

Button, Button, Whose got the Button?

ROAD Guest Column Robert Martin 1

Button, Button, Whose got the Button?

(Patterns for breaking client/server relationships)
By Robert C. Martin

Introduction

How many design patterns does it take to turn on a table lamp? This question was
explored in some depth on the net recently. Someone proposed a simple application based
upon a table lamp and then provided a design that he felt was reusable. There followed
many critiques and counter designs and arguments. Many people submitted their own
notions of how the design should look, and many others quarreled over the fundamentals
of object oriented modeling.

This article represents my interpretation of that fluid and dynamic conversation. I will
not mention any names, nor attempt to chronicle the actual net articles.

1

 Instead I will try
to present the issues and design patterns in a way that is instructive and entertaining.

The Application Description

The application that we are discussing really is just a table lamp. The lamp has a button
and a lightbulb. When the user pushes the button on the lamp to the “on” position, the
lightbulb goes on. When the user pushes the button to the “off” position, the lightbulb
goes off. The software we are designing is the software that resides within the table lamp
itself. Somehow the fact that the user has pressed the button is communicated to the soft-
ware. The software must then send the appropriate signal to the lightbulb. The goal is to
design this software so that it is constructed from reusable components.

At first glance, it is hard to believe that we could have a meaningful discussion about
such a simple problem. Yet this problem, simple as it is, is a classic client-server scenario.
Much of power of OOD is manifested in managing the dependencies between clients and
servers. Thus, while the algorithms employed in solving this problem are utterly trivial,
the patterns of dependency are worthy of study.

Managing Client and Server Dependencies

The table lamp problem is an extremely simple example of a Client/Server relationship.
A Client/Server relationship exists between two objects if one sends a message to the
other, expecting that other to perform some kind of service operation. The Client is the
object that sends the message, and the Server is the object that receives the message and
preforms the service.

In traditional procedural programming, clients had to depend upon servers. Servers
were often implemented as functions that the clients had to link with and make calls to.
Thus, the clients had direct knowledge of the server, and the source code of the client had
specific knowledge of the source code of the server.

1. Those interested should procure the thread named “Do OO People Really Understand Software Reuse”
from an archive of the comp.object newsgroup for Jan/Feb 95.

Button, Button, Whose got the Button?

ROAD Guest Column Robert Martin 2

In OOD we often find it desirable to break the dependency of the client upon the server.
This allows the client to be used with many different servers, so long as they all conform
to the same interface. It also isolates the client from the server such that if the source code
of the server is changed, the client does not need to be changed or recompiled in turn.
This prevents changes from propagating up to clients from servers.

Solving the Problem

We can begin to solve the table lamp problem by examining the two use cases.

•

 When the user pushes the button to the “on” position, the system turns the light-
bulb on.

•

 When the user pushes the button to the “off” position, the system turns the light-
bulb off.

These use cases translate nicely into the simple object diagrams in Figure 1 and
Figure 2. In each case, the

Button

 object receives some stimulus from the outside world

and then sends the appropriate message to the

Lightbulb

 object.

These two objects were chosen in order to separate the software that detects the state of
the button, from the software that controls the state of the lightbulb. I felt that this separa-
tion was important because these two concepts could be reused in very different contexts.
That is, buttons could be used to control devices other than lightbulbs, and lightbulbs
could be controlled by objects other than buttons.

FIGURE 1.

User pushes button “on”

FIGURE 2.

User Pushes Button “Off”

1:TurnOn

Button Lightbulb

User pushes
"On"

1:TurnOff

Button Lightbulb

User pushes
"Off"

Button, Button, Whose got the Button?

ROAD Guest Column Robert Martin 3

This rather simple dynamic model is supported by the static model that is shown in
Figure 3. The class

Button

 contains the class

Lightbulb

 This “contains” relationship
results from the fact that instances of

Button

 must know what object to send the

TurnOn

and

TurnOff

 messages to. The most common mechanism for satisfying this need is for

Button

 to contain

Lightbulb

 in an instance variable.

The use of the “Contains” relationship as shown in Figure 3 spawned a lot of contro-
versy. Several people felt that the object model should reflect the real world relationships
between a button and a lightbulb. Since, in the real world, a button does not contain a
lightbulb, these people felt that the relationship was somehow incorrect.

However, containment in OOD is not the same as physical containment in the real
world. Aggregation of objects

may

 represent real world physical containment; but more
often it represents some other kind of physical connection. As Booch says: “...aggregation
need not require physical containment...”

1

In Figure 3 I am using aggregation to represent the fact that there is a permanent cause/
effect relationship between a particular button and a particular lightbulb. If one insists
upon a real-world counterpart for this relationship, then I suppose the wire that connects a
physical button to a physical lightbulb can serve. However, in my opinion, far too much
effort is expended in trying to find real-world justifications for classes and relationships.
As Jacobson says: “We do not believe that the best (most stable) systems are built by

only

using objects that correspond to real-life entities...”

2

Making the Button Reusable

The disadvantage of the solution in Figure 3 should be clear. While the

Lightbulb

class is nicely reusable, the

Button

 class is not. Were this design to be implemented, then
the source code of

Button

 would depend upon the source code of

Lightbulb

, and so

But-

ton

 could not be reused without dragging

Lightbulb

 along.

This dependence of the client (

Button

) upon the server (

Lightbulb

) is the hallmark of
procedural design, rather than object-oriented design. In procedural design, clients
depend upon their servers, and the servers are independent. In object-oriented design,
abstract polymorphic interfaces are used to break the dependence of the server upon the
client.

1.

Object Oriented Analysis and Design with Applications

, 2d. ed. Grady Booch, Benjamin Cummings,
1994, p. 129

2.

Object Oriented Software Engineering

, Ivar Jacobson, Addison Wesley, 1992, p. 133

FIGURE 3.

Button contains Lightbulb

Button Lightbulb

Button, Button, Whose got the Button?

ROAD Guest Column Robert Martin 4

Obviously,

Button

 is the kind of class that we would like to reuse. We would like to be
able to control devices other than

Lightbulbs

 with a

Button

. Thus, somehow, we have to
break the dependency between

Button

 and

Lightbulb

. There are several ways to do this,
each employing a different design pattern. We will look at two popular mechanisms.

The Intelligent Children Pattern

The first solution is one which employs a pattern that I call I

NTELLIGENT

 C

HILDREN

.
The static model for this pattern can be seen in Figure 4. The idea is that

Button

 is an
abstract class that knows nothing about

Lightbulb

. A special derivative of

Button

, called

LightbulbButton

 knows about

Lightbulb

. Thus,

Button

 can be reused in other applica-
tions to control other devices, by deriving classes from

Button

 that know about those
devices.

How does this pattern operate? The dynamic model is shown in Figure 5. The

Button

class is an abstract base that knows how to detect when a user has pushed the button. It
then sends itself a message, either

TurnOnDevice

 or

TurnOffDevice

. Since

Button

 is
abstract, it must have a derivative. If the derivative is a

LightbulbButton

, then upon
receipt of

TurnOnDevice

 it sends the

TurnOn

 message to the contained

Lightbulb

. Like-
wise, upon reception of the

TurnOffDevice

 message, it sends the

TurnOff

 message to the
contained

Lightbulb

.

Note that the

Button

 class is now reusable, and that new kinds of

Button

 objects that
reuse

Button

 can be created at any time.

Button

 is reusable because it no longer depends
upon

Lightbulb

. We have broken that dependency by converting Button into an abstract
class, and supplying it with polymorphic interfaces.

This management of client server dependencies, using abstract polymorphic interfaces,
is the hallmark of a good object-oriented design. It should be clear that much of the chal-
lenge in object-oriented design lies in the identification and specification of these inter-
faces, and ensuring that they can operate polymorphically. Generally, this information is
not found by studying a model of the real-world. Instead, it is found by examining the
dependencies that form as the software design evolves and then finding ways to use
abstraction to break those dependencies .

FIGURE 4.
Intelligent Children Pattern - Static Model

A

Button

Lightbulb
Button

Pump
Button

LightbulbPump

Button, Button, Whose got the Button?

ROAD Guest Column Robert Martin 5

The INTELLIGENT CHILDREN pattern is most useful when you want to reuse a class (like
Button) with other classes that already exist (like Lightbulb). New derivatives of But-
ton can be created at any time and adapted to other classes.

The Abstract Server Pattern
Another pattern that is useful for breaking dependencies, is one that is related to a pat-

tern that Gamma1 calls STRATEGY. I call this particular variant ABSTRACT SERVER.
Figure 6 shows the static structure of this pattern. Button is a concrete class that contains
a reference to the abstract base class ButtonServer. Figure 7 and Figure 8 show that
when Button receives stimuli from the outside world, it translates that stimuli into TurnOn
and TurnOff messages that it sends to the ButtonServer.

Figure 9 shows how the ABSTRACTSERVER pattern can be integrated with the Light-
bulb class. Lightbulb is made to derive from ButtonServer. Clearly this plan is only
useful if the Lightbulb class does not already exist.

1. Design Patterns: Elements of Reusable Object-Oriented Software, Gamma, et. al, Addison Wesley, 1995

FIGURE 5.
Intelligent Children Pattern - Dynamic Model

FIGURE 6.
Abstract Server static model

Button

User pushes
"On"

1:T
u
rn

O
n
D

e
vice

Button

User pushes
"Off"

1:T
u
rn

O
ffD

e
vice

Lightbulb
Button

Lightbulb
Button

Lightbulb
Lightbulb

1:TurnOnDevice

2:T
u
rn

O
n

1:TurnOffDevice 2:T
u
rn

O
ff

Button

A

Button
Server

Button, Button, Whose got the Button?

ROAD Guest Column Robert Martin 6

Although this technique is very common, it has some disadvantages. Notice that it
forces the Lightbulb class to have a dependency on something that is related to Button.
In Booch’s method, Button and ButtonServer would almost certainly belong to the same
class category1. And so Lightbulb would depend upon the category that contained But-
ton. This dependency is probably not desirable since it means that Lightbulb cannot be
reused in a context that is free of the concept of Button.

The Adapted Server Pattern
We can correct this situation by employing another one of Gamma’s patterns. This one

is called ADAPTER. As shown in Figure 10, Lightbulb can be adapted to ButtonServer
by deriving LightbulbButtonServer from ButtonServer and having it contain the
Lightbulb.

1. A class category is a logical grouping of classes which, in Booch’s method, is the granule of release, and
the granule of reuse.

FIGURE 7.
Abstract Server Turns Off

FIGURE 8.

FIGURE 9.
Lightbulb as subclass of ButtonServer

1:TurnOff

Button Button
Server

User pushes
"Off"

1:TurnOn

Button Button
Server

User pushes
"On"

A

Button
Server

Lightbulb

Button, Button, Whose got the Button?

ROAD Guest Column Robert Martin 7

The conjoined use of ADAPTER and ABSTRACTSERVER is so common, that it is a pat-
tern in its own right. I call it: ADAPTEDSERVER.

This design completely separates Button from Lightbulb. Either may be reused with-
out having to drag the other along.

Comparative Analysis of the Solutions
Which of these two solutions is better? The INTELLIGENTCHILDREN approach requires

somewhat less code, and fewer classes and objects. There are only two objects, the deriv-
ative of Button, and the Lightbulb. Whereas the ADAPTEDSERVER requires three
objects, the Button, the LightbulbButtonServer and the Lightbulb. Moreover, INTEL-

LIGENTCHILDREN uses fewer CPU cycles than ADAPTEDSERVER because fewer messages
need to be passed. So from the point of view of run time efficiency, memory efficiency
and development time efficiency, the INTELLIGENTCHILDREN pattern is the winner.

However, ADAPTEDSERVER is a more flexible solution. When this pattern is used, any
Button object can be used to control any derivative of ButtonServer. Thus, while the
INTELLIGENTCHILDREN solution locks the relationship between a particular Button object
and the object it controls, the ADAPTEDSERVER solution allows many different objects to
be controlled by the same Button at different times.

Thus, the choice of pattern to use involves an engineering trade off. Since the speed
and complexity overhead of ADAPTEDSERVER is not very high, it will normally be worth
the benefit of the extra flexibility. But where memory, CPU and programmer resources are
exceedingly tight, it may be best to sacrifice flexibility and use the INTELLIGENTCHILDREN
pattern.

Regarding Pragmatism
I think it is important to notice that the most straightforward solution of all was the one

represented in Figure 3, the one which I faulted as being most like a procedural design.
Pragmatism would seem to dictate that we opt for this solution because it is the simplest.
However, simplicity of design does not necessarily relate to simplicity of maintenance, or
to simplicity of reuse. Rather, in order to create a design that is maintainable and reusable,
some conceptual effort must be applied.

FIGURE 10.
Lightbulb Adapted to ButtonServer.

A

Button
Server

Lightbulb
Button
Server

Lightbulb

Button, Button, Whose got the Button?

ROAD Guest Column Robert Martin 8

The reason that software applications become unmaintainable and/or unreusable, is that
they become cross-linked. There are too many dependencies traversing the design tying
one part of the design to another. The net result is the tangled web that so many of us have
come to expect from a well evolved software design.

If we are to manage the complexity of these cross-links, then we must provide the
infrastructure in the design that will afford that management. The most straightforward
design, the design that concentrates only upon functionality, and does not consider main-
tainability and reusability, will not provide those affordances. Thus, pragmatism must be
moderated to some extent.

There is a cost to applying object-oriented design. An good object-oriented design will
generally be more complex than a procedural design for the same application. This extra
complexity represents the infrastructure needed to manage the dependencies within the
software. We should not begrudge this extra complexity. Rather, we should appreciate
that it will make the job of maintaining and reusing the software simpler.

Conclusion
This article has shown two methods for separating clients from servers. The INTELLI-

GENTCHILDREN pattern employs abstract polymorphic interfaces in the client and expects
the server to be manipulated by a derivative of the client. The ADAPTEDSERVER pattern
places abstract polymorphic interfaces in an abstract class that is contained by the client,
and a derivative of which contains the server. In both cases, the key to breaking the depen-
dency between the Client and the Server is in the employment of abstract polymorphic
interfaces.

