

1

The Open-Closed Principle

This is the first of my

Engineering Notebook

 columns for

The C++ Report

. The articles
that will appear in this column will focus on the use of C++ and OOD, and will address
issues of software engineering. I will strive for articles that are pragmatic and directly use-
ful to the software engineer in the trenches. In these articles I will make use of Booch’s
notation for documenting object oriented designs. The sidebar provides a brief lexicon of
Booch’s notation.

There are many heuristics associated with object oriented design. For example, “all
member variables should be private”, or “global variables should be avoided”, or “using
run time type identification (RTTI) is dangerous”. What is the source of these heuristics?
What makes them true? Are they

always

 true? This column investigates the design princi-
ple that underlies these heuristics -- the open-closed principle.

As Ivar Jacobson said: “All systems change during their life cycles. This must be
borne in mind when developing systems expected to last longer than the first version.”

1

How can we create designs that are stable in the face of change and that will last longer
than the first version? Bertrand Meyer

2

 gave us guidance as long ago as 1988 when he
coined the now famous open-closed principle. To paraphrase him:

S

OFTWARE

ENTITIES

 (

CLASSES

,

MODULES

,

FUNCTIONS

,

ETC

.)

SHOULD

BE

OPEN

FOR

EXTENSION

,

BUT

CLOSED

FOR

MODIFICATION

.

When a single change to a program results in a cascade of changes to dependent modules,
that program exhibits the undesirable attributes that we have come to associate with “bad”
design. The program becomes fragile, rigid, unpredictable and unreusable. The open-
closed principle attacks this in a very straightforward way. It says that you should design
modules that

never change

. When requirements change, you extend the behavior of such
modules by adding new code, not by changing old code that already works.

Description

Modules that conform to the open-closed principle have two primary attributes.

1. Object Oriented Software Engineering a Use Case Driven Approach, Ivar Jacobson, Addison
Wesley, 1992, p 21.

2. Object Oriented Software Construction, Bertrand Meyer, Prentice Hall, 1988, p 23

2

Description

1. They are “Open For Extension”.

This means that the behavior of the module can be extended. That we can make
the module behave in new and different ways as the requirements of the applica-
tion change, or to meet the needs of new applications.

2. They are “Closed for Modification”.

The source code of such a module is inviolate. No one is allowed to make source
code changes to it.

It would seem that these two attributes are at odds with each other. The normal way to
extend the behavior of a module is to make changes to that module. A module that cannot
be changed is normally thought to have a fixed behavior. How can these two opposing
attributes be resolved?

Abstraction is the Key.

In C++, using the principles of object oriented design, it is possible to create abstractions
that are fixed and yet represent an unbounded group of possible behaviors. The abstrac-
tions are abstract base classes, and the unbounded group of possible behaviors is repre-
sented by all the possible derivative classes. It is possible for a module to manipulate an
abstraction. Such a module can be closed for modification since it depends upon an
abstraction that is fixed. Yet the behavior of that module can be extended by creating new
derivatives of the abstraction.

Figure 1 shows a simple design that does not conform to the open-closed principle.
Both the

Client

 and

Server

 classes are concrete. There is no guarantee that the mem-
ber functions of the

Server

 class are virtual. The

Client

 class

uses

 the

Server

 class.
If we wish for a

Client

 object to use a different server object, then the

Client

 class
must be changed to name the new server class.

Figure 2 shows the corresponding design that conforms to the open-closed principle.
In this case, the

AbstractServer

 class is an abstract class with pure-virtual member
functions. the

Client

 class uses this abstraction. However objects of the

Client

 class
will be using objects of the derivative

Server

 class. If we want

Client

 objects to use a
different server class, then a new derivative of the

AbstractServer

 class can be cre-
ated. The

Client

 class can remain unchanged.

Figure 1

Closed Client

Client Server

3

: The Open-Closed Principle

The

Shape

 Abstraction

Consider the following example. We have an application that must be able to draw circles
and squares on a standard GUI. The circles and squares must be drawn in a particular
order. A list of the circles and squares will be created in the appropriate order and the pro-
gram must walk the list in that order and draw each circle or square.

In C, using procedural techniques that do not conform to the open-closed principle,
we might solve this problem as shown in Listing 1. Here we see a set of data structures
that have the same first element, but are different beyond that. The first element of each is
a type code that identifies the data structure as either a circle or a square. The function

DrawAllShapes

 walks an array of pointers to these data structures, examining the type
code and then calling the appropriate function (either

DrawCircle

 or

DrawSquare

).

Figure 2

Open Client

Listing 1

Procedural Solution to the Square/Circle Problem

enum ShapeType {circle, square};

struct Shape
{
 ShapeType itsType;
};

struct Circle
{
 ShapeType itsType;
 double itsRadius;
 Point itsCenter;
};

Client Abstract
Server

Server

A

4

The Shape Abstraction

The function

DrawAllShapes

 does not conform to the open-closed principle
because it cannot be closed against new kinds of shapes. If I wanted to extend this function
to be able to draw a list of shapes that included triangles, I would have to modify the func-
tion. In fact, I would have to modify the function for any new type of shape that I needed
to draw.

Of course this program is only a simple example. In real life the

switch

 statement in
the

DrawAllShapes

 function would be repeated over and over again in various func-
tions all over the application; each one doing something a little different. Adding a new
shape to such an application means hunting for every place that such

switch

 statements
(or

if/else

 chains) exist, and adding the new shape to each. Moreover, it is very
unlikely that all the

switch

 statements and

if/else

 chains would be as nicely struc-
tured as the one in

DrawAllShapes

. It is much more likely that the predicates of the

if

struct Square
{
 ShapeType itsType;
 double itsSide;
 Point itsTopLeft;
};

//
// These functions are implemented elsewhere
//
void DrawSquare(struct Square*)
void DrawCircle(struct Circle*);

typedef struct Shape *ShapePointer;

void DrawAllShapes(ShapePointer list[], int n)
{
 int i;
 for (i=0; i<n; i++)
 {
 struct Shape* s = list[i];
 switch (s->itsType)
 {
 case square:
 DrawSquare((struct Square*)s);
 break;

 case circle:
 DrawCircle((struct Circle*)s);
 break;
 }
 }
}

Listing 1 (Continued)

Procedural Solution to the Square/Circle Problem

5

: The Open-Closed Principle

statements would be combined with logical operators, or that the

case

 clauses of the

switch

 statements would be combined so as to “simplify” the local decision making.
Thus the problem of finding and understanding all the places where the new shape needs
to be added can be non-trivial.

Listing 2 shows the code for a solution to the square/circle problem that conforms to
the open-closed principle. In this case an abstract

Shape

 class is created. This abstract
class has a single pure-virtual function called

Draw

. Both

Circle

 and

Square

 are
derivatives of the

Shape

 class.

Note that if we want to extend the behavior of the

DrawAllShapes

 function in
Listing 2 to draw a new kind of shape, all we need do is add a new derivative of the

Shape

 class. The

DrawAllShapes

 function does not need to change. Thus

DrawAllShapes

 conforms to the open-closed principle. Its behavior can be extended
without modifying it.

In the real world the

Shape

 class would have many more methods. Yet adding a new
shape to the application is still quite simple since all that is required is to create the new
derivative and implement all its functions. There is no need to hunt through all of the
application looking for places that require changes.

Since programs that conform to the open-closed principle are changed by adding new
code, rather than by changing existing code, they do not experience the cascade of changes
exhibited by non-conforming programs.

Listing 2

OOD solution to Square/Circle problem.

class Shape
{
 public:
 virtual void Draw() const = 0;
};

class Square : public Shape
{
 public:
 virtual void Draw() const;
};

class Circle : public Shape
{
 public:
 virtual void Draw() const;
};

void DrawAllShapes(Set<Shape*>& list)
{
 for (Iterator<Shape*>i(list); i; i++)
 (*i)->Draw();
}

6

Strategic Closure

Strategic Closure

It should be clear that no significant program can be 100% closed. For example, consider
what would happen to the

DrawAllShapes

 function from Listing 2 if we decided that
all

Circles

 should be drawn before any Squares. The DrawAllShapes function is
not closed against a change like this. In general, no matter how “closed” a module is, there
will always be some kind of change against which it is not closed.

Since closure cannot be complete, it must be strategic. That is, the designer must
choose the kinds of changes against which to close his design. This takes a certain amount
of prescience derived from experience. The experienced designer knows the users and the
industry well enough to judge the probability of different kinds of changes. He then makes
sure that the open-closed principle is invoked for the most probable changes.

Using Abstraction to Gain Explicit Closure.

How could we close the DrawAllShapes function against changes in the ordering
of drawing? Remember that closure is based upon abstraction. Thus, in order to close
DrawAllShapes against ordering, we need some kind of “ordering abstraction”. The
specific case of ordering above had to do with drawing certain types of shapes before other
types of shapes.

An ordering policy implies that, given any two objects, it is possible to discover which
ought to be drawn first. Thus, we can define a method of Shape named Precedes that
takes another Shape as an argument and returns a bool result. The result is true if the
Shape object that receives the message should be ordered before the Shape object
passed as the argument.

In C++ this function could be represented by an overloaded operator< function.
Listing 3 shows what the Shape class might look like with the ordering methods in place.

Now that we have a way to determine the relative ordering of two Shape objects, we
can sort them and then draw them in order. Listing 4 shows the C++ code that does this.
This code uses the Set, OrderedSet and Iterator classes from the Components
category developed in my book3 (if you would like a free copy of the source code of the
Components category, send email to rmartin@oma.com).

This gives us a means for ordering Shape objects, and for drawing them in the appro-
priate order. But we still do not have a decent ordering abstraction. As it stands, the indi-
vidual Shape objects will have to override the Precedes method in order to specify
ordering. How would this work? What kind of code would we write in Circle::Pre-
cedes to ensure that Circles were drawn before Squares? Consider Listing 5.

3. Designing Object Oriented C++ Applications using the Booch Method, Robert C. Martin, Pren-
tice Hall, 1995.

7 : The Open-Closed Principle

It should be very clear that this function does not conform to the open-closed princi-
ple. There is no way to close it against new derivatives of Shape. Every time a new deriv-
ative of Shape is created, this function will need to be changed.

Using a “Data Driven” Approach to Achieve Closure.

Closure of the derivatives of Shape can be achieved by using a table driven approach
that does not force changes in every derived class. Listing 6 shows one possibility.

By taking this approach we have successfully closed the DrawAllShapes function
against ordering issues in general and each of the Shape derivatives against the creation
of new Shape derivatives or a change in policy that reorders the Shape objects by their
type. (e.g. Changing the ordering so that Squares are drawn first.)

Listing 3
Shape with ordering methods.
class Shape
{
 public:
 virtual void Draw() const = 0;
 virtual bool Precedes(const Shape&) const = 0;

 bool operator<(const Shape& s) {return Precedes(s);}
};

Listing 4
DrawAllShapes with Ordering
void DrawAllShapes(Set<Shape*>& list)
{
 // copy elements into OrderedSet and then sort.
 OrderedSet<Shape*> orderedList = list;
 orderedList.Sort();

 for (Iterator<Shape*> i(orderedList); i; i++)
 (*i)->Draw();
}

Listing 5
Ordering a Circle
bool Circle::Precedes(const Shape& s) const
{
 if (dynamic_cast<Square*>(s))
 return true;
 else
 return false;
}

8Strategic Closure

Listing 6
Table driven type ordering mechanism
#include <typeinfo.h>
#include <string.h>
enum {false, true};
typedef int bool;

class Shape
{
 public:
 virtual void Draw() const = 0;
 virtual bool Precedes(const Shape&) const;

 bool operator<(const Shape& s) const
 {return Precedes(s);}
 private:
 static char* typeOrderTable[];
};

char* Shape::typeOrderTable[] =
{
 “Circle”,
 “Square”,
 0
};

// This function searches a table for the class names.
// The table defines the order in which the
// shapes are to be drawn. Shapes that are not
// found always precede shapes that are found.
//
bool Shape::Precedes(const Shape& s) const
{
 const char* thisType = typeid(*this).name();
 const char* argType = typeid(s).name();
 bool done = false;
 int thisOrd = -1;
 int argOrd = -1;
 for (int i=0; !done; i++)
 {
 const char* tableEntry = typeOrderTable[i];
 if (tableEntry != 0)
 {
 if (strcmp(tableEntry, thisType) == 0)
 thisOrd = i;
 if (strcmp(tableEntry, argType) == 0)
 argOrd = i;

9 : The Open-Closed Principle

The only item that is not closed against the order of the various Shapes is the table
itself. And that table can be placed in its own module, separate from all the other modules,
so that changes to it do not affect any of the other modules.

Extending Closure Even Further.

This isn’t the end of the story. We have managed to close the Shape hierarchy, and
the DrawAllShapes function against ordering that is dependent upon the type of the
shape. However, the Shape derivatives are not closed against ordering policies that have
nothing to do with shape types. It seems likely that we will want to order the drawing of
shapes according to some higher level structure. A complete exploration of these issues is
beyond the scope of this article; however the ambitious reader might consider how to
address this issue using an abstract OrderedObject class contained by the class
OrderedShape, which is derived from both Shape and OrderedObject.

Heuristics and Conventions

As mentioned at the begining of this article, the open-closed principle is the root motiva-
tion behind many of the heuristics and conventions that have been published regarding
OOD over the years. Here are some of the more important of them.

Make all Member Variables Private.

This is one of the most commonly held of all the conventions of OOD. Member variables
of classes should be known only to the methods of the class that defines them. Member
variables should never be known to any other class, including derived classes. Thus they
should be declared private, rather than public or protected.

In light of the open-closed principle, the reason for this convention ought to be clear.
When the member variables of a class change, every function that depends upon those
variables must be changed. Thus, no function that depends upon a variable can be closed
with respect to that variable.

 if ((argOrd > 0) && (thisOrd > 0))
 done = true;
 }
 else // table entry == 0
 done = true;
 }
 return thisOrd < argOrd;
}

Listing 6 (Continued)
Table driven type ordering mechanism

10Heuristics and Conventions

In OOD, we expect that the methods of a class are not closed to changes in the mem-
ber variables of that class. However we do expect that any other class, including sub-
classes are closed against changes to those variables. We have a name for this expectation,
we call it: encapsulation.

Now, what if you had a member variable that you knew would never change? Is there
any reason to make it private? For example, Listing 7 shows a class Device that has a
bool status variable. This variable contains the status of the last operation. If that
operation succeeded, then status will be true; otherwise it will be false.

We know that the type or meaning of this variable is never going to change. So why
not make it public and let client code simply examine its contents? If this variable really
never changes, and if all other clients obey the rules and only query the contents of sta-
tus, then the fact that the variable is public does no harm at all. However, consider
what happens if even one client takes advantage of the writable nature of status, and
changes its value. Suddenly, this one client could affect every other client of Device.
This means that it is impossible to close any client of Device against changes to this one
misbehaving module. This is probably far too big a risk to take.

On the other hand, suppose we have the Time class as shown in Listing 8. What is the
harm done by the public member variables in this class? Certainly they are very unlikely
to change. Moreover, it does not matter if any of the client modules make changes to the
variables, the variables are supposed to be changed by clients. It is also very unlikely that
a derived class might want to trap the setting of a particular member variable. So is any
harm done?

Listing 7
non-const public variable
class Device
{
 public:
 bool status;
};

Listing 8
class Time
{
 public:
 int hours, minutes, seconds;
 Time& operator-=(int seconds);
 Time& operator+=(int seconds);
 bool operator< (const Time&);
 bool operator> (const Time&);
 bool operator==(const Time&);
 bool operator!=(const Time&);
};

11 : The Open-Closed Principle

One complaint I could make about Listing 8 is that the modification of the time is not
atomic. That is, a client can change the minutes variable without changing the hours
variable. This may result in inconsistent values for a Time object. I would prefer it if there
were a single function to set the time that took three arguments, thus making the setting of
the time atomic. But this is a very weak argument.

It would not be hard to think of other conditions for which the public nature of
these variables causes some problems. In the long run, however, there is no overriding rea-
son to make these variables private. I still consider it bad style to make them public,
but it is probably not bad design. I consider it bad style because it is very cheap to create
the appropriate inline member functions; and the cheap cost is almost certainly worth the
protection against the slight risk that issues of closure will crop up.

Thus, in those rare cases where the open-closed principle is not violated, the proscrip-
tion of public and protected variables depends more upon style than on substance.

No Global Variables -- Ever.

The argument against global variables is similar to the argument against pubic member
variables. No module that depends upon a global variable can be closed against any other
module that might write to that variable. Any module that uses the variable in a way that
the other modules don’t expect, will break those other modules. It is too risky to have
many modules be subject to the whim of one badly behaved one.

On the other hand, in cases where a global variable has very few dependents, or can-
not be used in an inconsistent way, they do little harm. The designer must assess how
much closure is sacrificed to a global and determine if the convenience offered by the glo-
bal is worth the cost.

Again, there are issues of style that come into play. The alternatives to using globals
are usually very inexpensive. In those cases it is bad style to use a technique that risks even
a tiny amount of closure over one that does not carry such a risk. However, there are cases
where the convenience of a global is significant. The global variables cout and cin are
common examples. In such cases, if the open-closed principle is not violated, then the
convenience may be worth the style violation.

RTTI is Dangerous.

Another very common proscription is the one against dynamic_cast. It is often
claimed that dynamic_cast, or any form of run time type identification (RTTI) is
intrinsically dangerous and should be avoided. The case that is often cited is similar to
Listing 9 which clearly violates the open-closed principle. However Listing 10 shows a
similar program that uses dynamic_cast, but does not violate the open-closed princi-
ple.

The difference between these two is that the first, Listing 9, must be changed when-
ever a new type of Shape is derived. (Not to mention that it is just downright silly). How-

12Heuristics and Conventions

Listing 9
RTTI violating the open-closed principle.
class Shape {};

class Square : public Shape
{
 private:
 Point itsTopLeft;
 double itsSide;
 friend DrawSquare(Square*);
};

class Circle : public Shape
{
 private:
 Point itsCenter;
 double itsRadius;
 friend DrawCircle(Circle*);
};

void DrawAllShapes(Set<Shape*>& ss)
{
 for (Iterator<Shape*>i(ss); i; i++)
 {
 Circle* c = dynamic_cast<Circle*>(*i);
 Square* s = dynamic_cast<Square*>(*i);
 if (c)
 DrawCircle(c);
 else if (s)
 DrawSquare(s);
 }
}

Listing 10
RTTI that does not violate the open-closed Principle.
class Shape
{
 public:
 virtual void Draw() cont = 0;
};

class Square : public Shape
{
 // as expected.
};

void DrawSquaresOnly(Set<Shape*>& ss)

13 : The Open-Closed Principle

ever, nothing changes in Listing 10 when a new derivative of Shape is created. Thus,
Listing 10 does not violate the open-closed principle.

As a general rule of thumb, if a use of RTTI does not violate the open-closed princi-
ple, it is safe.

Conclusion

There is much more that could be said about the open-closed principle. In many ways this
principle is at the heart of object oriented design. Conformance to this principle is what
yeilds the greatest benefits claimed for object oriented technology; i.e. reusability and
maintainability. Yet conformance to this principle is not achieved simply by using an
object oriented programming language. Rather, it requires a dedication on the part of the
designer to apply abstraction to those parts of the program that the designer feels are going
to be subject to change.

This article is an extremely condensed version of a chapter from my new book: The
Principles and Patterns of OOD, to be published soon by Prentice Hall. In subsequent
articles we will explore many of the other principles of object oriented design. We will
also study various design patterns, and their strenghts and weaknesses with regard to
implementation in C++. We will study the role of Booch’s class categories in C++, and
their applicability as C++ namespaces. We will define what “cohesion” and “coupling”
mean in an object oriented design, and we will develop metrics for measuring the quality
of an object oriented design. And, after that, many other interesting topics.

{
 for (Iterator<Shape*>i(ss); i; i++)
 {
 Square* s = dynamic_cast<Square*>(*i);
 if (s)
 s->Draw();
 }
}

Listing 10 (Continued)
RTTI that does not violate the open-closed Principle.

14

Contains - by reference. This is used to
indicate that A and B have dissimilar
lifetimes. B may outlive A.
class A
{
 private:
 B* itsB;
};

A

B

Contains - by value. This indicates that A
and B have identical lifetimes. When A
is destroyed, B will be destroyed too.

A

B

class A
{
 private:
 B itsB;
};

B

D

class D : public B {...};

Inheritance. This indicates that B is a public
base class of D.

Using a container class. In this case a
template for a "Set".

class A
{
 private:
 Set<B*> itsBs;
};

A

B
Set
B
*

0..n

M

P
VA

B

Invoking a member function.
void A::F(B& theB)
{
 P p;
 V v = theB.M(p);
}

A

B

Uses. This indicates that the name of class
B is used within the source code of class A.

class A
{
 public:
 void F(const B&);
};

