

Design Patterns for Dealing with
Dual Inheritance Hierarchies in C++

Robert C. Martin

I

NTRODUCTION

Dual hierarchies are a common element of significant Object-Oriented applications, They arise out of the need to sep-
arate concerns. Despite their prevalence, they present problems to the designer that are often solvable only by using
techniques that are generally considered unsafe.

This article presents three patterns that can be employed to deal with the problems of dual hierarchies. The patterns
may be used in isolation, to solve specific application related problems, or they can be used together as a small pattern
language in order to more comprehensively address the issues in a larger application.

The patterns are called: R

UNGS

OF

A

 D

UAL

 H

IERARCHY

, I

NTELLIGENT

 C

HILDREN

, and S

TAIRWAY

TO

 H

EAVEN

. In ad-
dition, another pattern, RTTI V

ISITOR

, is presented as an ancillary pattern that supports the others.

The notation used in this article is UML. Readers can download a description of this notation from

www.ratio-
nal.com

.

W

HAT

IS

A

 D

UAL

 H

IERARCHY

?

Consider the O

BSERVER

1

 pattern (Figure 1). This pattern is often employed when the actions precipitated by the
change of an object’s state must be disassociated from that object. The changed object derives from the

Subject

class which simply sends a

Notify

 message to the abstract

Observer

 interface. Derivatives of

Observer

 imple-
ment the appropriate actions.

Typically, the

Observer

 derivative must communicate back to the changed object, so it holds a pointer or reference
to it.

The code for these classes is shown in Listing 1.

1.

Design Patterns Elements of Reusable Object Oriented Software

, Gamma, et. al. Addison Wesley, 1994, p. 293

Figure 1: The Observer Pattern

Listing 1: Observer Classes

class Observer;

class Subject
{
 public:
 void Register(Observer& o);
 void Notify() const;

Subject Observer
itsObservers

itsSubject

*

Update()=0Register(Observer&)
Notify()

Now consider how this pattern might be employed with a

Clock

 object (Figure 2) to display the time of day on a
screen.

Clock

 is a simple concrete class whose task is to keep track of the time.

Clock

 is a highly reusable object,
so we don’t want it to have to know about

Observer

. Therefore we adapt

Clock

 to the

Subject

 class by deriving

ObservedClock

 from both

Clock

 and

Subject

. This is the multiple inheritance form of the A

DAPTER

 pattern.

The methods of

Clock

 that change its state are overridden in

ObservedClock

 so that they will delegate to

Clock

,
and also inform the

Subject

 of the state change. The

ClockObserver

 is notified when the

ObservedClock

is changed. It then procures the current time from the

Clock

 and displays it on a screen.

Figure 2 is a typical dual hierarchy. The

Subject

 hierarchy and the

Observer

 hierarchy are extremely similar.
For every derivative of

Subject

 there will be a corresponding derivative of

Observer

. Notice that the reason this
dual hierarchy was created was to separate, from

Clock

, any concern about the type of actions, or number of actions
that are precipitated by a change in the state of the

Clock

 object. It is this separation of concerns that typically causes
dual hierarchies to be created.

 private:
 Set<Observer*> itsObservers;
};

void Subject::Register(Observer& o)
{itsObservers.Add(&o);}

void Subject::Notify() const
{
 for (Iterator<Observer*> i(itsObservers); i; i++)
 (*i)->Notify();
}

class Observer
{
 public:
 Observer(Subject& s) : itsSubject(s) {};
 Subject& GetSubject() const {return itsSubject;};
 virtual void Notify() = 0;
 private:
 mutable Subject& itsSubject;
};

Figure 2: Clock Observer

Listing 1: Observer Classes

Observer
itsObservers

itsSubject

*

Update()=0

Subject

Register(Observer&)
Notify()

ObservedClock

Clock

ClockObserver

The problem of static typing.

Consider the code for

ClockObserver

 in Listing 2. Note that the

Notify

 function of this class must downcast
the

Subject

 object that it gets from its base class

Observer

. This is the traditional typing problem caused by dual
hierarchies in languages that are statically typed.

The typing problem does not exist in dynamically typed languages since the language system does not perform any
static checks upon the type. In a dynamically typed language the derived

Observer

 would simply send the messages
that it expects the derived

Subject

 to be able to respond to.

In statically typed language the typing problem stems from the fact that corresponding elements of the two hierarchies
know about each other, but their base classes do not know about the derivatives. Since

Observer

 contains a refer-
ence to a

Subject

, derivatives of

Observer

 must downcast the

Subject

 to the corresponding kind.

The I

NTELLIGENT

 C

HILDREN

 pattern addresses this issue.

I

NTELLIGENT

 C

HILDREN

Intent

When using C++ (or any statically typed language), this pattern provides a way to avoid downcasting in some dual
inheritance hierarchies.

Motivation

In a dual hierarchy rooted at the base classes B1 and B2, if there is a ‘has’ relationship from B1 to B2, that is B1 con-
tains a pointer to B2, and if derivatives of B1 gain access to derivatives of B2 through this pointer, then those B2 ob-
jects must be downcast before they can be used as their true type. It is best to avoid downcasting where possible.

Solution

Move the ‘has’ relationship from the bases to the derivatives. That is, have the derivative D1 contain a pointer to D2.
Demote the ‘has’ relationship between the bases to a ‘uses’ relationship. Provide a pure virtual function in B1 that acts
as an accessor function and returns a pointer or reference to B2. The classes derived from B1 will implement that pure
virtual function to return a pointer or reference to the appropriate derivative of B2.

Structure

See Figure 3.

Listing 2: ClockObserver

class ClockObserver : public Observer
{
 public:
 ClockObserver(ClockSubject& s);
 virtual void Notify();
};

ClockObserver::ClockObserver(ClockSubject& s)
: Observer(s)
{}

void ClockObserver::Notify()
{
 ObservedClock& c =
 static_cast<ObservedClock&>(GetSubject());
 // ugly downcast
 Display(c.GetTime());
}

Applicability

Not all dual hierarchies can yield to this simple approach. Many must procure derived objects from sources that only
the base peers have access to. In such cases, I

NTELLIGENT

 C

HILDREN

 is not a viable option. However, when it is pos-
sible to create the derived peers such that they know about each other, or when the knowledge of a peer can be passed
directly to the other peer without going through a base, then I

NTELLIGENT

 C

HILDREN

 is a good option.

This pattern depends upon the language feature known as “covariant return types”. That is, the virtual function in the
derived classes must be able to return a type that is derived from the type returned by the base class virtual function.
This feature was voted into C++ several years ago and is available in many compilers.

Sample Code

See Listing 3

Consequences

The most serious consequence of this pattern is a

percieved

 warping of the object model. Consider Figure 3 again.
Note that the left diagram is a better representation of the abstract concept. All B1 objects contain a reference to a B2
object. The ‘has’ relationship at this level makes it impossible for a derivative of B1

not

 to contain a derivative of B2.
So by moving the containment to the derived peers we are creating an opening for a B1 derivative that does not contain
a B2 derivative.

This is mitigated to some extent by the presence of the pure virtual accessor function. If B1 has a pure

GetB2()

Listing 3: Intelligent Children

class B1
{
 public:
 virtual B2& GetB2() const = 0;
};

class B2 {};
class D2 : public B2 {};

class D1 : public B1
{
 public:
 D1(D2& d2) : itsD2(d2) {};
 virtual D2& GetB2() const {return itsD2;}

 private:
 mutable D2& itsD2;
};

Figure 3: Intelligent Children

B1 B2

D1 D2

B2* GetB2()

B1 B2

D1 D2

B2* GetB2()=0

D2* GetD2()

function, then it is likely that derivatives of B1 will have some way to procure a B2 instance, even if it is not through
containment.

There is a burden placed upon the programmer to remember to include this containment in every derivative of B1.

D

YNAMIC

 DUAL HIERARCHIES

A dual hierarchy is like a ladder. The two inheritance hierarchies are the supports of the ladder, and in the INTELLIGENT

CHILDREN pattern above, the ‘has’ relationships in the peers are the rungs of the ladder. However there are dual hier-
archies in which the rungs cannot be supported with simple ‘has’ relationships. In such hierarchies the peers do not
retain their association indefinitely. Instead, peer objects are associated for a period of time and then the association
is broken.

If the association of the two peers takes place at the base class level, then there is no way that INTELLIGENT CHILDREN

can be employed to prevent the required downcast. As an example, consider the COMMAND2 pattern. A Command
object is generally transient. It is usually associated with other objects that it operates upon. And it is often found in
a hierarchy that parallels the objects that it operates on.

I will draw upon the Payroll example from my book3. See Figure 4. Here we see that there is a hierarchy of Command
classes. We also see that there is a hierarchy of Employee classes. The dual nature of the hierarchy is clearly evident.
EmployeeCommand is associated with Employee, PostTimeCardCommand it associated with HourlyEm-
ployee and PostSalesReceiptCommand is associated with CommissionedEmployee.

Note that all the Employee objects are contained in a Dictionary that associates the objects with an ID. This ID
is used by the EmployeeCommand object to locate the appropriate Employee object to operate upon. Thus the
EmployeeCommand class is invoking the TEMPLATE METHOD4 pattern by factoring the access of Employee ob-

2. Design Patterns Elements of Reusable Object Oriented Software, Gamma, et. al. Addison Wesley, 1994 p. 233

3. Designing Object Oriented C++ Applications using the Booch Method, Robert C. Martin, Prentice Hall, 1995.

Figure 4: Payroll Commands

Command

EmployeeCommand

PostSalesRecieptCommand

PostTimeCardCommand HourlyEmployee

CommissionedEmployee

Employee

Dictionary
<Employee*>

*

Execute()=0

ProcessEmployee()=0

jects out of the derived commands. Having fetched the Employee object the EmployeeCommand class calls its
own pure interface ProcessEmployee which it expects the derivatives to implement.

Here we face the same downcasting problem that we faced with the OBSERVER pattern, when a PostTimeCard-
Command object gets a ProcessEmployee message it is passed an Employee object which it must downcast to
a HourlyEmployee object. However, this time we cannot employ INTELLIGENT CHILDREN to avoid the downcast
because the peers are not permanently associated, and the temporary associations are being built by the base class Em-
ployeeCommand which does not know about the derivatives. EmployeeCommand simply fetches the Employee
from the Dictionary based upon its ID. What EmployeeCommand gets from the Dictionary is simply a
pointer to an Employee. And so what PostSalesRecieptCommand gets from EmployeeCommand is a point-
er to an Employee. Yet PostSalesRecieptCommand must invoke the operations that are specific to Commis-
sionedEmployee. Thus, PostSalesRecieptCommand must downcast the Employee pointer to a
CommissionedEmployee pointer.

Although this is primarily a problem associated with statically typed languages like C++, this situation cannot be ig-
nored by programmers of dynamically typed languages either. The risk is that a PostTimeCardCommand will one
day be asked to operate on the ID of a CommissionedEmployee object.

The RUNGS OF A DUAL HIERARCHY pattern addresses this situation by specifically permitting a type checked down-
cast.

RUNGS OF A DUAL HIERARCHY

Intent

To provide a context that justifies the use of type checked dynamic downcasting in dual hierarchy situations.

Motivation

Downcasting, even type checked downcasting, is often considered a poor engineering practice5. However, there are
situations in which there is no alternative to using a downcast. This pattern is motivated by the need to identify one
of those situations.

Solution

When programming a dual hierarchy in which peer to peer associations are built dynamically by objects that are not
aware of the derived peers (i.e. objects at a level of abstraction that is higher than the peers) then type checked down-
casting is an acceptable mechanism for determining if the association has been built correctly. Moreover, in statically
typed languages the type checked downcast is the only way to safely gain access to the specific methods of the peers.

Sample Code

class B1
{
 public:
 B2* GetB2() const;
 // The B2 instance is procured from a source
 // which the derivatives of B1 must remain
 // ignorant of. Thus, the derivatives of B2
 // Have no way of overriding GetB2 and therefore
 // cannot resolve the type returned to a derivative
 // of B2
};

class B2 {};
class D2 : public B2
{

4. Design Patterns Elements of Reusable Object Oriented Software, Gamma, et. al. Addison Wesley, 1994 p. 325

5. The reason for this is beyond the scope of this article, but has to do with potential violations of the open/closed principle of object oriented
design. See: Designing Object Oriented C++ Applications using the Booch Method, Robert C. Martin, Prehtice Hall, 1995, p. 286 and p. 360

 public:
 void D2Operation();
};

class D1 : public B1
{
 public:
 void DoOperation();
};

void D1::DoOperation()
{
 B2* b2 = GetB2();
 if (D2* d2 = dynamic_cast<D2*>(b2))
 {
 d2->D2Operation();
 }
}

Notes

There is much debate over whether type checked downcasts are appropriate tools for use in object oriented software.
This controversy stems from the fact that there are many uses to which type checked downcasts could be put that are
better addressed with polymorphic message dispatch; as in the INTELLIGENT CHILDREN pattern. However, there are
cases, such as those described in this pattern, where polymorphic dispatch can not resolve the issue. In those cases,
type checked downcasts are appropriate.

The type checked downcast can be implemented in many different ways. Many languages have some form of query
to check if an object conforms to a certain type, or responds to a certain interface. In languages that do not support
this directly, or in which the type check operation is too expensive for the algorithm that uses it, unique type values
can be added to all the derived objects.

Another option is to use the RTTI VISITOR pattern described below.

Applicability

Use this pattern whenever you are programming a dual hierarchy and there is no way to retain the type identity of the
derived peers in the peers themselves.

RTTI VISITOR

Intent

This pattern provides a mechanism by which type checked downcasting can be implemented in languages that do not
directly support it. The technique mapped out here is also very fast.

Motivation

Although type checked downcasting is often considered inappropriate, and sometimes even dangerous, there are still
some situations that require its use. Not all languages provide a mechanism for type checked downcasting.

Solution

Use the VISITOR6 pattern to provide classes that can be invoked by global downcast functions.

Structure

See Figure 5.

Sample Code

See Listing 4

6. Design Patterns Elements of Reusable Object Oriented Software, Gamma, et. al. Addison Wesley, 1994 p. 331

Figure 5: RTTI Visitor

Listing 4: RTTI Visitor
class BVisitor;
class D1;
class D2;

class B
{
 public:
 virtual void Visit(BVisitor&) = 0;
};

class BVisitor
{
 public:
 BVisitor()
 : itsD1(0)
 , itsD2(0)
 {}

 void Visit(D1& d1) {itsD1 = &d1;}
 void Visit(D2& d2) {itsD2 = &d2;}
 D1* GetD1() const {return itsD1;}
 D2* GetD2() const {return itsD2;}

 private:
 D1* itsD1;
 D2* itsD2;
};

class D1 : public B
{
 public:
 virtual void Visit(BVisitor& bv)
 {bv.Visit(*this);} // class Visit(D1&)

B
abstract

Visit(BVisitor&)=0

D1

D2

BVisitor

Visit(D1&)
Visit(D2&)

D1* dynamic_cast_D1(B*);
D2* dynamic_cast_D2(B*);

Notes

The dependency structure of the VISITOR pattern is cyclic. That is, the base class depends upon the visitor class. The
visitor class depends upon the derived classes. The derived classes depend upon the base class through the inheritance
relationship, thus completing the cycle.

What this means is that users of any of the derived classes must be recompiled (and possibly retested) whenever any
other derivative changes. Thus, this pattern must be used with care.

Applicability

This pattern is most applicable in situations where type checked downcasting is required and either:

1. The implementation language does not directly support type checked downcasting

2. The type checked downcasting supported by the language is too expensive to use where needed.

};

class D2 : public B
{
 public:
 virtual void Visit(BVisitor& bv)
 {bv.Visit(*this);} // class Visit(D2&)
};

// Global functions
D1* dynamic_cast_D1(B* b)
{
 BVisitor v;
 b->Visit(v);
 return v.GetD1();
}

D2* dynamic_cast_D2(B* b)
{
 BVisitor v;
 b->Visit(v);
 return v.GetD2();
}

Listing 4: RTTI Visitor (Continued)

DUAL HIERARCHIES OF INTERFACE AND IMPLEMENTATION

Consider a use of the ADAPTER7 pattern. We have a hierarchy of classes that model part of the payroll problem (See
Figure 6) and we would like to ADAPT these classes to a class named PersistentObject which provides the meth-
ods and facilities for writing objects out onto some persistent storage device.

The Employee class and the PersistentObject class can be ADAPTED by inheriting both of them into a Per-
sistentEmployee class. It is clear that PersistentSalariedEmployee should inherit from Sala-
riedEmployee, but it must also inherit from PersistentEmployee. Likewise, Persistent–
CommissioneEmployee must inherit from CommissionedEmployee as well as PersistentSala-
riedEmployee. This, is the STAIRWAY TO HEAVEN pattern (See Figure 7)

STAIRWAY TO HEAVEN

Intent

This pattern describes the network of inheritance relationships that is needed when a given hierarchy must be adapted,
in its entirety, to another class.

Motivation

If a class hierarchy is to be reusable, it cannot depend upon detailed implementations. For example, one might have a
class hierarchy of payroll objects such as: Employee, SalariedEmployee, HourlyEmployee, etc. If these
classes focus only upon the algorithms necessary to implement their particular abstractions, then they are highly reus-
able. However, if they were to incorporate the methods for reading and writing such classes to a particular database
engine, then they would not be reusable in applications that did not have access to, or need that particular engine. Thus,
we would like to keep any knowledge of database engines out of these classes.

To do this, a new set of classes needs to be created that inherits the ability to read and write themselves using the par-
ticular database engine required by the application, and the methods that model the payroll abstraction. This keeps the
payroll objects separate and reusable.

Structure

See Figure 7

7. Design Patterns Elements of Reusable Object Oriented Software, Gamma, et. al. Addison Wesley, 1994 p. 139

Figure 6: Simple Payroll Hierarchy

Employee

Salaried
Employee

Commissioned
Employee

Notes

Figure 7 shows the use of virtual inheritance within the structure of this pattern. The use of virtual inheritance is nec-
essary in this pattern to prevent the repeated inheritance of the base classes. The desire is that there be only one copy
of all the base objects in any of the derived objects.

Sometimes, a single class hierarchy needs to be extended by several orthogonal concepts. This can lead to the STAIR-

WAY TO HEAVEN pattern being repeatedly applied. One could easily imagine cases where the pattern was applied three
or four times. This leads to a veritable fisherman’s net of inheritance relationships. The wisdom of increasing the
width of such a net without bound is questionable.

Applicability

This pattern is best used to insure the isolation of concepts so that reusable class hierarchies do not become polluted
with concepts that are application specific. It should be noted that this pattern is not the only way to isolate orthogonal
concepts. Indeed, the problem of persistence is sometimes better solved by applying the PROXY pattern instead of the
STAIRWAY TO HEAVEN pattern. PROXY, while more general, can lead to more complexity than the author is willing
to invest in the application. In such cases, this pattern may be more appropriate.

Figure 7: Payroll Stairway to Heaven

virtual

virtual

virtual

virtual

virtual

Employee

Salaried
Employee

Commissioned
Employee

Persisten
t

Object

Persistent
Employee

Persistent
Salaried

Employee

Persistent
Commissioned

Employee

CONCLUSION

This paper has discussed three patterns that can be used to manage dual hierarchies. We have noted that dual hierar-
chies arise because of the desire to separate orthogonal concepts from each other. Most typically this allows reusable
classes to remain independent of application specific details.

One thing that I found especially interesting while writing this paper, was the number of other patterns that I used in
my examples. When determining the best way to present the problems of dual hierarchies to a group of pattern literate
readers, the answer in each case was to relate the problems to a different pattern. This shows that patterns are effective
ways for engineers to reason about software problems. It also demonstrates that there are deeper relationships between
patterns than we can see by examining them in isolation.

