Solutions for Selected Exercises
from Basics of Compiler Design

Torben A. Mogensen
Last update: April 16, 2007

1 Introduction

This document provides solutions for selected exercises from “Basics of Compiler
Design”.

Note that in some cases there can be several equally valid solutions, of which
only one is provided here. If your own solutions differ from those given here, you
should use your own judgement to check if your solution is correct.

2 Exercises for chapter 2

Exercise 2.1
a) 042

b) The number must either be a one-digit number, a two-digit number different
from 42 or have at least three significant digits:

0°([0—9] | [1-3][0—9] [4[0—1] |4[3—9] | [5—9][0—9] | [1 -9][0—9][0—9]")

¢) The number must either be a two-digit number greater than 42 or have at
least three significant digits:

0"(4[3—9] [[5—9][0—9] | [1 —9][0—9][0—9]")

Exercise 2.2

a)
€
b)
A = e-closure({1}) = {1,2,3,4,5}
B = move(A,a) = ¢e-closure({1,6}) = {1,6,2,3,4,5}
C = move(A,Db) = ¢&-closure({6}) = {6}
D = move(B,a) = e-closure({1,6,7}) = {1,6,7,2,3,4,5}
move(B,Db) = ¢&-closure({6}) = C
E = move(C,a) = ¢e-closure({7}) = {7}
move(C,b) = e-closure({}) = {}
F = move(D,a) = e-closure({1,6,7,8}) = {1,6,7,8,2,3,4,5}
move(D,D) = ¢&-closure({6}) = C
G = move(E,a) = ¢&-closure({8}) = {8}
move(E,Db) = ¢e-closure({}) = {}
move(F,a) = e-closure({1,6,7,8}) = F
move(F,b) = ¢&-closure({6}) = C
move (G, a) = e-closure({}) = {}
move(G,b) = e-closure({}) = {}

States F and G are accepting since they contain the accepting NFA state 8.
In diagram form, we get:

Exercise 2.5

We start by noting that there are no dead states, then we divide into groups of
accepting and non-accepting states:

0 = {0}
A = {1,2,3,4}

We now check if group A is consistent:

We see that we must split A into two groups:

B = {1,2}
c = {3,4

And we now check these, starting with B:

Bla b
1B —
21C —

So we need to split B into it individual states. The only non-singleton group left
i1s C, which we now check:

INEN)
aqe
o olT

This is consistent, so we can see that we could only combine states 3 and 4 into a
group C. The resulting diagram is:

Exercise 2.7

a)

b)

~
O

Exercise 2.8
)))

Exercise 2.9

a) The number must be O or end in two zeroes:

b) We use that reading a O is the same as multiplying by 2 and reading a 1 is the
same as multiplying by two and adding 1. So of we have remainder m, read-
ing a 0 gives us remainder (2m)mod 5 and reading a 1 gives us remainder
(2m+ 1) mod 5. We can make the following transition table:

(e)
—

AUJNHO‘E
W= KO
AN O W=

The state corresponding to m = 0 is accepting. We must also start with
remainder 0, but since the empty string isn’t a valid number, we can’t use
the accepting state as start state. So we add an extra start state 0 that has
the same transitions as 0, but isn’t accepting:

¢) If n = a2, the binary number for n is the number for a followed by b
zeroes. We can make a DFA for an odd number a in the same way we did
for 5 above by using the rules that reading a O in state m gives us a transition
to state (2m)mod a and reading a 1 in state m gives us a transition to state
(2m+ 1)mod a. If we (for now) ignore the extra start state, this DFA has a
states. This is minimal because a and 2 (the base number of binary numbers)
are relative prime (a complete proof requires some number theory).

If b = 0, the DFA for n is the same as the DFA constructed above for a, but
with one extra start state as we did for the DFA for 5, so the total number of
states is a + 1.

If b > 0, we take the DFA for a and make b extra states: 01, 02,..., 0p. All
of these have transitions to state 1 on 1. State O is changed so it goes to state
07 on O (instead of to itself). Fori=1,..., b— 1, state 0; has transition on 1
to O(;4 1) while 0, has transition to itself on 0. 0, is the only accepting state.
The start state is state O from the DFA for a. This DFA will first recognize a
number that is an odd multiple of a (which ends in a 1) and then check that
there are at least b zeroes after this. The total number of states is a + b.

So, if n is odd, the number of states for a DFA that recognises numbers
divisible by n is n, but if n = a 2b where a is odd and b > 0, then the
number of states is a + b.

Exercise 2.10
a)
Ols = s Dbecause L(¢)UL(s) =0UL(s) = L(s)
0s = ¢ Dbecause there are no strings in ¢ to put in front of strings in s
s¢ = ¢ because there are no strings in ¢ to put after strings in s
o* € because ¢* =¢|0pd* =¢|dp=¢
b)

O O

c) As there can now be dead states, the minimization algorithm will have to
take these into consideration as described in section 2.8.2.

Exercise 2.11

In the following, we will assume that for the regular language L, we have an NFA
N with no dead states.

Closure under prefix. When N reads a string w € L, it will at each prefix of w
be at some state s in N. By making s accepting, we can make N accept this prefix.
By making all states accepting, we can accept all prefixes of strings in L.

So an automaton N, that accepts the prefixes of strings in L is made of the same
states and transitions as N, with the modification that all states in N, accepting.

Closure under suffix. When N reads a string w € L, where w = uv, it will after
reading u be in some state s. If we made s the start state of N, N would hence
accept the suffix v of w. If we made all states of N into start states, we would
hence be able to accept all suffixes of strings in L. Since we are only allowed
one start state, we instead add €-transitions from the original start state to all other
states.

So an automaton N; that accepts all suffixes of strings in L is made of the same
states and transitions as N, with the modification that we add e-transitions from
the start state in N to all other state in V.

Closure under subsequences. A subsequence of a string w can be obtained by
deleting (or jumping over) any number of the letters in w. We can modify N to
jump over letters by for each transition s¢ on a letter ¢ add an &-transition s*
between the same pair of states.

So an automaton N, that accepts all subsequences of strings in L is made of the
same states and transitions as N, with the modification that we add an €-transitions
st whenever N has a transition sz.

Closure under reversal. We assume N has only one accepting state. We can
safely make this assumption, since we can make it so by adding an extra accepting
state f and make e-transitions from all the original accepting states to f and then
make f the only accepting state.

We can now make N accept the reverses of the strings from L by reversing all
transitions and swap start state and accepting state.

So an automaton N, that accepts all reverses of strings in L is made the follow-
ing way:

1. Copy all states (but no transitions) from N to N,.
2. The copy of the start state so from N is the only accepting state in N,..

3. Add a new start state s() to N, and make €-transitions from s6 to all states in
N, that are copies of accepting states from N.

4. When N has a transition s¢, add a transition t"“s’ to N,, where s’ and ¢’ are
the copies in N, of the states s and ¢ from N.

3 Exercises for chapter 3

Exercise 3.3

If we at first ignore ambiguity, the obvious grammar is

P —
P — (P)
P — PP

1.e., the empty string, a parentesis around a balanced sequence and a concatenation
of two balanced sequences. But as the last production is both left recursive and
right recursive, the grammar is ambiguous. An unambiguous grammar is:

P —
P—>(P)P

which combines the two last productions from the first grammar into one.

Exercise 3.4

a)
S —
S — aSbs
S — bSaS
Explanation: The empty string has the same number of as and bs. If a string
starts with an a, we find a b to match it and vice versa.
b)
A — AA
A — Sas
S —
S — aSbs
S — DbSaS

Explanation: Each excess a has (possibly) empty sequences of equal num-
bers of as and bs.

A
B

AA
SaS

BB
SbS

aSbS
bSas

Lt I R DY
L A A

Explanation: If there are more as than bs, we use A from above and other-
wise we use a similarly constructed B.

d)

aSaSbS
aSbSas
bSaSas

L

“Lhhn ”n ”n

Explanation: If the string starts with an a, we find later macthing as and bs,
if it starts with a b, we find two matching as.

Exercise 3.5

a)

B — ¢

B — 0,
B — 0,
0O, — (B
O, — [B)B
0, — [B
0, — 010
C, —)B
C; — |B
G — G

B is “balanced”, O/C are “open one” and “close one”, and O,/C; are “open
two”” and “close two”.

b)
B
\
B G
i 0\]\ A Cil\ / 0\2 A C\l\ / C\]
[B) B (B]1 B [B (Bl B) B
| | | | | | | |
€ € € € € € € €
Exercise 3.6
The string —id — id has these two syntax trees:
A A
/ \
A A
\ /
A A
\ \
- id - id - id - id
We can make these unambiguous grammars:
a): A — A—id b): A —- —-A
A — B A — B
B — —-B B — B-—id
B — id B — id

The trees for the string —id — id with these two grammars are:

10

A A
/
\A A
| |
B B
yd N
B \ / B
| |
— id - id — id - id

Exercise 3.9

We first find the equations for Nullable:

Nullable(A) = Nullable(BAa)\ Nullable(¢)
Nullable(B) = Nullable(bBc) V Nullable(AA)

This trivially solves to

Nullable(A) = true
Nullable(B) = true

Next, we set up the equations for FIRST:

FIRST(A) = FIRST(BAa)UFIRST(g)
FIRST(B) = FIRST(bBc)UFIRST(AA)

Given that both A and B are Nullable, we can reduce this to

FIRST(A) = FIRST(B)UFIRST(A)U{a}
FIRST(B) {bY UFIRST(A)

which solve to

FIRST(A) = {a,b}
FIRST(B) = {a,b}

Finally, we add the production A" — $ and set up the constraints for FOLLOW:

11

($) C FOLLOW(A)
FIRST(Ad) ~ C FOLLOW(B)
{a} C FOLLOW(A)
{c} C FOLLOW(B)
FIRST(A) ~ C FOLLOW(A)
FOLLOW(B) C FOLLOW(A)

which we solve to

FOLLOW(A) = {a,b,c,$}
FOLLOW(B) = {a,b,c}

Exercise 3.10

Exp — numExp
Exp — (Exp)Exp
Expy — + Exp Exp
Expy, — — Exp Exp;
Expy — xExp Expp
Expy — [Exp Exp;
Exp; —

Exercise 3.11

Nullable for each right-hand side is trivially found to be:

Nullable(Exp2 Exp') = false
Nullable(+ Exp2 Exp') = false
Nullable(— Exp2 Exp') = false
Nullable() = ftrue

Nullable(Exp3 Exp2’) = false
Nullable(x Exp3 Exp2') = false
Nullable(/ Exp3 Exp2') = false
Nullable() = ftrue

Nullable(num) = false
Nullable((Exp)) = false

The FIRST sets are also easily found:

12

FIRST (Exp2 Exp') = {num, (}
FIRST (+ Exp2 Exp') = {+}
FIRST (— Exp2 Exp') = {-}
FIRST() = {}
FIRST(Exp3 Exp2) = {num, (}
FIRST (x Exp3 Exp2') = {x}
FIRST(/ Exp3 Exp2') = {/}
FIRST() = {}
FIRST (num) = {num}
FIRST((Exp)) = {(}

Exercise 3.12

We get the following constraints for each production (abbreviating FIRST and
FOLLOW to FI and F O and ignoring trivial constraints like FO(Expy C FO(Expy)):

Exp’ — Exp$: $€ FO(Exp)

Exp — numExp; : FO(Exp) CFO(Exp)

Exp — (Exp)Expy :)€FO(Exp), FO(Exp) C FO(Exp)

Expy — + Exp Exp (Exp1) CFO(Exp), FO(Exp1) C FO(Exp)
Expy — — Exp Exp FI(Exp,) CFO(Exp), FO(Exp;) C FO(Exp)
Expy — xExpExp; : FI(Exp)) CFO(Exp), FO(Exp;) C FO(Exp)
Expy, — /| Exp Exp FI(Exp;) C FO(Exp), FO(Exp;) C FO(Exp)
Exp; —

As FI(Expy) ={+, —, *, /}, we get

FO(Exp) =FO(Expy) ={+,—,%*,/,),$}

Exercise 3.13

The table is too wide for the page, so we split it into two, but for layout only (they
are used as a single table).

| num + — *

7

Exp Exp' — Exp$

Exp | Exp — numExp

Exp, Expy — +ExpExpy Expy — —ExpExpy Exp; — xExpExp
Expi — Exp) — Exp —

13

/ () $

Exp’ Exp' — Exp$
Exp Exp — (Exp)Exp;
Expy — /ExpEx
Expi 1 Ex1/71 _{) 1 Expy — Exp) —

Note that there are several conflicts for Expj, which isn’t surprising, as the gram-
mar is ambiguous.

Exercise 3.14
a)
E — numk’
E' — E+E
E — ExE'
E —
b)
E — numkE’
E' — EAux
E' —
Aux — +E'
Aux — xE’
c)
Nullable | FIRST
E —numE’ | false {num} | FOLLOW
E' — EAux | false {num} E | {+,%$}
E — true {} E" | {+, % $}
Aux — +E' | false {+} Aux | {+, *, $}
Aux — xE' | false *
d)
num + * $
E |E —numkE’
E' |E' - EAux E — E — E —
Aux Aux — +E' Aux — xE’

14

Exercise 3.19
a) We add the production 7/ — T.

b) We add the production 7" — T'$ for calculating FOLLOW. We get the
constraints (omitting trivially true constraints):

" — T'$: $€ FOLLOW(T')

T — T : FOLLOW(T') C FOLLOW(T)
T — T—>T : —>cFOLLOW(T)

T — TxT : x€FOLLOW(T)

T — int :

which solves to

FOLLOW(T') = {$}

FOLLOW(T) = {$,— >, %}
¢) We number the productions:
oo T — T
. T — T—>T
22 T — TxT
32 T — int

and make NFAs for each:

T

=),

~ ~

" [

v

~ ~
@, @

int

:U.)

We then add epsilon-transitions:

€
"A|C,GK
C|CGK
E | CGK
G|CGK
I |C,GK

and convert to a DFA (in tabular form):

state | NFA states | int -> * | T
0] ACG K| sl g2
1|L
2| B,D,H s3 s4
3/EC,G,K | sl g5
41 1,C, G, K | sl g6
5|1FD,H s3 s4
6|J,D,H s3 s4

and add accept/reduce actions according to the FOLLOW sets:

state | NFA states | int —> * $ | T
0] ACG,K | sl g2
1|L r3 3 3
2| B,D,H s3 s4 acc
3/EC,G,K | sl g5
4| 1,C,G K | sl g6
5| FD,H s3/rl sd/rl rl
6|J,D,H s3/r2 sd4/r2 12

d) The conflict in state 5 on -> is between shifting on -> or reducing to pro-
duction 1 (which contains ->). Since -> is right-associative, we shift.

The conflict in state 5 on * is between shifting on * or reducing to production
1 (which contains ->). Since * binds tighter, we shift.

The conflict in state 6 on —> is between shifting on -> or reducing to pro-
duction 2 (which contains *). Since * binds tighter, we reduce.

The conflict in state 6 on * is between shifting on * or reducing to production
2 (which contains *). Since * is left-associative, we reduce.

The final table is:

16

state | int -> * $ | T
0] sl g2
1 3 r3 13
2 s3 s4 acc
3] sl g5
4| sl g6
5 s3 s4 rl
6 2 r2 r2

Exercise 3.20

The method from section 3.16.3 can be used with a standard parser generator and
with an unlimited number of precedences, but the restructuring of the syntax tree
afterwards is bothersome. The precedence of an operator needs not be known at
the time the operator is read, as long as it is known at the end of reading the syntax
tree.

Method a) requires a non-standard parser generator or modification of a gen-
erated parser, but it also allows an unlimited number of precedences and it doesn’t
require restructuring afterwards. The precedence of an operator needs to be known
when it is read, but this knowledge can be aquired earlier in the same parse.

Method b) can be used with a standard parser generator. The lexer has a rule
for all possible operator names and looks up in a table to find which token to
use for the operator (similar to how, as described in section 2.9.1, identifiers can
looked up in a table to see if they are keywords or variables). This table can
be updated as a result of a parser action, so like method a), precedence can be
declared earlier in the same parse, but not later. The main disadvantage is that the
number of precedence levels and the associativity of each level is fixed in advance,
when the parser is constructed.

Exercise 3.21

a) The grammar describes the language of all even-length palindromes, i.e.,
strings that are the same when read forwards or backwards.

b) The grammar is unambiguous, which can be proven by induction on the
length of the string: If it is 0, the last production is the only that matches. If
greater than O, the first and last characters in the string uniquely selects the
first or second production (or fails, if none match). After the first and last
characters are removed, we are back to the original parsing problem, but on
a shorter string. By the induction hypothesis, this will have a unique syntax
tree.

17

¢) We add a start production A’ — A) and number the productions:

0. A
1. A
2. A
3 A

Ll

A
alAa
bAD

We note that FOLLOW (A) = {a, b, $} and make NFAs for each production:

We then add epsilon-transitions:

and convert to a DFA (in tabular form) and add accept/reduce actions:

state | NFA states | a b $ | A
0|ACGK |sl/h3 23 13 | g3
1| D,C,G,K |slh3 23 13 | g4
2 H,C, G, K |s1/3 23 13 | g5
3B acc
4| E s6
511 87
6 | F rl rl rl
717 2 12 12

18

d) Consider the string aa. In state 0, we shift on the first a to state 1. Here
we are given a choice between shifting on the second a or reducing with the
empty reduction. The right action is reduction, so r3 on a in state 1 must be
preserved.

Consider instead the string aaaa. After the first shift, we are left with the
same choice as before, but now the right action is to do another shift (and
then a reduce). So sl on a in state 1 must also be preserved.

Removing any of these two actions will, hence, make a legal string un-
parseable. So we can’t remove all conflicts.

Some can be removed, though, as we can see that choosing some actions
will lead to states from which there are no legal actions. This is true for the
r3 actions in a and b in state 0, as these will lead to state 3 before reaching
the end of input. The r3 action on b in state 1 can be removed, as this would
indicate that we are at the middle of the string with an a before the middle
and a b after the middle. Similarly, the r3 action on a in state 2 can be
removed. But we are still left with two conflicts, which can not be removed:

state | a b $ | A
0| sl s2 3 | g3
1|slh3 s2 3 | g4
21 sl 23 13 | g5
3 acc
41 s6
5| s7
6| rl rl rl
T 12 12 12

19

