system must operate identically regardless of which hard-
ware platform it uses.

The hardware engineers will be writing the lowest level hardware drivers, and they
need the application software engineers to design the API for these drivers. This API
must be available to the hardware engineers within the next four months.

The software must be production ready in six months, and must be working with the
2.0 hardware in twelve months. They want at least six weeks of Q/A for the 1.0
device, so the software engineers really have only twenty weeks to get the software
working. Since the hardware platform for the 2.0 version is new, they need eight to
ten weeks of Q/A. This eats up most of the three month period between first prototype
and final shipment. Thus the software engineers will have very little time to make the
new hardware work.

Software Planning Documents. The software engineers have written several
documents that describe the Nimbus-LC project. They are:

1. “Nimbus-LC Requirements” on page 101

62 The Cloud Company:Language Selection

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

This document describes the operating requirements of the Nimbus-LC system, as
they were understood at the time the project was begun.1

2. “Nimbus-LC Elaboration Phase” on page 103

This document describes the actors and use cases derived from the requirements
document.

3. “Nimbus-LC Construction Plan” on page 109

This document describes the phased construction plan for the software. This plan
tries to address the major risks early in the project lifecycle, while assuring that the
software will be complete by the necessary deadlines.

Language Selection

The most important constraint upon the language is portability. The short develop-
ment time, and the even shorter contact that the software engineers will have with the
2.0 hardware demand that both the 1.0 and 2.0 versions use the same software. That
is, the source code needs to be identical; or nearly so. If the portability constraint can-
not be met by the language, the release of the 2.0 version at the twelve month mark
will be in severe jeaopardy.

Fortunately there are few other constraints. The software is not very large, so space is
not much of a problem. There are no hard real-time deadlines that are shorter than one
second, so speed is not much of an issue. Indeed, the real-time deadlines are so weak
that a moderately fast garbage collecting language would not be inappropriate.

The portability constraints, and the lack of any other serious constraints, make the
selection of Java quite appropriate. Indeed, there are few languages which can satisfy
the portability constraint as well as Java.

However, Java comes with some risks. There must be a JVM2 for each of the plat-
forms, and both JVMs must work identically. Also, Java is an immature language that
is still changing rapidly. These risks are identified in the “Nimbus-LC Construction
Plan” on page 109.

1. We all know that the requirements document is the most volatile document in any software project.

2. Java Virtual Machine

Chapter 3: 63

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

Nimbus-LC Software Design

According to the construction plan, one of the major goals of phase I is to create an
architecture that will allow the bulk of the software to be independent of the hardware
that it controls. Indeed, we want to separate the abstract behavior of the weather sta-
tion from its concrete implementation.

For example, the software must be able to display the current temperature regardless
of the hardware configuration. This implies the design shown in Figure 3-1.

An abstract base class named TemperatureSensor supplies a polymorphic
read() function. Derivatives of this base class allow for separate implementations
of the read() function.

The Test Classes. Notice that there is one derivative for each of the two known
hardware platforms. There is also a special derivative named TestTemperature-
Sensor. This class will be used to test the software in a workstation which is not
connected to Nimbus hardware. This allows the software engineers to test their soft-
ware even when they don’t have access to a Nimbus system.

Also, we have very little time to intergrate the Nimbus 2.0 hardware and software
together. The Nimbus 2.0 version will be at risk because of this short time frame. By
making the Nimbus software work with both the Nimbus 1.0 hardware, and with the
test class, we will have made the Nimbus software execute on multiple platforms.
This lessens the risk of significant portability issues with the Nimbus 2.0.

Figure 3-1
Initial Temperature Sensor Design.

Temperature
Sensor

+ read() : double

Nimbus 1.0
Temperature

Sensor

Nimbus 2.0
Temperature

Sensor

Test
Temperature

Sensor

64 Nimbus-LC Software Design:Language Selection

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

Tthe test classes also give us the opportunity to test features or conditions that are
hard to capture in the software. For example, we can set up the test classes to produce
failures that are difficult to simulate with the hardware.

Making Periodic Measurements. The most common mode of the Nimbus sys-
tem is when it is displaying current weather monitoring data. Each of the values are
updated at their own particular rate. Temperature is updated once per minute, while
barometric pressure is updated once every five minutes. Clearly we need some kind
of scheduler that will trigger these readings and communicate them to the user. Figure
3-2 shows a possible structure.

We imagine the Scheduler to be a base class that has many possible implementa-
tion, one for each of the hardware and test platforms. The Scheduler has a tic
function that it expects will be called once every 10ms. It is the responsibility of the
derived class to make this call. (See Figure 3-3.) The Scheduler counts the tic()
calls. Once per minute it calls the read() function of the TemperatureSensor,
and passes the returned temperature to the MonitoringScreen. For phase I we
don’t need to show the temperature in a GUI, so the derivative of Monitoring-
Screen simply sends the result to an output stream.

Figure 3-2
Initial Scheduler and Display architecture

tic()

Scheduler

Barometric
Pressure Sensor

Temperature
Sensor

Nimbus 1.0
Scheduler•••

+ displayTemp(double)
+ displayPressure(double)

Monitoring Screen

Streaming
Output

Chapter 3: 65

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

Barometric Pressure Trend. The requirements document says that we must
report the trend of the barometric pressure. This is a value that can have three states:
rising, falling, or stable. How do we determine the value of this variable?

According to the Federal Meteorological Handbook1, barometric pressure trend is
calculated as follows:

If the pressure is rising or falling at a rate of at least 0.06 inch per hour and the pres-
sure change totals 0.02 inch or more at the time of the observation [to be taken once
every three hours], a pressure change remark shall be reported.

Where do we put this algorithm? If we put it in the BarometricPressure-
Sensor class, then that class will need to know the time of each reading, and it will
have to keep track of a series of readings going back three hours. Our current design
does not allow for this. We could fix this by adding the current time as an argment to
the Read function of the BarometricPressureSensor class, and guaranteeing
that that function will be called on a regular basis.

However, this couples the trend calculation to the frequency of user updates. It is not
inconceivable that a change to the user interface update scheme could affect the pres-
sure trend algorithm. Also, it is very unfriendly for a sensor to demand that it be read
on a regular basis in order to function properly. A better solution needs to be found.

We could have the Scheduler keep track of barometric pressure history, and calcu-
late trends at need. However, will we then also put temperature and wind speed his-

Figure 3-3
Initial Scheduler Sequence Diagram

1. Federal Meteorological Handbook No. 1, Chapter 11, Section 11.4.6 (http://
www.nws.noaa.gov)

schd : Nimbus
1.0 Scheduler

schd : Scheduler
: Temperature

Sensor
: Monitoring

Screen

tic()
Every 10ms

read()
Once per minute

temp

displayTemp(temp)

66 Nimbus-LC Software Design:Language Selection

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

tory in the Scheduler class? Every new kind of sensor or history requirement
would cause us to change the Scheduler class. This is has the makings of a mainte-
nance nighmare™.

Reconsidering the Scheduler. Take another look at Figure 3-2. Notice that
the Scheduler is connected to each of the sensors and to the user interface. As
more sensors are added, and as more user interface screens are added, they will have
to be added to the Scheduler too. Thus, the Scheduler is not closed to the addi-
tion of new sensors or user interfaces. This is a problem. We would like to design the
Scheduler so that it is independent of changes and additions to the sensors and
user interfaces.

Decoupling the User Interface. User interfaces are volatile. They are subject
to the whims of customers, marketting people, and nearly everyone else who comes in
contact with the product. It seems very likely that if any part of the system suffers
requirements thrashing, it will be the user interface. Therefore we should decouple it
first.

There is a standard design pattern for decoupling user interfaces. It is called
OBSERVER. The intent of the observer pattern is:

Define a one-to-many dependency between objects so that when one object changes

state, all its dependents are notified and updated automatically.1

Figure 3-4 and Figure 3-5 show the new design. We have made the UI a dependent of
the sensor, so that when the sensor reading changes, the UI will be automatically noti-
fied. Notice that the dependency is indirect. The actual observer is an ADAPTER2
named TemperatureObserver. This object is notified by the Temperature-
Sensor when the temperature reading changes. In reponse, the Temperature-
Obsever calls the DisplayTemp function of the MonitoringScreen object.

This design has nicely decoupled the UI from the Scheduler. The Scheduler
now knows nothing of the UI, and can focues solely upon telling the sensors when to
read. The UI binds itself to the sensors, and expects them to report any changes. How-
ever, the UI does not know about the sensors themselves. It simply knows about a set
of objects that implement the Observable interface. This will allow us to add sensors
without making signficant changes to this part of the UI.

1. [GOF95] p. 293

2. [GOF95] p. 139

Chapter 3: 67

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

Figure 3-4
Observer decouples UI from Scheduler.

Figure 3-5
Decoupled UI sequence diagram

- tic()

Scheduler

+ displayTemp(double)
+ displayPressure(double)

Monitoring Screen Temperature
Observer

+ update()

Termperature
Sensor

+ addObserver()
+ notifyObservers()

Observable

*

Observer

«creates»

: Monitoring
Screen

t : Temperature
Observer

ts : Temperature
Sensor

: Schedulerts: Observable

create

addObserver(t)

read

notifyObservers(val)

update(val)

if reading has
changed.

displayTemp(val)

68 Nimbus-LC Software Design:Language Selection

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

We have also solved the problem of the barometric pressure trend. This reading can
now be calculated by a seperate BarometricPressureTrendSensor that
observers the BarometricPressureSensor. (See Figure 3-6.).

Is this too complex? Have we overengineered the software? If we were certain
that the requirements were never going to change, then this solution is probably too
complex. However, weather monitoring is the core of our business. We are embarking
upon the project because of a signficant change in the industry. We are also entering a
new market and using a new technology. There is plenty of reason to suspect that the
requirements are going to change over time. Therefore, if our software is going to sur-
vive more than two releases, we’d better design it to be changed.

Rethinking the Scheduler -- yet again. One of the major principles of object
oriented design is the Open Closed Principle1 (OCP). This principle says that a class
should be extensible without requiring modification. That is, you should be able to
change what a class does, without changing the class.

Figure 3-6
Barometric Pressure Observers

1. [Meyer97] p. 57

- tic()

Scheduler

+ displayTemp(double)
+ displayPressure(double)
+ displayPressureTrend(double)

Monitoring Screen Barometric
Pressure
Observer

+ update()

Barometric
Pressure Sensor

+ addObserver()
+ notifyObservers()

Observable

*

Observer

«creates»

+ update()

Barometric
Pressure Trend

Observer
«creates»

Barometric
Pressure Trend

Sensor

Chapter 3: 69

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

The major role of the Scheduler is to tell each of the sensors when they should
acquire a new value. However, if future requirements force us to add or remove a sen-
sor, the Scheduler will need to be changed. Indeed, the Scheduler will have to
change even if we simply want to change the rate of a sensor. This is an unfortunate
violation of the OCP. It seems that the knowledge of a sensor’s polling rate belongs to
the sensor itself, and not any other part of the system.

We can decouple the Scheduler from the sensors by using the Listener1 paradigm
from the Java class library. This is similar to OBSERVER in that you register to be noti-
fied of something; but in this case we want to be notified when a certain event (time)
occurs. See Figure 3-7.

Sensors create anonymous2 ADAPTER classes that implement the AlarmListener
interface. The sensors then register those adapters with the AlarmClock (The class
we used to call the Scheduler). As part of the registration, they tell the Alarm-
Clock how often they would like to be woken up (e.g. every second, or every fifty
milliseconds). When that period expires, the AlarmClock sends the wakeup mes-
sage to the adapter which then sends the read message to the sensor.

This has completely changed the nature of the Scheduler class. In Figure 3-2 it
formed the center of our system and knew about most of the other components. But
now it simply sits at the side of the system. It knows nothing about the other compo-

1. [JAVA98] p. 360

Figure 3-7
Decoupled Alarm clock

2. Anonymous classes are a feature of Java. However, the idea can be applied to just about any language. An anonymous
class is just a class that implements a well known interface, but which does not have a name of its own. It also has
access to the private elements of its creator.

+ wakeEvery(interval, AlarmListener)

AlarmClock

+ wakeup()

AlarmListener*
«interface»

«anonymous»Temperature
Sensor

«creates»

70 Nimbus-LC Software Design:Language Selection

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

nents. It does one job -- scheduling -- which has nothing whatever to do with weather
monitoring. Indeed, it could be reused in many different kinds of applications. In fact
the change is so dramatic, that we have changed the name to AlarmClock.

The Structure of the Sensors. Having decoupled the sensors from the rest of
the system, we should look at their internal structure. Sensors now have three separate
functions. First, they have to create and register the anonymous derivative of the
AlarmListener. Second, they have to determine if their readings have changed,
and invoke the notifyObservers method of the Observable class. Thirdly,
they have to interact with the Nimbus hardware in order to read the appropriate val-
ues.

Figure 3-1 showed how these concerns might be separated. Figure 3-8 integrates that
design with the other changes we have made. The TemperatureSensor base
class deals with the first two concerns, since they are generic. The derivative of
TemperatureSensor can then deal with the hardware and perform the actual
readings.

Figure 3-8 employs a pattern known as TEMPLATE METHOD1 in order to achieve the
seperation between the between the generic and specific concerns of the
TemperatureSensor. You can see this pattern in the private check and read

Figure 3-8
Sensor Structure

Temperature Sensor

- read() {native}

Nimbus 1.0
Temperature

Sensor

+ addObserver(Observer)
+ notifyObservers(Object)

Observable

- itsLastReading : double

- check()
- read() {abstract}

Nimbus 1.0 C
Api

«C-API»

private void check()
{
 double val = read();
 if (val != itsLastReading)
 {
 itsLastReading = val;
 setChanged();
 notifyObservers(val);
 }
}

+ wakeup()

«anonymous» «creates»

AlarmListener

AlarmClock

*

public void wakeUp()
{
 check();
}

Chapter 3: 71

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

functions of TemperatureSensor. When the AlarmClock calls wakeup on
the anonymous class, the anonymous class forward the call to the check function1 of
the TemperatureSensor. The check function then calls the abstract read func-
tion of TemperatureSensor. This function will be implemented by the derivative
to properly interact with the hardware and obtain the sensor reading. The check
function then determines whether the new reading is different from the previous read-
ing2. If a difference is detected, then it notifies the waiting observers.

This nicely accomplishes the separation of concerns that we need. For every new
hardware or testing platform, we will be able to create a derivative of Temperature-
Sensor that will work with it. Morevoer, that derivative must simply override one very
simple function: read(). The rest of the functionality of the sensor remains in the
base class where it belongs.3

Where is the API? One of our phase II goals is the creation of a new API for the
Nimbus 2.0 board. This API should be written in Java, be extensible, and provide
simple and direct access to the Nimbus 2.0 hardware. Furthermore this API must
serve the Nimbus 1.0 board as well. Without this API, all the simple debugging and
calibration tools that we write for this project will have to be changed when the new
board is introduced. Where is this API within our current design?

It turns out that nothing we have created so far can serve as a simple API. What we
are looking for is something like this:

public interface TemperatureSensor
{

public double read();
}

We are going to want to write tools that have direct access to this API without having
to bother with registering observers. We also don’t want sensors at this level to be
polling themselves automatically, or interacting with the AlarmClock. We want
something very simple and isolated that acts as the direct interface to the hardware.

1. [GOF95] p. 325

1. Remember, in Java, anonymous classes have direct access to the private variables and functions of the classes that cre-
ate them.

2. Figure 3-8 uses the != operator to determine this. However, determination of floating point equality is usually more
complex than this. For example, the test: a/a == 1.0 will not often succeed because of errors in the least significant bits.
This is actually a significant problem for any program that makes heavy use of floating point numbers.

3. C++ programmers might make use of templates in order to further eliminate the duplication of code. Consider that the
code inside BarometricPressureSensor and TemperatureSensor is nearly identical. However, the fact that the type of
the sensor value is not guaranteed to be the same between the two sensors, forces them to be coded separately in Java.

72 Nimbus-LC Software Design:Language Selection

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

It may seem that we are reversing all our previous arguments. After all, Figure 3-1
shows exactly what we have just asked for. However, the changes we made subse-
quent to Figure 3-1 were made for sound reasons. What we need is a hybrid that
mixes the best of both schemes.

Figure 3-9 employs the BRIDGE1 pattern to extract the true API from the
TemperatureSensor. The intent of this pattern is to separate an implementation
from an abstraction; so that both may vary independently. In our case the
TemperatureSensor is the abstraction, and the TemperatureSensorImp is
the implementation. Notice that the word “implementation” is being used to describe
an abstract interface. And that the “implementation” is itself implemented by the
Nimbus1.0TemperatureSensor class.

1. [GOF95] p. 151

Figure 3-9
Temperature Sensor with API

Temperature Sensor

+ read() {native}

Nimbus 1.0
Temperature

Sensor

+ addObserver(Observer)
+ notifyObservers(Object)

Observable

- itsLastReading : double

- check()
+ read()

Nimbus 1.0 C
Api

«C-API»

+ wakeup()

«anonymous» «creates»

AlarmListener

AlarmClock

*

+ read() : double

Temperature
Sensor Imp

"The API"

Chapter 3: 73

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

So, where are we? Perhaps it’s time to sit back and examine what we have
accomplished. We have taken a rather long a circuitous route to get to this point. Have
we accomplished our goals?

Those goals were:

1. Create a design that would remain relatively unchagned for both versions of the
hardware.

2. Create a design that will act as the foundation for many other products of this kind.

3. Lay a foundation for phase I that will migrate well to phase II.

Goals 1 and 2 were known before we began the design. Goal 3 presented itself later
on, but is a regular goal of any iterative design. Are there any other goals that we
missed?

Certainly we have some more functionality to add. We haven’t dealt with history
information, nor have we described the phase I streaming output. But as far as soft-
ware engineering goals are concerned, we seem to be on track.

Again, was all this complexity worth it? Compare Figure 3-1 to Figure 3-9. The dif-
ference in complexity is striking. Yet that extra complexity is needed to ensure that
the software can evolve and be maintained. It decouples the various sections of the
system so that they can vary independently of each other, and can be independently
reused.

But we are not done yet. We still have more functionality to add, and some more
issues to resolve.

Creational issues. Look again at Figure 3-9. In order for this to work, a
TemperatureSensor object must be created and bound to a
Nimbus1.0TemperatureSensor object. Who takes care of this? Certainly,
whatever part of the software is responsible for this will not be platform independent,
since it must have explicit knowledge of the platform dependent
Nimbus1.0TemperatureSensor.

We could use the main program to do all this. We could write it as shown in Listing 3-
1.

Listing 3-1
public class WeatherStation
{

public static void main(String[] args)
{

AlarmClock ac = new AlarmClock(

74 Nimbus-LC Software Design:Language Selection

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

This is a workable solution, but requires an awful lot of clerical overhead. Is there a
better way? There is a design pattern that is well known for helping to deal with crea-
toinal issues like this. It is called ABSTRACTFACTORY1. The intent of this pattern is to
provide an interface so that clients can create objects without knowing their concrete
classes. Factories can also perform some of the clerical overhead involved with that
creation. Figure 3-10 shows the structure.

We have named the factory the StationToolkit. This is an interface that presents
methods that offer to create instances of the API classes. Each platform will have its
own derivative of StationToolkit, and that derivative will create the appropriate
derivatives of the API classes.

Now we can rewrite the main function as shown in Listing 3-2. Notice that in order to
alter this main program to work with a different platform, all we have to change is the
two lines that create the Nimbus1.0AlarmClock and the Nimbus1.0Toolkit.
This is a dramatic improvement over Listing 3-1 which required a change for every
sensor it created..

Notice that the StationToolkit is being passed into each sensor. This allows the
sensors to create their own implementations. Listing 3-3 shows the constructor for
TemperatureSensor.

Getting the Station Toolkit to create the AlarmClock. We can improve
matters by having the StationToolkit create the appropriate derivative of the Alarm-

new Nimbus1_0AlarmClock;

TemperatureSensor ts =
new TemperatureSensor(ac,
new Nimbus1_0TemperatureSensor);

BarometricPressureSensor bps =
new BarometricPressureSensor(ac,

new Nimbus1_0BarometricPressureSensor);

BarometricPressureTrend bpt =
new BarometricPressureTrend(bps)

}
}

1. [GOF95] p. 87

Listing 3-1

Chapter 3: 75

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

Figure 3-10
Station Toolkit

Listing 3-2
public class WeatherStation
{

public static void main(String[] args)
{

AlarmClock ac = new AlarmClock(
new Nimbus1_0AlarmClock;

StationToolkit st = new Nimbus1_0Toolkit();

TemperatureSensor ts =
new TemperatureSensor(ac,st);

BarometricPressureSensor bps =
new BarometricPressureSensor(ac,st);

BarometricPressureTrend bpt =
new BarometricPressureTrend(bps)

}
}

+ makeTemperature() : TemperatureSensorImp
+ makeBarometricPressure() : BarometricPressureSensorImp

Station Toolkit

Nimbus 1.0
Toolkit

«interface»

Temperature
Sensor Imp

«interface»
Barometric

Pressuer Sensor
Imp

«interface»

Nimbus 1.0
Temperature

Nimbus 1.0
Barometric
Pressure

«creates» «creates»

76 Nimbus-LC Software Design:Language Selection

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

Clock. Once again we will employ the BRIDGE pattern to separate the AlarmClock
abstraction that is meaningful to the Weather Monitoring Applications, from the
implementation that supports the hardware platform.

Figure 3-11 shows the new AlarmClock structure. The AlarmClock now
receives tic messages through its ClockListener interface. These messages are
sent from the appropriate derivative of the AlarmClockImp class in the API.

Figure 3-12 shows how the AlarmClock gets created. The appropriate Station-
Toolkit derivative is passed into the constructor of the AlarmClock. The
AlarmClock directs it to create the appropriate derivative of AlarmClockImp.
This is passed back to the AlarmClock, and the AlarmClock registers with it so
that it will receive tic messages from it.

Once again, this has an effect upon the main program in Listing 3-4. Notice that now
there is only one line that is platform dependent. Change that line, and the entire sys-
tem will use a different platform.

This is pretty good; but in Java we can do even better. Java allows us to create objects
by name. The main program in Listing 3-5 does not need to be changed in order to
make it work with a new platform. The name of the StationToolkit derivative is
simply passed in as a command line argument. If the name was correctly specified,
the appropriate StationToolkit will be created, and the rest of the system will
behave appropriately,

Putting the classes into packages.

There are several portions of this software that we would like to release and distribute
separately. The API and each of its instantiations are resusable without the rest of the
application, and may be used by the testing and quality assurance teams. The UI and
Sensors should be seperate so that they can vary indepedently. After all, newer prod-

Listing 3-3
public class TemperatureSensor extends Observable
{

public TemperatureSensor(AlarmClock ac,
StationToolkit st)

{
itsImp = st.makeTemperature();

}
private TemperatureSensorImp itsImp;

}

Chapter 3: 77

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

ucts may have better UI’s on top of the same system architecture. In fact, Phase II will
be the first example of this.

In general, the rules for seperating classes into packages involve three principles1.

1. The Common Closure Principle (CCP) states that we want to put the classes
together that are likely to change together when the requirements change. This
principle tries to minimize the number of packages that will change when the
requirements change. The ideal is to get this number down to 1.

2. The Reuse Release Equivalency Principle (REP) states that the granule of release
is the same as the granule of reuse. That is, it is impractical to reuse anything
smaller than a package. Therefore a package should contain one or more releas-
able units.

Figure 3-11
Station Toolkit and Alarm Clock

1. [Granularity96]

+ getAlarmClock() : AlarmClockImp

Station Toolkit

Nimbus 1.0
Toolkit

«interface»

+ register(ClockListener)

Alarm Clock Imp
«interface»

Nimbus 1.0
AlarmClock

«creates»

AlarmClock(StationToolkit st)

Alarm Clock

+ tic()

Clock Listener
«interface»

«parameter»

*

78 Nimbus-LC Software Design:Language Selection

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

Figure 3-12
Creation of the Alarm Clock

Listing 3-4
public class WeatherStation
{

public static void main(String[] args)
{

StationToolkit st = new Nimbus1_0Toolkit();
AlarmClock ac = new AlarmClock(st);
TemperatureSensor ts =

new TemperatureSensor(ac,st);

BarometricPressureSensor bps =
new BarometricPressureSensor(ac,st);

BarometricPressureTrend bpt =
new BarometricPressureTrend(bps)

}
}

Listing 3-5
public class WeatherStation
{

public static void main(String[] args)
{

try

ac : AlarmClock st : StationToolkit
aci : Nimbus 1.0

Alarm Clock
aci : Alarm Clock

Imp

create

st

getAlarmClock()

st : Nimbus 1.0
Station Toolkit

create

regsiter(ac : ClockListener)

aci : AlarmClockImp one time only, this
is a singleton.

Chapter 3: 79

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

3. The Common Reuse Principle (CRP) states that all the classes in a package should
be reused together. If it is possible for a client to reuse only a subset of classes in a
package, then those classes should be removed into a seperate package.

Figure 3-13 shows a package structure for phase I. This package structure nearly falls
out of the classes we have designed so far. There is one package for each platform,
and the classes in those packages derive from the classes in the API package. The
sole client of the API package is the WeatherMonitoringSystem package,
which holds all the other classes.

Even though phase I has a very small UI, it is unfortunate that it is mixed in with the
WeatherMonitoringSystem classes. It would be better to put this class in a sep-
erate package. However, we have a problem. As things stand, the Weather-
Station object creates the MonitoringScreen object, but the
MonitoringScreen object must know about all the sensors in order to add its
observers through their Observable interface. Thus, if we were to pull the
MonitoringScreen out into its own package, there would be a cyclic dependency
between that package and the WeatherMonitoringSystem package. This vio-

{
Class tkClass = Class.forName(args[0]);
StationToolkit st =

(StationToolkit)tkClass.newInstance();

AlarmClock ac = new AlarmClock(st);

TemperatureSensor ts =
new TemperatureSensor(ac,st);

BarometricPressureSensor bps =
new BarometricPressureSensor(ac,st);

BarometricPressureTrend bpt =
new BarometricPressureTrend(bps)

}
catch (Exception e)
{
}

}
}

Listing 3-5 (Continued)

80 Nimbus-LC Software Design:Language Selection

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

lates a principle known as the Acyclic Depencencies Principle (ADP)1. This would
make the two packages impossible to release independently of each other.

We can fix this by pulling the main program out of the WeatherStation class.
WeatherStation still creates the StationToolkit and all the sensors, but
does not create the MonitoringScreen. The main program will create the
MonitoringScreen and the WeatherStation. The main program will then
pass the WeathersStation to the MonitoringScreen so that the
MonitoringScreen can add its observers to the sensors.

How does the MonitoringScreen get the sensors from the WeatherStation?
We need to add some methods to the WeatherStation that allow this to take
place. See Listing 3-6 to see what this looks like.

Now we can redraw the package diagram as shown in Figure 3-14. We have omitted
most of the packages that aren’t concerned with the MonitoringScreen. This

Figure 3-13
Phase I Package Structure

1. [Granularity96]

+ TemperatureSensorImp
+ BarometricPressureSensorImp
+ AlarmClockImp
+ StationToolkit
+ ClockListener

API

+ Nimbus1.0Toolkit
- Nimbus1.0Temperature
- Nimbus1.0BarometricPressure
- Nimbus1.0AlarmClock

Nimbus 1.0

C API

- TemperatureSensor
- BarometricPressureSensor
- AlarmClock
- MonitoringScreen
+ AlarmClockListener
+ WeatherStation

Weather
Monitoring

System

+ TestToolkit
- TestTemperature
- TestBarometricPressure
- TestAlarmClock

Test

+ Nimbus2.0Toolkit
- Nimbus2.0Temperature
- Nimbus2.0BarometricPressure
- Nimbus2.0AlarmClock

Nimbus 2.0

Chapter 3: 81

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

looks pretty good. Certainly the UI can be varied without affecting the Weather-
MonitoringSystem. However, the dependency of the UI upon Weather-
MonitoringSystem will cause problems whenever the
WeatherMonitoringSystem changes.

Both UI and WeatherMonitoringSystem are concrete. When one concrete
package depends upon another the Dependency Inversion Principle1 (DIP). This prin-
ciple states that dependencies should point at abstract entities. In this case, it would be

Listing 3-6
public class WeatherStation
{

public WeatherStation(String tkName)
{

//create station toolkit and sensors as
before.

}

public void addTempObserver(Observer o)
{

itsTS.addObserver(o);
}

public void addBPObserver(Observer o)
{

itsBPS.addObserver(o);
}

public void addBPTrendObserver(Observer o)
{

itsBPT.addObserver(o);
}

// private variables...
private TemperatuerSensor itsTS;
private BarometricPressureSensor itsBPS;
private BarometricPressureTrend itsBPT;

}

1. [DIP96]

82 Nimbus-LC Software Design:Language Selection

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

better if the UI depended upon something abstract rather than the Weather-
MonitoringSystem.

We can fix this by creating an interface that the MonitoringScreen can use, and
that the WeatherStation derives from. See Figure 3-14.

Now, if we put the WeatherStationComponent interface into its own package,
then we will achieve the separation we want. See Figure 3-16. Notice that now the UI
and the WeatherMonitoringSystem are completely decoupled. They can both vary
independently of each other. This is a good thing.

Figure 3-14
Package Diagram with Cycle Broken

+ TemperatureSensorImp
+ BarometricPressureSensorImp
+ AlarmClockImp
+ StationToolkit

API

- TemperatureSensor
- BarometricPressureSensor
- AlarmClock
+ WeatherStation

Weather
Monitoring

System

+ MonitoringScreen

UI

+ main() {static}

Main

Chapter 3: 83

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

Figure 3-15
WeatherStation abstract interface

Figure 3-16
Weather Station Component Package Diagram

WeatherStation

+ addTempObserver
+ addBPObserver
+ addBPTrendObserver

Weather Station Component
«interface»

Monitoring
Screen

«parameter»

+ TemperatureSensorImp
+ BarometricPressureSensorImp
+ AlarmClockImp
+ StationToolkit

API

- TemperatureSensor
- BarometricPressureSensor
- AlarmClock
+ WeatherStation

Weather
Monitoring

System

+ MonitoringScreen

UI

+ main() {static}

Main

+ WeatherStationComponent

Weather
Station

Component

84 Nimbus-LC Software Design:24 Hour History and Persistence.

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

24 Hour History and Persistence.

Points four and five of the phase I Deliverables section (see page 110) of the Con-
struction plan talk about the need for maintaining a persistent 24 hour history. We
know that both the Nimbus 1.0 and Nimbus 2.0 hardware have some kind of non-vol-
atile memory (NVRAM). On the other hand, the test platform will simulate the non-
volatile memory by using the disk.

We need to create a persistence mechanism that is independent of the indivitual plat-
forms, while still providing the necessary functionality. We also need to connect this
to the mechanisms that maintain the 24 hour historical data.

Clearly the low level persistence mechanism should be defined as an interface in the
API package. What form should this interface take? The Nimbus I C-API provides
calls that allow blocks of bytes to be read and written from particular offsets within
the non-volatile memory. While this is effective, it is also somewhat primitive. Is
there a better way?

The Persistent API. The Java language provides the facilities that allow any object
to be immediately converted into an array of bytes. This process is called serializa-
tion. Such an array of bytes can be reconstituted back into an object through the pro-
cess of deserialization. It would be convenient if our low level API allowed us to
specify an object, and a name for that object. Listing 3-7 shows what this might look
like.

The PersistentImp interface allows you to store and retrieve full objects
by name. The only restriction is that such objects must implement the
Serializable interface; a very minimal restriction.

24 Hour History. Having decided upon the low level mechanism for storing persis-
tent data; lets look at the kind of data that will be persistent. Our spec says that we

Listing 3-7
package api;
import java.io.Serializable;
import java.util.AbstractList;
public interface PersistentImp
{

void store(String name, Serializable obj);
Object retrieve(String name);
AbstractList directory(String regExp);

};

Chapter 3: 85

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

must keep a record of the high and low readings for the previous 24 hour period. Fig-
ure 3-24 on page 102 shows a graph with this data. This graph does not seem to make
a lot of sense. The high and low readings are painfully redundant. Worse, they come
from the last 24 hours on the clock, and not from the previous calendar day. Meteoro-
logically, when we want the last 24 hour high and low reading, we want it for the pre-
vious calendar day.

Is this a flaw in the spec, or a flaw in our interpretation? It will do us no good to
implement something according to the spec, if the spec is not really what the cus-
tomer wants.

A quick verification with the stakeholders shows our intuition to be correct. We do
indeed want to keep a rolling history of the last 24 hours. However, the historical low
and high need to be for the previous calendar day.

The 24 hour high and low. The daily high and low values will be based upon
real-time readings of the sensors. For example, very time the temperature changes,
the 24 hour high and low temperatures will be updated appropriately. Clearly this is
an observer relationship. Figure 3-17 shows the static structure, and Figure 3-18
shows the relevant dynamic scenarios.

Figure 3-17
Temperature Hi Lo structure.

Temperature
Sensor

Temperature
HiLo

«observes»

+ wakeEveryDay(AlarmListener)

Alarm Clock

+ wakeUp()

«anonymous»

AlarmListener

«creates»

+ currentReading(double value, long time)
+ newDay(double initial, long time)
+ getHighValue() : double
+ getHighTime() : long
+ getLowValue() : double
+ getLowTime() : long

HiLo Data

«interface»

86 Nimbus-LC Software Design:24 Hour History and Persistence.

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

We have chosen to show the OBSERVER pattern using an association marked with the
«observes» stereotype. The details of this pattern were shown back in Figure 3-6 on
page 68. We have created a class called TemperatureHiLo that is woken up by
the AlarmClock every day at midnight. Notice that the wakeEveryDay method
has been added to AlarmClock.

Upon construction of the TemperatureHiLo object it registers with both the
AlarmClock and with the TemperatureSensor. Whenever the temperature
changes, the TemperatureHiLo object is notified through the OBSERVER pattern.
TemperatureHiLo then informs the HiLoData interface using the current-
Reading method. HiLoData will have to be implemented with some class that
knows how to store the high and low values for the current 24 hour calendar day.

We have separated the TemperatureHiLo class from the HiLoData class for two
reasons. First of all, we wanted to separate the knowledge of the Temperature-
Sensor and AlarmClock from the algorithms that determined the daily highs and
lows. Secondly, and more importantly, the algorithm for determining the daily highs
and lows can be reused for barometric pressure, wind speed, dew point, etc. Thus,
though we will need BarometricPressureHiLo, DewPointHiLo, Wind-
SpeedHiLo, etc to observe the appropriate sensors; each will be able to use the
HiLoData class to compute and store the data.

At midnight, the AlarmClock sends the wakeup message to the Temperature-
HiLo object. TemperatureHiLo responds by fetching the current temperature
from the TemperatureSensor and forwarding it to the HiLoData interface. The

Figure 3-18
Hi Lo Scenarios.

: Temperature
HiLo

: AlarmClock
:Temperature

Sensor
: Temperature

HiLo Data

wakeEveryDay(AlarmListener)

addObserver(this)Construct

update

currentReading(value, time)

value

wakeup

read() value

newDay(value, time)

temperature
change

midnight

Chapter 3: 87

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

implementation of HiLoData will have to store the previous calendar day’s values
using the PersistentImp interface, and will also have to create a new calendar
day with the initial value.

PersistentImp accesses objects in the persistent store using a string. This string
acts as an access key. Our HiLoData objects will be stored and retrieved with
strings that have the following format: “<type>+HiLo+<MM><dd><yyyy>”. For
example: “temperatureHiLo04161998”.

Implementing the HiLo algorithms.

How do we implement the HiLoData class? This seems pretty straightforward. List-
ing 3-8 shows what the Java code for this class looks like.

Listing 3-8
Implementation of HiLoData interface.
public class HiLoDataImp

implements HiLoData
,java.io.Serializable

{
public HiLoDataImp(StationToolkit st, String type,

Date theDate, double init,
long initTime)

{
itsPI = st.getPersistentImp();
itsType = itsType;
itsStorageKey = calculateStorageKey(theDate);
try
{

HiLoData t =(HiLoData)itsPI.retrieve(
itsStorageKey);

itsHighTime = t.getHighTime();
itsLowTime = t.getLowTime();
itsHighValue = t.getHighValue();
itsLowValue = t.getLowValue();
currentReading(init, initTime);

}
catch (RetrieveException re)
{

itsHighValue = itsLowValue = init;
itsHighTime = itsLowTime = initTime;

}
}

88 Nimbus-LC Software Design:Implementing the HiLo algorithms.

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

public long getHighTime() {return itsHighTime;}
public double getHighValue() {return itsHighValue;}
public long getLowTime() {return itsLowTime;}
public double getLowValue() {return itsLowValue;}

// Determine if a new reading changes the
// hi and lo and return true if reading changed.
public void currentReading(double current,

long time)
{

if (current > itsHighValue)
{

itsHighValue = current;
itsHighTime = time;
store();

}
else if (current < itsLowValue)
{

itsLowValue = current;
itsLowTime = time;
store();

}
}

public void newDay(double initial, long time)
{

store();
// now clear it out and generate a new key.
itsLowValue = itsHighValue = intial;
itsLowTime = itsHighTime = time;
// now calculate a new storage key based on
// the current date, and store the new record.
itsStorageKey = calculateStorageKey(new Date());
store()

}

private store()
{

Listing 3-8 (Continued)
Implementation of HiLoData interface.

Chapter 3: 89

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

Well, maybe it wasn’t all that straightforward. Let’s walk through this code to see
what it does.

At the bottom of the class you’ll see the private member variables. The first four vari-
ables are expected. They record the high and low values, and the times at which those
values occurred. The itsType variable remembers the type of readings that this
HiLoData is keeping. This variable will have the value “Temp” for temperature, “BP”
for barometric pressure, “DP” for dew point, etc. The last two variables are declared
transient. This means that they will not be stored in the persistent memory. They
record the current storage key and a reference to the PersistentImp.

The constructor takes five arguments. The StationToolkit is needed to gain
access to the PersistentImp. The type and Date arguments will be used to
build the storage key used for storing and retrieving the object. Finally, the init and

try
{

itsPI.store(itsStorageKey, this);
}
catch (StoreException)
{

// log the error somehow.
}

}

private String calculateStorageKey(Date d)
{

SimpleDateFormat df =
new SimpleDateFormat(“MMddyyyy”);

return(itsType + “HiLo” + df.format(d));
}
private double itsLowValue;
private long itsLowTime;
private double itsHightValue;
private long itsHighTime;
private String itsType;
// we don’t want to store the following.
transient private String itsStorageKey;
transient private api.PersistentImp itsPI;

}

Listing 3-8 (Continued)
Implementation of HiLoData interface.

90 Nimbus-LC Software Design:Implementing the HiLo algorithms.

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

initTime arguments are used to initialize the object in the event that Persis-
tentImp cannot find the storage key.

The constructor tries to fetch the data from PersistentImp. If the data is present,
it copies the non transient data into its own member variables. Then it calls cur-
rentReading with the initial value and time to make sure that these readings get
recorded. Finally, if currentReading discovered that there was a change in the
high or low data, it will return true, and the Store function will be invoked to make
sure that the persistent memory is updated.

The currentReading method is the heart of this class. It compares the old high
and low value with the new incoming reading. If the new reading is higher than the
old high, or lower than the old low, it replaces the appropriate value, records the
appropriate time and stores the changes in persistent memory.

The newDay method is invoked at midnight. First it stores the current HiLoData in
persistent memory. Then it resets the values of the HiLoData for the beginning of a
new day. It recomputes the storage key for the new date, and then stores the new
HiLoData in persistent memory.

The Store function simply uses the current storage key to write the HiLoData
object into persistent memory through the PersistentImp object.

Finally, the calculateStorageKey method builds a storage key from the type of
the HiLoData, and the date argument.

Ugliness. Certainly the code in Listing 3-8 is not too difficult to understand. How-
ever there is ugliness for another reason. The policy embodied in the functions cur-
rentReading and newDay have to do with managing the high-low data and are
independent of persistence. On the other hand, the store, and calculate-
StorageKey methods, the constructor, and the transient variables are all spe-
cific to persistence and have nothing to do with the management of the highs and
lows. It seems a shame to comingle these concepts in a single class. After all, you
don’t see the plumbing in your house!

In its current comingled state, this class is the makings of a maintenance nightmare. If
something fundemental about the persistence mechanism changes, to the extent that
the calculateStorageKey and store functions become inappropriate, then
new persistence facilities will have to be grafted into the class. Functions like new-
Day and currentReading will have to be altered to invoke the new persistence facili-
ties.

Chapter 3: 91

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

Decoupling persistence from policy. We can avoid these potential problems
by decoupling the high-low data management policy from the persistence mechanism.
using the PROXY1 pattern.

Persistence is one of those issues that generates heat in conference rooms. Decoupling
policy from persistence is certainly a desirable thing to achieve. However, it is never
trivial. The conference rooms heat up because the risks of comingling are severe but
deferred; while the cost of decoupling is high and immediate. It is often difficult to
pay a high price for protection that you won’t need for many months, and hope you
won’t need at all.2

The Nimbus 2.0 project represents a certain level of volatility. The company is trying
for a new product in a new market. We can expect the requirements to remain in flux
for some time to come.3 Therefore we do not feel that it is wise to hope that the per-
sistence mechanism will remain unaffected. We had better decouple persistence from
policy.

Creating a Persistence Interface Layer. One of the most common techniques
for seperating persistence from policy the division of the softare into layers that con-
tain policy and persistence, and the interposition of a persistence interface layer
between the two. However, what is often neglected about such a structure is the direc-
tion of the relationships. See Figure 3-19.

1. [GOF95] p. 207

2. It’s rather like buying life insurance. You probably won’t need it for years, and you hope you never need it.

3. The only projects that enjoy stable requirements are projects without customers.

Figure 3-19

Policy Layer

Persistence
Interface Layer

Persistence
Mechanism

Layer

92 Nimbus-LC Software Design:Implementing the HiLo algorithms.

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

The structure we desire is one in which the policy and mechanism layers have no
dependence at all upon the interface layer. Rather the interface layer depends upon
both. This gives us a significant amount of insulation. Changes in the persistence
mechanism have no direct effect upon the policy layer. Schema changes or logic
changes that do not affect the business logic do not require alterations in the policy
layer. And, by the same token, changes in the policy layer have no direct effect upon
the persistence mechanism either.

On the other hand, the persistence interface layer is subject to changes in both other
layers. This layer is a nightmare, changing every time either of the other two layers
changes. This may sound like a disadvantage, but it is not. We want to know where
are nightmares live.

If we did not create the interface layer, then the nightmares would still exist; but they
would be intertangled with our business rules and policies. The nightmares would
leak out and contanimate everything.

How can we build a persistence interface layer with the appropriate dependencies?
That is what the PROXY pattern is all about. See Figure 3-20.

Figure 3-20 differs from Figure 3-17 on page 85 by the addition of the HiLoData-
Proxy class. It is the proxy class that the TemperatureHiLo object actually holds

Figure 3-20
Proxy pattern applied to HiLo persistence.

HiLoData

+ currentReading
+ newDay

- itsHighValue
- itsLowValue
- itsHighTime
- itsLowTime

HiLoDataImp

+ currentReading
+ newDay
- store
- calculateStorateKey

- itsStorageKey
- itsType

HiLoDataProxy

Temperature
HiLo

«interface»

+ currentReading
+ newDay

Persistent Imp

java.io.
Serializable

Chapter 3: 93

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

a reference to. The proxy in turn holds a reference to a HiLoDataImp object, and
delegates calls to it. Listing 3-9 shows the implemention of the critical functions of
both HiLoDataProxy and HiLoDataImp.

Listing 3-9
Snippets of the Proxy solution

class HiLoDataProxy implements HiLoData
{

public boolean currentReading(double current,
long time)

{
boolean change;
change = itsImp.currentReading(current, time);
if (change)

store();
return change;

}

public void newDay(double initial, long time)
{

store();
itsImp.newDay(initial, time);
calculateStorageKey(new Date(time));
store();

}

private HiLoDataImp itsImp;
}

class HiLoDataImp implements HiLoData
,java.io.Serializable

{
public boolean currentReading(double current,

long time)
{

boolean changed = false;
if (current > itsHighValue)
{

itsHighValue = current;
itsHighTime = time;
changed = true;

94 Nimbus-LC Software Design:Implementing the HiLo algorithms.

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

Notice how the HiLoDataImp class has no inkling of persistence. Notice also that
the HiLoDataProxy class takes care of all the persistence ugliness and then dele-
gages to the HiLoDataImp. This is nice. Furthermore, notice how the proxy
depends upon both HiLoDataImp (the policy layer) and PersistentImp (the
mechanism layer). This is exactly what we were after.

But all is not perfect. The astute reader will have caught the change that we made to
the currentReading method. We changed it to return a boolean. We need this
boolean in the Proxy so that the Proxy knows when to call store. Why don’t we call
store every time currentReading is called? There are many varieties of NVRam.
Some of them have an upper limit on the number of times you can write to them.
Therefore, in order to prolong the life of the NVRam, we only store into it when the
values change. Real life intrudes, yet again.

Factories and Initialization. Clearly we don’t want TemperatureHiLo to
know anything about the proxy. It should know only about HiLoData (See Fig-
ure 3-20.) Yet somebody is going to have to create the HiLoDataProxy for the
TemperatureHiLo object to use. Also, someone is going to have to create the
HiLoDataImp that the proxy delegates to.

What we need is a way to create objects, without knowing exactly what type of object
we are creating. We need a way for TemperatureHiLo to create a HiLoData
without knowing that it is really creating a HiLoDataProxy and a HiLoData-

}
else if (current < itsLowValue)
{

itsLowValue = current;
itsLowTime = time;
changed = true;

}
return changed;

}

public void newDay(double initial, long time)
{

itsHighTime = itsLowTime = time;
itsHighValue = itsLowValue = initial;

}
};

Listing 3-9 (Continued)
Snippets of the Proxy solution

Chapter 3: 95

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

Imp. Mechanisms like this are commonly implemented with the ABSTRACT FAC-
TORY1 pattern. SeeFigure 3-21.

TemperatureHiLo uses the DataToolkit interface to create an object that con-
forms to the HiLoData interface. The getTempHiLoData method gets deployed
to a DataToolkitImp object which creates a HiLoDataProxy, whose type code
is “Temp”, and returns it as a HiLoData.

This solves the creation problem nicely. TemperatureHiLo does not need to
depend upon the HiLoDataProxy in order to create it. But how does Tempera-
tureHiLo gain access to the DataToolkitImp object. We don’t want
TemperatureHiLo to know anything about DataTookitImp because that
would cerate a dependency from the policy layer to the mechanism layer.

Package Structure. To answer this question, lets look at the package structure in
Figure 3-22. The abbreviation WMS stands for the Weather Monitoring System pack-
age that was described in Figure 3-16 on page 83.

Figure 3-21
Using Abstract Factory to create the Proxy.

1. [GOF95] p. 87

HiLoData

+ currentReading
+ newDay

- itsHighValue
- itsLowValue
- itsHighTime
- itsLowTime

HiLoDataImp

+ currentReading
+ newDay
- store
- calculateStorateKey

- itsStorageKey
- itsType

HiLoDataProxy

Temperature
HiLo

«interface»

+ currentReading
+ newDay

Persistent Imp

DataToolkit

DataToolkit Imp

«interface»

+ getTempHiLoData() : HiLoData

«creates»

java.io.
Serializable

96 Nimbus-LC Software Design:Implementing the HiLo algorithms.

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

Figure 3-22 reenforces our desire for the Persistence Interface Layer to depend upon
the policy and mechanism leyars. It also shows how we have deployed the classes
into the packages. Notice that the abstract factory: DataToolkit, is defined in the
WMSData package along with HiLoData. HiLoData is implemented in the WMS-
DataImp package, whereas DataToolkit is implemented in the persistence
package.

Who creates the factory? Now, we ask the question once again. How does the
instance of wms.TemperatureHiLo gain access to an instance of persis-
tence.DataToolkitImp so that it can call the getTempHiLoData method
and create instances of persistence.HiLoDataProxy?

What we need is some statically allocated variable, accessible to the classes in wms-
data, that is declared to hold a wmsdata.DataToolkit but which is initialized
to hold a persistence.DataToolkitImp. Since, in Java, all variables, includ-
ing static variables, must be allocated in some kind of class, we can create a class
named Scope that will have the static variables that we need. We will put this class
in the wmsdata package.

Listing 3-10 and Listing 3-11 show how this works. The Scope class in wmsdata
declares a static member variable that holds a DataToolkit reference. The Scope
class in the persistence package declares an init() function that creates a

Figure 3-22
Proxy and Factory package structure

Nimbus 1.0

+ TemperatureHiLo
+ TemperatureSensor

wms

+ PersitentImp

apl

+ HiLoData
+ DataToolkit

wmsdata

+ HiLoDataImp

wms
data imp

+ HiLoDataProxy
+ DataToolkitImp

persistence

Chapter 3: 97

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

DataToolkitImp instance and stores it in the wmsdata.Scope.itsData-
Toolkit variable.

There is an interesting symmetry between the packages and the scope classes. All
the classes in the wmsdata package, other than Scope, are interfaces that have
abstract methods and no variables. But the wmsdata.Scope class has a variable
and no functions. On the other hand, all the classes in the persistence package,
other than Scope, are concrete classes that have variables. But persis-
tence.Scope has a function and no variables.

Figure 3-23 shows how this might be depicted in a class diagram. The Scope classes
are «utility» classes. All the members of such classes, whether variables or functions,
are static. Thus, a final element to the symmetry. It would appear that packages that
contain abstract interfaces tend to contain utilities that have data and no functions.
Whereas packages that contains concrete classes tend to contain utilities that have
functions and no data.

So, who calls persistence.Scope.init()? Probably the main() func-
tion. The class that holds that main function must be in a package that does not mind a
dependency upon persistence. We often call the package that contains main the
root package.

Listing 3-10
package wmsdata;

public class Scope
{
 public static DataToolkit itsDataToolkit;
}

Listing 3-11
package persistence;

public class Scope
{
 public static void init()
 {
 wmsdata.Scope.itsDataToolkit =

new DataToolkit();
 }
}

98 Nimbus-LC Software Design:Implementing the HiLo algorithms.

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

But you said... The persistence implementation layer should not depend upon the
policy layer. However, a close inspection of Figure 3-22 shows a dependency from
the persistence to wmsDataImp. This dependency can be traced back to Figure
3-21 in which HiLoDataProxy depends upon HiLoDataImp. The reason for this
dependency is so that HiLoDataProxy can create the HiLoDataImp that it
depends upon.

In most cases, the proxy will not have to create the imp because the proxy will be
reading the imp from persistent store. That is, the HiLoDataImp will be returned to
the Proxy by a call to PersistentImp.retrieve. However, in those rare cases
where the retrieve function does not find an object in the persistent store, HiLo-
DataProxy is going to have to create an empty HiLoDataImp.

So, it looks like we need another factory that knows how to create HiLoDataImp
instances, and that the proxy can call. This means more packages and more Scope
classes, etc.

Is this really necessary? Probably not in this case. We created the factory for the
proxy because we wanted TemperatureHiLo to be able to work with many differ-
ent persistence mechanisms. Thus we had a solid benefit to justify the DataTookit
factory. But what benefit would be obtain from interposing a factory between HiLo-
DataProxy and HiLoDataImp? If there could be many different implementations
of HiLoDataImp, and if we wanted the proxy to work with them all, then we might be
justified.

However, we don’t believe that the requirements are quite that volatile. The
wmsDataImp package contains weather monitoring policies and business rules that
have remained unchanged for quite awhile. It seems unlikely that they will be chang-
ing any time in the future. This may sound like famous last words, but you have to
draw the line somewhere. In this case, we have decided that the dependency from the

Figure 3-23

DataToolkit
«interface»

wmsdata.Scope
«utility»

DataToolkitImp persistence.
Scope«creates»

«utility»

Chapter 3: 99

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

proxy to the imp does not represent a big maintenance risk; and we will live without
the factory.

Conclusion

The design so far sets the stage for keeping the rest of the historical data in persistent
store. We will create other proxies and imps that will continue the separation of per-
sitence mechanisms and policy.

The reader should take note of our use of design diagrams and code as a way to ana-
lyze the problem. We have pursued the understanding of this problem using any and
every tool at our disposal, including class diagrams, sequence diagrams, and even
code. This is normal and healthy.

But the time for exploratory diagrams has passed. We have a good understanding of
the issues facing us, and it is now time to start developing in earnest. We will continue
with phase II of the weather monitoring system in another chapter.

(The code for Phase I of the Weather Monitoring System is available at http://
www.oma.com/ooadwa3/code/wm1)

100 Bibliography:Implementing the HiLo algorithms.

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

Bibliography

[GOF95]: Design Patterns, Gamma, et. al., Addison Wesley, 1995

[Meyer97]: Object Oriented Software Construction, 2d. ed. Bertrand Meyer, Pren-
tice Hall, 1997

[JAVA98]: The Java Programming Language, 2d. ed., Ken Arnold and James Gos-
ling, Addison Wesley, 1998

[Granularity96]: Granularity, Robert C. Martin, C++ Report, Nov-Dec, 1996

[DIP96]: The Dependency Inversion Principle, Robert C. Martin, C++ Report, May,
1996

Chapter 3: 101

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

Nimbus-LC Requirements

Usage Requirements

This system shall provide automatic monitoring of various weather conditions. Spe-
cifically, it must measure:

• Wind speed and direction

• Temperature

• Barometric pressure

• Relative Humidity

• Wind chill

• Dew point temperature

The system shall also provide an indication of the current trend in the barometric
pressure reading. The three possible values include stable, rising, and falling. For
example, the current barometric pressure is 29.95 inches of mercury (IOM) and fall-
ing.

The system shall have a display which continuously indicates all measurements, as
well as the current time and date.

24-Hour History

Through the use of a touch screen the user may direct the system to display the 24
hour history of any of the following measurements:

• Temperature

• Barometric Pressure

• Relative Humidity

This history shall be presented to the user in the form a line chart (see Figure 3-24

User Setup

The system shall provide the following facilities to the user to allow the station to be
configured during installation.

• Setting the current time, date, and time zone.

• Setting the units that will be displayed (english or metric)

102 Nimbus-LC Requirements:Administrative Requirements

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

Administrative Requirements

The system shall provide a security mechanism for access to the administrative
functions of the weather station. These functions include:

• Calibrating the sensors against known values

• Resetting the station

Figure 3-24
Temperature History

Temperature 12/10/97 7:42:04
High: 72 Low: 19

0
10
20
30
40
50
60
70
80

8:
00

10
:0

0
12

:0
0

14
:0

0
16

:0
0

18
:0

0
20

:0
0

22
:0

0
0:

00
2:

00
4:

00
6:

00

Time

T
em

p
er

at
u

re

Chapter 3: 103

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

Nimbus-LC Elaboration Phase

Introduction

This document describes the deliverable for the elaboration phase of the Weather
Monitoring Station project. This phase of the project takes attempts to transform the
requirements document into a set of use cases. The deliverable for this phase of the
project are as follows:

• Actors

This phase of the project identifies the actors for the weather station.

• Use Cases (primary and secondary)

The use cases specify the interaction that occurs between the actors and the sys-
tem. It is important to note that use cases do not describe the details of how the
system will accomplish the task.

Referenced Documents

• Weather Monitoring Station - Requirements

• Weather Monitoring Station - Hardware Description

Actors

In this system there are two distinct roles played by users.

User. This actor views the real-time weather information that
the station is measuring. It also interacts with the system to dis-
play the historical data associated with the individual sensors.

Administrator. The role played by this actor is one of admin-
istering the system. This administration includes controlling the
security aspects of the system, calibrating the individual sensors,
setting the time/date, setting units of measure, and resetting the
station when required.

User

Administrator

104 Nimbus-LC Elaboration Phase:Use Cases

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

Use Cases

Once the actors have been defined the next step is to synthesize this information with
the requirements document to describe the interaction between the newly identified
actors and the system.

Use Case #1: Monitor Weather
Data. The system will display the
current temperature, barometric pres-
sure, relative humidity, wind speed,
wind direction, wind chill temperature,
dew point, and barometric pressure
trend.

Measurement History

The system will display a chart depicting the previous 24 hours of readings from the
sensors in the system. The type of chart is line oriented. In addition to the chart the
system will display the current time and date and the highest and lowest readings
from the previous 24 hours.

Use Case #2: View Tempera-
ture History. The system will dis-
play the history of the temperature
readings.

User Case #3: View Baromet-
ric Pressure History. The system
will display the history of the baromet-
ric pressure readings.

User

Monitor Weather
Data

User

View
Temperature

History

User

View Barometric
Pressure History

Chapter 3: 105

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

Use Case #4: View
Relative Humidity
History. . The system
will display the history of
the relative humidity read-
ings.

Setup

Use Case #5: Set
Units. The administrator
sets the type of units that
will be displayed. The
choices are between english
and metric values. The
default is metric.

Use Case #6: Set
Date. The administrator
will set the current date.

Use Case #7: Set
Time. The administrator
will set the current time and
time zone for the system.

User

View Relative
Humidity History

User

Set Units

User

Set Date

User

Set Time

106 Nimbus-LC Elaboration Phase:Administration

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

Administration

Use Case #8: Reset
Weather Station. The
administrator has the ability
to reset the station back to
it’s factory default settings.
It is important to note that
this will erase all of the his-
tory that is stored in the sta-
tion and remove any

calibration that may have occurred. As one last check it will inform the administrator
of the consequences and prompt for a go/no go to reset the station.

Use Case #9: Cali-
brate Temperature
Sensor. The administra-
tor using a known good
source for the temperature
will enter that value into to
the system. The system shall
accept the value and use it
internally to calibrate that

actual reading with the readings it is currently measuring. For a detailed look at cali-
brating the sensors see the hardware description document.

Use Case #10: Cali-
brate Barometric
Pressure Sensor. The
administrator using a known
good source for the pressure
will enter that value into to
the system. The system shall
accept the value and use it
internally to calibrate that

actual reading with the readings it is currently measuring.

Administrator

Reset Weather
Station

Administrator

Calibrate
Temperature

Sensor

Administrator

Calibrate
Barometric

Pressure Sensor

Chapter 3: 107

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

Use Case #11: Cali-
brate Relative
Humidity Sensor. The
administrator using a known
good source for the humid-
ity will enter that value into
to the system. The system
shall accept the value and
use it internally to calibrate

that actual reading with the readings it is currently measuring.

Use Case #12: Cali-
brate Wind Speed
Sensor. The administra-
tor using a known good
source for the wind speed
will enter that value into to
the system. The system shall
accept the value and use it
internally to calibrate that

actual reading with the readings it is currently measuring.

Use Case #13: Cali-
brate Wind Direction
Sensor. The administra-
tor using a known good
source for the wind direction
will enter that value into to
the system. The system shall
accept the value and use it
internally to calibrate that

actual reading with the readings it is currently measuring.

.Use Case #14: Cali-
brate Dew Point Sen-
sor. The administrator
using a known good source
for the dew point will enter
that value into to the system.
The system shall accept the

Administrator

Calibrate Relative
Humidity Sensor

Administrator

Calibrate Wind
Speed Sensor

Administrator

Calibrate Wind
Direction Sensor

Administrator

Calibrate Dew
Point Sensor

108 Nimbus-LC Elaboration Phase:Administration

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

value and use it internally to calibrate that actual reading with the readings it is cur-
rently measuring

Use Case #15: Cali-
bration Log. The sys-
tem will show the adminis-
trator the calibration history
of the unit. This history
includes the time and date of
the calibration, the sensor
calibrated, and the value that
was used to calibrate the

sensor.

Administrator

View Calibration
Log

Chapter 3: 109

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

Nimbus-LC Construction Plan

Introduction

The implementation of the weather station will be done in a series of iterations. Each
iteration will build on what has been done previously until we have provided the func-
tionality which is required for release to the customer. This document outlines three
construction phases for this project. Some argue there should be a strong correlation
between the explicit use cases and the outputs of the construction phases. This is
often at odds with I believe the main goal of the small construction phases, the reduc-
tion of risk. As is the case in most real projects there is a mixture between the two.
The first phase of this project will complete no use cases in their entirety. However, it
does reduce what is believed to be the main set of risks for the project.

Construction Phase I

The first phase of construction has two goals. The first is to create an architecture that
will support the bulk of the application in a manner that is independent of the Nimbus
hardware platform. The second goal is to manage the two biggest risks.

1. Getting the old Nimbus 1.0 API to work on the processor board with a new operat-
ing system.

This is certainly doable, but it is very hard to estimate how long this will take
because we cannot anticipate all the incompatibilities.

2. The Java Virtual Machine.

We have never used a JVM on an embedded board before. We don’t know if it will
work with our operating system; or even if it correctly implements all of the Java
byte codes properly. Our suppliers assure us that everything will be fine, but we
still percieve a significant risk.

The integration of the JVM with the touch screen and graphics subsystem is proceed-
ing in parallel with this construction phase. It is expected to be complete prior to the
beginning of the second phase.

Risks

1. Operating System upgrade - We currently use an older version of this OS on our
board. In order to use the JVM we need to upgrade to the latest version of the OS.
This also requires us to use the latest version of the development tools.

110 Nimbus-LC Construction Plan:Deliverable(s)

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

2. The OS vendor is providing the latest version of the JVM on this version of the OS
In order to stay current we want to use the 1.2 version of the JVM. However, V1.2
is currently in beta and will change during the construction of the project.

3. Java Native Interface to the board level “C” API needs to be verified in the new
architecture.

4. Basic changes in the Java language and libraries that may occur as part of the pro-
cess from beta to released version of the JVM, which should occur in the middle
of the year.

Deliverable(s)

1. Our hardware running the new OS along with the latest version of the JVM.

2. A streaming output which will display the current temperature and barometric
pressure readings (throw away code not used in final release)

3. When ther is a change in the barometric pressure the system will inform us if the
pressure is risong, falling or stable.

4. Every hour the system will display the past 24 hours of measurements for the tem-
perature and barometric pressure. This data will be persistent in that we can cycle
the power on the unit and the data will be saved.

5. Every day at 12:00 AM the system will display the high and low temperature and
brometric prerssure for the previous day.

6. All measurements will be in the metric system.

Construction Phase II

During this phase of the project the basis for the user interface is added to the first
construction phase. No additional measurements are added. The only change to the
measurements themselves is the addition of the calibration mechanism. The primary
focus in this phase is on the presentation of the system. The major risk is the software
interface to the LCD panel/Touch Screen. Also, since this is the first release that will
display the UI in a form that can be shown to the user we may begin to have some
churn in the requirements. In addition to the software, we will also be delivering a
specification for the new hardware. This is the main reason for the addition of the cal-
ibration to this phase of the project. This API will be specified in Java.

Use Cases Implemented

• #2 - View Temperature History

• #3 - View Barometric Pressure History

Chapter 3: 111

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

• #5 - Set Units

• #6 - Set Date

• #7 - Set Time/Time Zone

• #9 - Calibrate Temperature Sensor

• #10 - Calibrate Barometric Pressure Sensor

Risks

1. The LCD Panel/Touch Screen interface to the Java Virtual Machine needs to be
tested on the actual hardware.

2. Requirements Changes

3. Changes in the JVM. Along with changes in the Java Foundation Classes as they
proceed from beta to released form.

Deliverable(s)

1. A system that executes and provides all of the functionality specified in the use
cases listed above.

2. The Temperature, Barometric Pressure, and Time/Date portion of Use Case #1
will also be implemented.

3. The GUI portion of the software architecture will be completed as part of this
phase.

4. The administrative portion of the software will be implemented to support the
temperature and barometric pressure calibrations.

5. A specification for the new hardware API specified in Java instead of “C”.

Construction Phase III

This is the final construction phase prior to customer release of the product. In this
phase we round out the implementation providing the balance of the functionality
required to release the product.

Use Cases Implemented

• #1 - Monitor Weather Data

• #4 - View Relative Humidity History

• #8 - Reset Weather Station

112 Nimbus-LC Construction Plan:Risks

This is a preliminary chapter of Object Oriented Analysis and Design with Applications, 2d. ed., Grady Booch, Robert C,
Martin, James Newkirk. Copyright © 1998, by Addison Wesley Longman, Inc. No portion of this document may be repro-
duced without the written permission of Addison Wesley Longman, Inc.

• #11 - Calibrate Relative Humidity Sensor

• #12 - Calibrate Wind Speed Sensor

• #13 - Calibrate Wind Direction Sensor

• #14 - Calibrate Dew Point Sensor

• #15 - Calibration Log

Risks

1. Requirements Changes - It is expected as more of the product is completed there
may be changes required.

2. Completion of the entire product may indicate changes to the Hardware API that
was specified at the end of Construction Phase II.

3. Limits of Hardware - As we complete the product we may run into limitations of
the hardware (i.e. memory, CPU, etc.)

Deliverable(s)

1. The new software running on the old hardware platform.

2. A specification for the new hardware that has been validated with this implemen-
tation.

