Design Patterns for Dealing with
Dual Inheritance Hierarchies in C++

Robert C. Martin

INTRODUCTION

Dual hierarchies are acommon element of significant Object-Oriented applications, They arise out of the need to sep-
arate concerns. Despite their prevalence, they present problems to the designer that are often solvable only by using
techniques that are generally considered unsafe.

This article presents three patterns that can be employed to deal with the problems of dual hierarchies. The patterns
may be used in isolation, to solve specific application related problems, or they can be used together as a small pattern
language in order to more comprehensively address the issues in alarger application.

The patterns are called: RUNGS OF A DUAL HIERARCHY, INTELLIGENT CHILDREN, and STAIRWAY TO HEAVEN. Inad-
dition, another pattern, RTTI VISITOR, is presented as an ancillary pattern that supports the others.

The notation used in this article is UML. Readers can download a description of this notation from www. r at i o-
nal . com

WHAT ISA DUAL HIERARCHY?

Consider the OBSERVER' pattern (Figure 1). This pattern is often employed when the actions precipitated by the
change of an object’s state must be disassociated from that object. The changed object derives from the Subj ect
classwhich simply sendsaNot i f y messageto the abstract Cbser ver interface. Derivativesof Obser ver imple-
ment the appropriate actions.

igure I: The Observer Pattern
Subject i Observer
itsObservers ~ *
>
Regi st er (Qbserver &) Updat e() =0
Noti fy()
A itsSubject

Typically, the Chser ver derivative must communicate back to the changed object, so it holds a pointer or reference
toit.

The code for these classesis shown in Listing 1.

Listing 1 Observer Classes
cl ass Cbserver;

cl ass Subj ect
{
public:
voi d Regi ster(QObserver& 0);
void Notify() const;

1. Design Patterns Elements of Reusable Object Oriented Software, Gamma, et. al. Addison Wesley, 1994, p. 293

Listing 1. Observer Classes
private:
Set <Qbserver*> i tsCbservers;
}s

voi d Subj ect:: Regi ster(Cbserver& o)
{itsObservers. Add(&o) ;}

voi d Subject::Notify() const
{

for (lterator<Qobserver*> i(itsQoservers); i; i++)
(*i)->Notify();
}

cl ass Cbserver

publi c:
oserver (Subject& s) : itsSubject(s) {};
Subj ect & Get Subj ect() const {return itsSubject;};
virtual void Notify() = O;
private:
mut abl e Subj ect & it sSubj ect;
3

Now consider how this pattern might be employed with a Cl ock object (Figure 2) to display the time of day on a
screen. Cl ock isasimple concrete class whose task is to keep track of thetime. Cl ock isahighly reusable object,
so wedon’t want it to have to know about Obser ver . Thereforewe adapt Cl ock tothe Subj ect classby deriving
Obser vedd ock from both C ock and Subj ect . Thisis the multiple inheritance form of the ADAPTER pattern.

The methods of Cl ock that changeits state are overriddenin Cbser vedd ock sothat they will delegateto Cl ock,
and aso inform the Subj ect of the state change. The Cl ockCbser ver isnotified when the Obser vedC ock
is changed. It then procures the current time from the G ock and displaysit on a screen.

Figure 2: Clock Observer
Subject . Observer
Clock itsObservers * >
Regi st er (Cbser ver &) < itsSubject Updat e() =0
Noti fy()
ObservedClock ClockObserver
(___

Figure 2 isatypical dual hierarchy. The Subj ect hierarchy and the Obser ver hierarchy are extremely similar.
For every derivative of Subj ect therewill be acorresponding derivative of Cbser ver . Notice that the reason this
dual hierarchy was created was to separate, from Cl ock, any concern about the type of actions, or number of actions
that are precipitated by a changein the state of the Gl ock object. It isthisseparation of concernsthat typically causes
dual hierarchies to be created.

The problem of static typing.

Consider the code for Cl ockCbser ver inListing2. Note that the Not i f y function of this class must downcast
the Subj ect object that it getsfromitsbaseclassQbser ver . Thisisthetraditiona typing problem caused by dual
hierarchies in languages that are statically typed.

Listing 2 ClockObserver
class O ockCbserver : public Cbserver

publi c:
O ockOnserver (A ockSubj ect & s);
virtual void Notify();

H

O ockQbserver: : C ockObserver (O ockSubj ect & s)
. Cbserver(s)
{}

voi d O ockGbserver:: Notify()
{
bservedd ock& ¢ =
static_cast <ObservedC ock&>(Get Subj ect());
/1 ugly downcast
Di splay(c. GetTinme());

The typing problem does not exist in dynamically typed languages since the language system does not perform any
static checksuponthetype. Inadynamically typed languagethe derived Gbser ver would simply send the messages
that it expects the derived Subj ect to be able to respond to.

In statically typed language the typing problem stems from the fact that corresponding elements of the two hierarchies
know about each other, but their base classes do not know about the derivatives. Since Cbser ver contains arefer-
enceto aSubj ect , derivatives of Cbser ver must downcast the Subj ect to the corresponding kind.

The INTELLIGENT CHILDREN pattern addresses thisissue.

INTELLIGENT CHILDREN

Intent

When using C++ (or any statically typed language), this pattern provides a way to avoid downcasting in some dual
inheritance hierarchies.

Motivation

In adual hierarchy rooted at the base classes B1 and B2, if thereisa‘has’ relationship from B1 to B2, that isB1 con-
tains a pointer to B2, and if derivatives of B1 gain access to derivatives of B2 through this pointer, then those B2 ob-
jects must be downcast before they can be used as their true type. It is best to avoid downcasting where possible.

Solution

Movethe ‘has' relationship from the basesto the derivatives. That is, have the derivative D1 contain a pointer to D2.
Demotethe‘has’ relationship between the basesto a*uses relationship. Provideapurevirtual functionin B1 that acts
as an accessor function and returns a pointer or referenceto B2. The classesderived from B1 will implement that pure
virtual function to return a pointer or reference to the appropriate derivative of B2.

Structure

See Figure 3.

Applicability

Not all dual hierarchies can yield to this ssmple approach. Many must procure derived objects from sources that only
the base peers have access to. In such cases, INTELLIGENT CHILDREN is not aviable option. However, when it is pos-
sible to create the derived peers such that they know about each other, or when the knowledge of a peer can be passed
directly to the other peer without going through a base, then INTELLIGENT CHILDREN is a good option.

This pattern depends upon the language feature known as “ covariant return types’. That is, the virtual functionin the
derived classes must be able to return atype that is derived from the type returned by the base class virtual function.
Thisfeature was voted into C++ several years ago and is available in many compilers.

Sample Code
SeeListing 3

Listing 3: Tntelligent Children
class Bl

{

publi c:
virtual B2& GetB2() const = 0;
b

class B2 {};
class D2 : public B2 {};

class D1 : public Bl
publi c:
D1(D2& d2) : itsD2(d2) {};
virtual D2& GetB2() const {return itsD2;}

private:
nmut abl e D2& i tsD2;

}

Figure 3: Tntelligent Children

B1 B2 B1 B2
------ >
B2* Get B2(Y B2* Get B2() =0

D1 D2 D1 D2

D2* Get D2()

Consequences

The most serious consequence of this pattern is a percieved warping of the object model. Consider Figure 3 again.
Note that the left diagram is a better representation of the abstract concept. All B1 objects contain areferenceto aB2
object. The'has relationship at thislevel makesit impossible for aderivative of B1 not to contain aderivative of B2.
So by moving the containment to the derived peers we are creating an opening for aB1 derivative that does not contain
aB2 derivative.

This is mitigated to some extent by the presence of the pure virtual accessor function. If B1 has a pure Get B2()

function, then it islikely that derivatives of B1 will have some way to procure a B2 instance, even if it is not through
containment.

There is aburden placed upon the programmer to remember to include this containment in every derivative of B1.

DYNAMIC DUAL HIERARCHIES

A dual hierarchy islikealadder. Thetwo inheritance hierarchiesarethe supportsof theladder, and inthe INTELLIGENT
CHILDREN pattern above, the ‘has' relationships in the peers are the rungs of the ladder. However there are dua hier-
archies in which the rungs cannot be supported with simple ‘has’ relationships. In such hierarchies the peers do not
retain their association indefinitely. Instead, peer objects are associated for a period of time and then the association
is broken.

If the association of the two peers takes place at the base class level, then thereis no way that INTELLIGENT CHILDREN
can be employed to prevent the required downcast. As an example, consider the CoMMAND? pattern. A Conmand
object is generally transient. It isusually associated with other objects that it operates upon. And it is often found in
ahierarchy that parallels the objects that it operates on.

| will draw upon the Payroll examplefrom my book®. SeeFigure 4. Herewe seethat thereisahierarchy of Conmand
classes. Wealso seethat thereisahierarchy of Enpl oyee classes. Thedual nature of the hierarchy isclearly evident.
Enpl oyeeConmand is associated with Enpl oyee, Post Ti neCar dConmand it associated with Hour | yEm
pl oyee and Post Sal esRecei pt Conmand is associated with Conmi ssi onedEnpl oyee.

Figure 4: Payroll Commands

Command
Dictionar
Execut e() =0 Pt > <Emp|oyet—:}*/>
o |
EmployeeCommand Employee

Pr ocessEnpl oyee() =0

A A

PostTimeCardCommand HourlyEmployee

Post SalesRecieptCommand > CommissionedEmployee

Note that all the Enpl oyee objects are contained inaDi ct i onar y that associates the objectswithan ID. ThisID
is used by the Enpl oyeeCommrand object to locate the appropriate Enpl oyee object to operate upon. Thus the
Enpl oyeeCommand class is invoking the TEMPLATE METHOD* pattern by factoring the access of Enpl oyee ob-

2. Design Patterns Elements of Reusable Object Oriented Software, Gammea, et. al. Addison Wesley, 1994 p. 233
3. Designing Object Oriented C++ Applications using the Booch Method, Robert C. Martin, Prentice Hall, 1995.

jects out of the derived commands. Having fetched the Enpl oyee object the Enpl oyeeConmand class calls its
own pureinterface Pr ocessEnpl oyee which it expects the derivatives to implement.

Here we face the same downcasting problem that we faced with the OBSERVER pattern, when a Post Ti nmeCar d-
Comand object getsa Pr ocessEnpl oyee messageit is passed an Enpl oyee object which it must downcast to
aHour | yEnpl oyee object. However, this time we cannot employ INTELLIGENT CHILDREN to avoid the downcast
because the peers are not permanently associated, and the temporary associations are being built by the base class Em
pl oyeeComand which does not know about the derivatives. Enpl oyeeCommand simply fetchesthe Enpl oyee
from the Di cti onary based upon its ID. What Enpl oyeeComand gets from the Di ct i onary issimply a
pointer to an Enpl oyee. Andsowhat Post Sal esReci ept Comrand getsfrom Enpl oyeeComrand isapoint-
ertoan Enpl oyee. Yet Post Sal esReci ept Command must invoke the operationsthat are specific to Commi s-
si onedEnpl oyee. Thus, Post Sal esReci ept Conmand must downcast the Enpl oyee pointer to a
Comi ssi onedEnpl oyee pointer.

Although thisis primarily a problem associated with statically typed languages like C++, this situation cannot be ig-
nored by programmers of dynamically typed languages either. Therisk isthat aPost Ti meCar dComrand will one
day be asked to operate on the ID of aConmm ssi onedEnpl oyee object.

The RUNGS OF A DUAL HIERARCHY pattern addresses this situation by specifically permitting a type checked down-
cast.

RUNGS OF A DUAL HIERARCHY

Intent
To provide a context that justifies the use of type checked dynamic downcasting in dual hierarchy situations.
Motivation

Downcasting, even type checked downcasting, is often considered a poor engineering practice®. However, there are
situations in which there is no alternative to using a downcast. This pattern is motivated by the need to identify one
of those situations.

Solution

When programming a dual hierarchy in which peer to peer associations are built dynamically by objects that are not
aware of the derived peers (i.e. objects at alevel of abstraction that is higher than the peers) then type checked down-
casting is an acceptable mechanism for determining if the association has been built correctly. Moreover, in statically
typed languages the type checked downcast is the only way to safely gain access to the specific methods of the peers.

Sample Code

cl ass Bl

public:
B2* CGetB2() const;

/1 The B2 instance is procured froma source
/1 which the derivatives of Bl nmust remin
/1 ignorant of. Thus, the derivatives of B2
/1 Have no way of overriding GetB2 and therefore
/1 cannot resolve the type returned to a derivative
/1 of B2
1
class B2 {};
class D2 : public B2
{

4. Design Patterns Elements of Reusable Object Oriented Software, Gamma, et. al. Addison Wesley, 1994 p. 325

5. Thereason for thisis beyond the scope of this article, but has to do with potential violations of the open/closed principle of object oriented
design. See: Designing Object Oriented C++ Applications using the Booch Method, Robert C. Martin, Prehtice Hall, 1995, p. 286 and p. 360

publi c:
voi d D2Qperation();

class D1 : public Bl

publ i c:
voi d DoQperation();

voi d D1:: DoQperation()

B2* b2 = GetB2();
if (D2* d2 = dynam c_cast <D2*>(b2))

d2- >D2Qper ati on();
}
Notes

There is much debate over whether type checked downcasts are appropriate tools for use in object oriented software.
This controversy stems from the fact that there are many uses to which type checked downcasts could be put that are
better addressed with polymorphic message dispatch; as in the INTELLIGENT CHILDREN pattern. However, there are
cases, such as those described in this pattern, where polymorphic dispatch can not resolve the issue. In those cases,
type checked downcasts are appropriate.

The type checked downcast can be implemented in many different ways. Many languages have some form of query
to check if an object conforms to a certain type, or responds to a certain interface. In languages that do not support
this directly, or in which the type check operation is too expensive for the algorithm that uses it, unique type values
can be added to all the derived objects.

Another option isto usethe RTTI VISITOR pattern described below.
Applicability

Use this pattern whenever you are programming adual hierarchy and there is no way to retain the type identity of the
derived peersin the peers themselves.

RTTI VISITOR

Intent

This pattern provides a mechanism by which type checked downcasting can be implemented in languages that do not
directly support it. The technique mapped out hereis also very fast.

Motivation

Although type checked downcasting is often considered inappropriate, and sometimes even dangerous, there are till
some situations that require itsuse. Not all languages provide a mechanism for type checked downcasting.

Solution

Use the VISITOR® pattern to provide classes that can be invoked by global downcast functions.
Structure

See Figure 5.

Sample Code

SeeListing 4

6. Design Patterns Elements of Reusable Object Oriented Software, Gamma, et. a. Addison Wesley, 1994 p. 331

Figure5: RTTT Visitor

B BVisitor
abstract | .. > < -
- - Visit(D1&) i
Vi sit(BVisitor&=0 Vi si t (D28&) !
D2 < i
D1 < i

D1* dynam c_cast_DI1(B*);
D2* dynam c_cast _D2(B*);

Listing 4. RTTT Visitor
class BVisitor;

cl ass Di;
cl ass D2;
class B
public:
virtual void Visit(BVisitor& = 0O;
1
class BVisitor
public:
BVisitor()
. itsD1(0)
, 1tsD2(0)
{}

1
g
-

void Visit(Dl& dl) {itsD1 i}
void Visit(D2& d2) {itsD2 = &d2;}
D1* GetDl1() const {return itsD1;}
D2* GetD2() const {return itsD2;}

private:
D1* itsD1;
D2* itsD2;

1
class DL : public B
public:

virtual void Visit(BVisitoré& bv)
{bv.Visit(*this);} // class Visit(Dl&)

Listing 4: RTTT Visitor (Continued)

1
class D2 : public B

publ i c:
virtual void Visit(BVisitor& bv)
{bv.Visit(*this);} // class Visit(D2&)

b

// dobal functions
D1* dynam c_cast_D1(B* b)

{
BVisitor v;
b->Visit(v);
return v. GetD1();
}
D2* dynam c_cast _D2(B* b)
{
BVisitor v;
b->Visit(v);
return v. GetD2();
}

Notes

The dependency structure of the VISITOR pattern iscyclic. That is, the base class depends upon the visitor class. The
visitor class depends upon the derived classes. The derived classes depend upon the base class through the inheritance
relationship, thus completing the cycle.

What this means is that users of any of the derived classes must be recompiled (and possibly retested) whenever any
other derivative changes. Thus, this pattern must be used with care.

Applicability
This pattern is most applicable in situations where type checked downcasting is required and either:

1. Theimplementation language does not directly support type checked downcasting
2. Thetype checked downcasting supported by the language is too expensive to use where needed.

DUAL HIERARCHIES OF INTERFACE AND IMPLEMENTATION

Consider a use of the ADAPTER’ pattern. We have a hierarchy of classes that model part of the payroll problem (See
Figure 6) and wewould liketo ADAPT these classesto aclassnamed Per si st ent Qbj ect which providesthe meth-
ods and facilities for writing objects out onto some persistent storage device.

igure 6: Simple Payroll Hierarchy

Employee

Salaried
Employee
Commissioned
Employee

The Enpl oyee classand the Per si st ent Obj ect class can be ADAPTED by inheriting both of them into a Per -
si st ent Enpl oyee class. It is clear that Per si st ent Sal ari edEnpl oyee should inherit from Sal a-
ri edénpl oyee, but it must aso inherit from Persistent Enpl oyee. Likewise, Persistent—
Conmmi ssi oneEnpl oyee must inherit from Conmi ssi onedEnpl oyee as well as Per si st ent Sal a-
ri edenpl oyee. This, isthe STAIRWAY TO HEAVEN pattern (See Figure 7)

STAIRWAY TO HEAVEN

Intent

This pattern describes the network of inheritance relationships that is needed when a given hierarchy must be adapted,
in its entirety, to another class.

Motivation

If aclass hierarchy isto be reusable, it cannot depend upon detailed implementations. For example, one might have a
class hierarchy of payroll objects such as. Enpl oyee, Sal ari edEnpl oyee, Hour | yEnpl oyee, etc. If these
classes focus only upon the algorithms necessary to implement their particular abstractions, then they are highly reus-
able. However, if they were to incorporate the methods for reading and writing such classes to a particular database
engine, then they would not be reusablein applicationsthat did not have accessto, or need that particular engine. Thus,
we would like to keep any knowledge of database engines out of these classes.

To do this, anew set of classes needsto be created that inherits the ability to read and write themselves using the par-
ticular database engine required by the application, and the methods that model the payroll abstraction. Thiskeepsthe
payroll objects separate and reusable.

Structure

See Figure 7

7. Design Patterns Elements of Reusable Object Oriented Software, Gamma, et. a. Addison Wesley, 1994 p. 139

Flgure 7. Payroll Stalrway to Heaven
Persisten
t
Object
Employee) Persistent
virtual Employee
virtualzf ﬁx
Salaried Persistent
Employee virtual Salaried
< Employee
virtualzf ﬁx
Commissioned c Pers_istganteoI
Employee virtual ommission
piey < Employee

Notes

Figure 7 shows the use of virtual inheritance within the structure of this pattern. The use of virtual inheritance is nec-
essary in this pattern to prevent the repeated inheritance of the base classes. The desire isthat there be only one copy
of all the base objectsin any of the derived objects.

Sometimes, asingle class hierarchy needs to be extended by several orthogonal concepts. This can lead to the STAIR-
WAY TO HEAVEN pattern being repeatedly applied. One could easily imagine caseswhere the pattern was applied three
or four times. This leads to a veritable fisherman’s net of inheritance relationships. The wisdom of increasing the
width of such a net without bound is questionable.

Applicability

This pattern is best used to insure the isolation of concepts so that reusable class hierarchies do not become polluted
with concepts that are application specific. 1t should be noted that this pattern is not the only way to isolate orthogonal
concepts. Indeed, the problem of persistence is sometimes better solved by applying the PROXY pattern instead of the
STAIRWAY TO HEAVEN pattern. PrROXY, while more general, can lead to more complexity than the author iswilling
toinvest in the application. In such cases, this pattern may be more appropriate.

CONCLUSION

This paper has discussed three patterns that can be used to manage dual hierarchies. We have noted that dual hierar-
chies arise because of the desire to separate orthogonal concepts from each other. Most typically this allows reusable
classes to remain independent of application specific details.

One thing that | found especially interesting while writing this paper, was the number of other patternsthat | used in
my examples. When determining the best way to present the problems of dual hierarchiesto agroup of pattern literate
readers, the answer in each case wasto relate the problemsto adifferent pattern. This showsthat patterns are effective
ways for engineersto reason about software problems. It also demonstrates that there are deeper rel ationships between
patterns than we can see by examining them in isolation.

