

1

The Liskov Substitution Principle

This is the second of my

Engineering Notebook

 columns for

The C++ Report

. The articles
that will appear in this column will focus on the use of C++ and OOD, and will address
issues of software engineer-
ing. I will strive for articles
that are pragmatic and
directly useful to the soft-
ware engineer in the
trenches. In these articles I
will make use of Booch’s
and Rumbaugh’s new

uni-
fied

 notation (Version 0.8)
for documenting object ori-
ented designs. The sidebar
provides a brief lexicon of
this notation.

Introduction

My last column (Jan, 96) talked about the Open-Closed principle. This principle is the
foundation for building code that is maintainable and reusable. It states that well designed
code can be extended without modification; that in a well designed program new features
are added by adding new code, rather than by changing old, already working, code.

The primary mechanisms behind the Open-Closed principle are abstraction and poly-
morphism. In statically typed languages like C++, one of the key mechanisms that sup-
ports abstraction and polymorphism is inheritance. It is by using inheritance that we can
create derived classes that conform to the abstract polymorphic interfaces defined by pure
virtual functions in abstract base classes.

What are the design rules that govern this particular use of inheritance? What are the
characteristics of the best inheritance hierarchies? What are the traps that will cause us to
create hierarchies that do not conform to the Open-Closed principle? These are the ques-
tions that this article will address.

Base ClassBase ClassBase Class

Derived 1 Derived 2

Had by
Reference

Had By Value

Used

Sidebar: Unified Notation 0.8

2

The Liskov Substitution Principle

The Liskov Substitution Principle

F

UNCTIONS

THAT

USE

POINTERS

OR

REFERENCES

TO

BASE

CLASSES

MUST

BE

ABLE

TO

USE

OBJECTS

OF

DERIVED

CLASSES

WITHOUT

KNOWING

IT

.

The above is a paraphrase of the Liskov Substitution Principle (LSP). Barbara Liskov first
wrote it as follows nearly 8 years ago

1

:

What is wanted here is something like the following substitution property: If
for each object o

1

 of type S there is an object o

2

 of type T such that for all
programs P

defined in terms of T, the behavior of P is unchanged when o

1

 is
substituted for o

2

 then S is a subtype of T.

The importance of this principle becomes obvious when you consider the conse-
quences of violating it. If there is a function which does not conform to the LSP, then that
function uses a pointer or reference to a base class, but must

know

 about all the derivatives
of that base class. Such a function violates the Open-Closed principle because it must be
modified whenever a new derivative of the base class is created.

A Simple Example of a Violation of LSP

One of the most glaring violations of this principle is the use of C++ Run-Time Type
Information (RTTI) to select a function based upon the type of an object. i.e.:

void DrawShape(const Shape& s)
{
if (typeid(s) == typeid(Square))
DrawSquare(static_cast<Square&>(s));

else if (typeid(s) == typeid(Circle))
DrawCircle(static_cast<Circle&>(s));

}

[Note:

static_cast

 is one of the new cast operators. In this example it works
exactly like a regular cast. i.e.

DrawSquare((Square&)s);

. However the new syn-
tax has more stringent rules that make is safer to use, and is easier to locate with tools such
as grep. It is therefore preferred.]

Clearly the

DrawShape

 function is badly formed. It must know about every possible
derivative of the

Shape

 class, and it must be changed whenever new derivatives of

Shape

 are created. Indeed, many view the structure of this function as anathema to
Object Oriented Design.

1. Barbara Liskov, “Data Abstraction and Hierarchy,”

SIGPLAN Notices,

23,5 (May, 1988).

3

: The Liskov Substitution Principle

Square and Rectangle, a More Subtle Violation.

However, there are other, far more subtle, ways of violating the LSP. Consider an
application which uses the

Rectangle

 class as described below:

class Rectangle
{
public:
void SetWidth(double w) {itsWidth=w;}
void SetHeight(double h) {itsHeight=w;}
double GetHeight() const {return itsHeight;}
double GetWidth() const {return itsWidth;}

private:
double itsWidth;
double itsHeight;

};

Imagine that this application works well, and is installed in
many sites. As is the case with all successful software, as its
users’ needs change, new functions are needed. Imagine that
one day the users demand the ability to manipulate squares in
addition to rectangles.

It is often said that, in C++, inheritance is the ISA relation-
ship. In other words, if a new kind of object can be said to fulfill
the ISA relationship with an old kind of object, then the class of
the new object should be derived from the class of the old
object.

Clearly, a square is a rectangle for all normal intents and
purposes. Since the ISA relationship holds, it is logical to
model the

Square

 class as being derived from

Rectangle

.
(See Figure 1.)

This use of the ISA relationship is considered by many to be one of the fundamental
techniques of Object Oriented Analysis. A square is a rectangle, and so the

Square

 class
should be derived from the

Rectangle

 class. However this kind of thinking can lead to
some subtle, yet significant, problems. Generally these problem are not foreseen until we
actually try to code the application.

Our first clue might be the fact that a

Square

 does not need both

itsHeight

 and

itsWidth

 member variables. Yet it will inherit them anyway. Clearly this is wasteful.
Moreover, if we are going to create hundreds of thousands of

Square

 objects (e.g. a
CAD/CAE program in which every pin of every component of a complex circuit is drawn
as a square), this waste could be extremely significant.

However, let’s assume that we are not very concerned with memory efficiency. Are
there other problems? Indeed!

Square

 will inherit the

SetWidth

 and

SetHeight

functions. These functions are utterly inappropriate for a

Square

, since the width and
height of a square are identical.”. This should be a significant clue that there is a problem

Rectangle

Square

Figure 1.

4

The Liskov Substitution Principle

with the design. However, there is a way to sidestep the problem. We could override

Set-
Width

 and

SetHeight

 as follows:

void Square::SetWidth(double w)
{
Rectangle::SetWidth(w);
Rectangle::SetHeight(w);

}

void Square::SetHeight(double h)
{
Rectangle::SetHeight(h);
Rectangle::SetWidth(h);

}

Now, when someone sets the width of a

Square

 object, its height will change corre-
spondingly. And when someone sets its height, the width will change with it. Thus, the
invariants of the

Square

 remain intact. The

Square

 object will remain a mathematically
proper square.

Square s;
s.SetWidth(1); // Fortunately sets the height to 1 too.
s,SetHeight(2); // sets width and heigt to 2, good thing.

But consider the following function:

void f(Rectangle& r)
{
r.SetWidth(32); // calls Rectangle::SetWidth

}

If we pass a reference to a

Square

 object into this function, the

Square

 object will
be corrupted because the height won’t be changed. This is a clear violation of LSP. The

f

function does not work for derivatives of its arguments. The reason for the failure is that

SetWidth

 and

SetHeight

 were not declared

virtual

 in

Rectangle

.

We can fix this easily. However, when the creation of a derived class causes us to
make changes to the base class, it often implies that the design is faulty. Indeed, it violates
the Open-Closed principle. We might counter this with argument that forgetting to make

SetWidth

 and

SetHeight

virtual

 was the real design flaw, and we are just fixing it
now. However, this is hard to justify since setting the height and width of a rectangle are
exceedingly primitive operations. By what reasoning would we make them

virtual

 if
we did not anticipate the existence of

Square

.

Still, let’s assume that we accept the argument, and fix the classes. We wind up with
the following code:

class Rectangle
{
public:
virtual void SetWidth(double w) {itsWidth=w;}
virtual void SetHeight(double h) {itsHeight=h;}
double GetHeight() const {return itsHeight;}
double GetWidth() const {return itsWidth;}

5

: The Liskov Substitution Principle

private:
double itsHeight;
double itsWidth;

};

class Square : public Rectangle
{
public:
virtual void SetWidth(double w);
virtual void SetHeight(double h);

};

void Square::SetWidth(double w)
{
Rectangle::SetWidth(w);
Rectangle::SetHeight(w);

}

void Square::SetHeight(double h)
{
Rectangle::SetHeight(h);
Rectangle::SetWidth(h);

}

The Real Problem

At this point in time we have two classes,

Square and Rectangle, that appear to work.
No matter what you do to a Square object, it will remain consistent with a mathematical
square. And regardless of what you do to a Rectangle object, it will remain a mathe-
matical rectangle. Moreover, you can pass a Square into a function that accepts a pointer
or reference to a Rectangle, and the Square will still act like a square and will remain
consistent.

Thus, we might conclude that the model is now self consistent, and correct. However,
this conclusion would be amiss. A model that is self consistent is not necessarily consis-
tent with all its users! Consider function g below.

void g(Rectangle& r)
{
r.SetWidth(5);
r.SetHeight(4);
assert(r.GetWidth() * r.GetHeight()) == 20);

}

This function invokes the SetWidth and SetHeight members of what it believes
to be a Rectangle. The function works just fine for a Rectangle, but declares an
assertion error if passed a Square. So here is the real problem: Was the programmer who
wrote that function justified in assuming that changing the width of a Rectangle leaves
its height unchanged?

Clearly, the programmer of g made this very reasonable assumption. Passing a
Square to functions whose programmers made this assumption will result in problems.
Therefore, there exist functions that take pointers or references to Rectangle objects,

6The Liskov Substitution Principle

but cannot operate properly upon Square objects. These functions expose a violation of
the LSP. The addition of the Square derivative of Rectangle has broken these func-
tion; and so the Open-Closed principle has been violated.

Validity is not Intrinsic

This leads us to a very important conclusion. A model, viewed in isolation, can not be
meaningfully validated. The validity of a model can only be expressed in terms of its cli-
ents. For example, when we examined the final version of the Square and Rectangle
classes in isolation, we found that they were self consistent and valid. Yet when we looked
at them from the viewpoint of a programmer who made reasonable assumptions about the
base class, the model broke down.

Thus, when considering whether a particular design is appropriate or not, one must
not simply view the solution in isolation. One must view it in terms of the reasonable
assumptions that will be made by the users of that design.

What Went Wrong? (W3)

So what happened? Why did the apparently reasonable model of the Square and Rect-
angle go bad. After all, isn’t a Square a Rectangle? Doesn’t the ISA relationship
hold?

No! A square might be a rectangle, but a Square object is definitely not a Rectan-
gle object. Why? Because the behavior of a Square object is not consistent with the
behavior of a Rectangle object. Behaviorally, a Square is not a Rectangle! And it
is behavior that software is really all about.

The LSP makes clear that in OOD the ISA relationship pertains to behavior. Not
intrinsic private behavior, but extrinsic public behavior; behavior that clients depend upon.
For example, the author of function g above depended on the fact that Rectangles
behave such that their height and width vary independently of one another. That indepen-
dence of the two variables is an extrinsic public behavior that other programmers are likely
to depend upon.

In order for the LSP to hold, and with it the Open-Closed principle, all derivatives
must conform to the behavior that clients expect of the base classes that they use.

Design by Contract

There is a strong relationship between the LSP and the concept of Design by Contract as
expounded by Bertrand Meyer2. Using this scheme, methods of classes declare precondi-
tions and postconditions. The preconditions must be true in order for the method to exe-
cute. Upon completion, the method guarantees that the postcondition will be true.

2. Object Oriented Software Construction, Bertrand Meyer, Prentice Hall, 1988

7 : The Liskov Substitution Principle

We can view the postcondition of Rectangle::SetWidth(double w) as:

assert((itsWidth == w) && (itsHeight == old.itsHeight));

Now the rule for the preconditions and postconditions for derivatives, as stated by
Meyer3, is:

...when redefining a routine [in a derivative], you may only replace its
precondition by a weaker one, and its postcondition by a stronger one.

In other words, when using an object through its base class interface, the user knows
only the preconditions and postconditions of the base class. Thus, derived objects must not
expect such users to obey preconditions that are stronger then those required by the base
class. That is, they must accept anything that the base class could accept. Also, derived
classes must conform to all the postconditions of the base. That is, their behaviors and out-
puts must not violate any of the constraints established for the base class. Users of the base
class must not be confused by the output of the derived class.

Clearly, the postcondition of Square::SetWidth(double w) is weaker than
the postcondition of Rectangle::SetWidth(double w) above, since it does not
conform to the base class clause “(itsHeight == old.itsHeight)”. Thus,
Square::SetWidth(double w) violates the contract of the base class.

Certain languages, like Eiffel, have direct support for preconditions and postcondi-
tions. You can actually declare them, and have the runtime system verify them for you.
C++ does not have such a feature. Yet, even in C++ we can manually consider the precon-
ditions and postconditions of each method, and make sure that Meyer’s rule is not vio-
lated. Moreover, it can be very helpful to document these preconditions and postconditions
in the comments for each method.

A Real Example.

Enough of squares and rectangles! Does the
LSP have a bearing on real software? Let’s
look at a case study that comes from a
project that I worked on a few years ago.

Motivation

I was unhappy with the interfaces of the
container classes that were available through

3. ibid, p256

Set

BoundedSet ThirdParty
BoundedSet

UnboundedSet ThirdParty
UnboundedSet

Figure 2: Container Hierarchy

8A Real Example.

third parties. I did not want my application code to be horribly dependent upon these con-
tainers because I felt that I would want to replace them with better classes later. Thus I
wrapped the third party containers in my own abstract interface. (See Figure 2)

I had an abstract class called Set which presented pure virtual Add, Delete, and
IsMember functions.

template <class T>
class Set
{
public:
virtual void Add(const T&) = 0;
virtual void Delete(const T&) = 0;
virtual bool IsMember(const T&) const = 0;

};

This structure unified the Unbounded and Bounded varieties of the two third party
sets and allowed them to be accessed
through a common interface. Thus
some client could accept an argument
of type Set<T>& and would not care
whether the actual Set it worked on
was of the Bounded or
Unbounded variety. (See the
PrintSet function listing.)

This ability to neither know nor care the type of Set you are operating on is a big
advantage. It means that the programmer can decide which kind of Set is needed in each
particular instance. None of the client functions will be affected by that decision. The pro-
grammer may choose a BoundedSet when memory is tight and speed is not critical, or
the programmer may choose an UnboundedSet when memory is plentiful and speed is
critical. The client functions will manipulate these objects through the interface of the base
class Set, and will therefore not know or care which kind of Set they are using.

Problem

I wanted to add a Persistent-
Set to this hierarchy. A persistent set is
a set which can be written out to a
stream, and then read back in later, pos-
sibly by a different application. Unfor-
tunately, the only third party container
that I had access to, that also offered
persistence, was not a template class.
Instead, it accepted objects that were

template <class T>
void PrintSet(const Set<T>& s)
{
for (Iterator<T>i(s); i; i++)
cout << (*i) << endl;

}

Set

PersistentSet ThirdParty
PersistentSet

PersistentObject

Figure 3. Persistent Set

9 : The Liskov Substitution Principle

derived from the abstract base class PersistentObject. I created the hierarchy
shown in Figure 3.

On the surface of it, this might look all right. However there is an implication that is
rather ugly. When a client is adding members to the base class Set, how is that client sup-
posed to ensure that it only adds derivatives of PersistentObject if the Set happens
to be a PersistentSet?

Consider the code for PersistentSet::Add:

template <class T>
void PersistentSet::Add(const T& t)
{
PersistentObject& p =
dynamic_cast<PersistentObject&>(t); // throw bad_cast

itsThirdPartyPersistentSet.Add(p);
}

This code makes it clear that if any client tries to add an object that is not derived from
the class PersistentObject to my PersistentSet, a runtime error will ensue.
The dynamic_cast will throw bad_cast (one of the standard exception objects).
None of the existing clients of the abstract base class Set expect exceptions to be thrown
on Add. Since these functions will be confused by a derivative of Set, this change to the
hierarchy violates the LSP.

Is this a problem? Certainly. Functions that never before failed when passed a deriva-
tive of Set, will now cause runtime errors when passed a PersistentSet. Debugging
this kind of problem is relatively difficult since the runtime error occurs very far away
from the actual logic flaw. The logic flaw is either the decision to pass a Persistent-
Set into the failed function, or it is the decision to add an object to the Persistent-
Set that is not derived from PersistentObject. In either case, the actual decision
might be millions of instructions away from the actual invocation of the Add method.
Finding it can be a bear. Fixing it can be worse.

A Solution that does not conform to the LSP.

How do we solve this problem? Several years ago, I solved it by convention. Which is
to say that I did not solve it in source code. Rather I instated a convention whereby Per-
sistentSet and PersistentObject were not known to the application as a whole.
They were only known to one particular module. This module was responsible for reading
and writing all the containers. When a container needed to be written, its contents were
copied into PersistentObjects and then added to PersistentSets, which were
then saved on a stream. When a container needed to be read from a stream, the process
was inverted. A PersistentSet was read from the stream, and then the Persisten-
tObjects were removed from the PersistentSet and copied into regular (non-per-
sistent) objects which were then added to a regular Set.

10A Real Example.

This solution may seem overly restrictive, but it was the only way I could think of to
prevent PersistentSet objects from appearing at the interface of functions that would want
to add non-persistent objects to them. Moreover it broke the dependency of the rest of the
application upon the whole notion of persistence.

Did this solution work? Not really. The convention was violated in several parts of the
application by engineers who did not understand the necessity for it. That is the problem
with conventions, they have to be continually re-sold to each engineer. If the engineer does
not agree, then the convention will be violated. And one violation ruins the whole struc-
ture.

An LSP Compliant Solution

How would I solve this now? I
would acknowledge that a Persis-
tentSet does not have an ISA rela-
tionship with Set; that it is not a proper
derivative of Set. Thus I would Sepa-
rate the hierarchies. But not completely.
There are features that Set and Per-
sistentSet have in common. In fact,
it is only the Add method that causes the
difficulty with LSP. Thus I would create
a hierarchy in which both Set and
PersistentSet were siblings
beneath an abstract interface that
allowed for membership testing, itera-
tion, etc. (See Figure 4.) This would
allow PersistentSet objects to be
Iterated and tested for membership, etc. But would not afford the ability to add objects that
were not derived from PersistentObject to a PersistentSet.

template <class T>
void PersistentSet::Add(const T& t)
{
itsThirdPartyPersistentSet.Add(t);
// This will generate a compiler error if t is
// not derived from PersistentObject.

}

As the listing above shows, any attempt to add an object that is not derived from
PersistentObject to a PersistentSet will result in a compilation error. (The
interface of the third party persistent set expects a PersistentObject&).

Figure 4: Separate Hierarchy

Iterable
Container

Member
Container

Set PersistentSet ThirdParty
PersistentSet

Persistent
Object

Abstract

Abstract

Abstract

Allows iterators to be
created.

Allows for
Membershi
p
Testing.

11 : The Liskov Substitution Principle

Conclusion

The Open-Closed principle is at the heart of many of the claims made for OOD. It is when
this principle is in effect that applications are more maintainable, reusable and robust. The
Liskov Substitution Principle (A.K.A Design by Contract) is an important feature of all
programs that conform to the Open-Closed principle. It is only when derived types are
completely substitutable for their base types that functions which use those base types can
be reused with impunity, and the derived types can be changed with impunity.

This article is an extremely condensed version of a chapter from my new book: Pat-
terns and Advanced Principles of OOD, to be published soon by Prentice Hall. In subse-
quent articles we will explore many of the other principles of object oriented design. We
will also study various design patterns, and their strengths and weaknesses with regard to
implementation in C++. We will study the role of Booch’s class categories in C++, and
their applicability as C++ namespaces. We will define what “cohesion” and “coupling”
mean in an object oriented design, and we will develop metrics for measuring the quality
of an object oriented design. And, after that, many other interesting topics.

