Acyclic Visitor

(v1.0)

Robert C. Martin
Object Mentor
rmartin@oma.com

INTENT

Allow new functionsto be added to existing class hierarchies without affecting those hierarchies, and without creating
the troublesome dependency cyclesthat are inherent to the GOF* VISITOR Pattern.

MOTIVATION

Procedural software can be written in such away that new functions can be added to existing data structures without
affecting those data structures. Object oriented software can be written such that new data structures can be used by
existing functions without affecting those functions. In thisregard they are the inverse of each other. Adding new data
types without affecting existing functionsis at the heart of many of the benefits of OO. Y et there are times when we
really want to add a new function to an existing set of classes without changing those classes. The VISITOR? pattern
provides a means to accomplish this goal.

However, the VISITOR pattern, when used in static languages like C++, Java, or Eiffel, causes a cycle in the source
code dependency structure. (See Figure 1 and the legend at the end of this paper.) A source code dependency means
that the source code of one module must refer to (via#i ncl ude, ori npor t , or some other mechanism) the source
code of another module.

igure 1. The dependency cycle In theVISITOR Pattern
Element .
Visitor
Accept (Vi sitoré& =0 Frmmmmmees >
Vi si t A(A&) =0
A Vi si t B(B&) =0
R N
A L
S RGRECEEEEEEE s MyFunction
i Visitor
B i
T ——

1. “Gang of Four” : Gamma, Helm, Vlissides, and Johnson. The four authors of Design Patterns Elements of Reusable Object Oriented Soft-
ware, Gamma, et. al. Addison Wesley, 1995

2. Design Patterns Elements of Reusable Object Oriented Software, Gamma, et. a. Addison Wesley, 1995 p. 331

The dependency cycle in this case is as follows:

» Thebase class of the visited hierarchy (El enent) depends upon the base class of the corresponding visitor hier-
archy (Vi sitor).

 TheVi si t or base class has member functions for each of the derivatives of the El ement base class. Thusthe
Visitor class depends upon each derivative of El enent .

» Of course, each derivative of El ement depends upon El enent .
Thus we have a cycle of dependencies that causes El enrent to transitively depend upon all its derivatives.

This knot of dependencies can cause significant troubles for the programmer who must maintain the code which con-
tains them. Any time anew derivative of El enent iscreated, the Vi si t or class must also be changed. Since El -
ement depends upon Vi si t or, every module that depends upon El errent must be recompiled. This means that
every derivative of El enmrent , and possibly every user of every derivative of El ement , must also be recompiled.

Where possible, this dependency cycle should be mitigated by using forward declarations. That is, in many casesthe
El enment base class can forward declarethe Vi si t or baseclass, andthe Vi si t or base class can forward declare
the derivatives of El ement . This creates amuch weaker source code dependency that L akos® refersto as aname only
dependency. Although weaker, thisis still a dependency cycle and still causes many of the problems mentioned in the
last paragraph. Specificaly, even when name only dependencies are used as much as possible, every time a new de-
rivative of El enent iscreated, all the existing derivatives of EI ement must be recompiled”.

Partial Visitation

Another disadvantage to the dependency cycle created by the Visitor pattern is the need to address every derivative of
Element in every derivative of Visitor. Often, there are hierarchies for which visitation is only required for certain de-
rivatives of Element. For example, consider amodem hierarchy (See Figure 2).

Igure Z: Modem Contiguration ViSitors

Modem ModemVisitor
__________ S
Accept (MbdenVi si t or & =0 Vi si t (HayesMbdeng) =0
Vi si t (Zoomvbden®) =0

HayesM odem
R ? Configure Configure
ZoomModem for Unix for DOS
Modem Visitor Modem Visitor

Here we see avery compelling use for ViISITOR. We have atypical hierarchy of Modemclasses with one derivative for
each modem manufacturer. We also see a hierarchy of visitors for the Modemhierarchy. In this example, there is one
visitor that adds the ability to configure amodem for Unix; and another that adds the ability to configure amodem for
DOS. Clearly, we do not want to add these functions directly to the Modembhierarchy. There is no end to such func-
tions! The last thing we want is for every user of Modemto be recompiled every time a new operating system is re-
leased. Indeed, we don’t want Modemto know anything at all about operating systems. Thus, we use VISITOR to add
the configuration function to the Modemhierarchy without affecting that hierarchy.

However, VISITOR forces us to write afunction for the cross product of all Modemderivatives and all ModenVi si -
t or derivatives. i.e. we need to write the functions that configure every type of modem to every type of operating

3. Large Scale C++ Software Design, John Lakos, Addison Wesley, 1996. p249.
4. See: “What'swrong with recompiling?’, in the Notes section.

system. However, what if we never use Hayes modems with Unix? VisITOR will still force usto write afunction to do
it! We could, of course, print an error from the function in the Visitor base class, and then allow that function to be
inherited, but we still have to write that function.

Now consider amuch larger hierarchy, onein which the cross product of El ement derivativesand Vi si t or deriv-
ativesis sparsely populated. The VISITOR pattern may become inconvenient in such a hierarchy because every visitor
depends upon every derivative of El emrent . Any time a new derivative of El emrent isadded all derivatives, even
derivatives which do not require visitor functions, must be recompiled. We would prefer to write only the functions
that need writing and keep them independent from all the other derivatives of El enent .

Solution

These problems can be solved by using multiple inheritance and dynami c_cast . (See Figure 3)
Figure 3. Acyclic Modem Visitor

This class has no

Modem functions. Itis | «degenerate»
degenerate. | ModemVisitor
..)

Accept (MbdenVi si t or & =0

A A

HayesVi sitor* hv = dynam c_cast <HayesVi sitor*>(&v);
if (hv)

hv->Visit(*this);
el se

/1 ‘v’ cannot visit HayesMbdem

HayesM odem HayesVisitor

— - - > 1}
Fosm-omoe- ---F->Accept (ModenVi si t or & Vi si t (HayesMdem&) =0
i)I\
i ZoomModem ZoomVisitor
i : - > B
| : Vi si t (Zoonivbderng) =0
i i |Accept (MbdenVi si t or &)
: : A
i i ConfigureDOS
| : i M odemVisitor
1 lccccccccccccaa Lecccccccccccccccccccccccccc s cc s s s s e s e e - - - -
i void HayesMbdem : Accept (ModenVi sit or & v) Vi si t (HayesModen®)
i { Vi si t (Zoom\vbdens)

}

Here we see how the dependency cycle can be broken. Rather than put pure virtual functionsinto the ModenVi si t or
class, we make it completely degenerate; i.e. it has no member functions at al! We also create one abstract class for
each derivative of Modem These classes, HayesVi si t or and ZoonmVi si t or, provideapurevirtual Vi si t func-
tion for Hay esMbdemand Zoonmvbdemrespectively. Finally we inherit al three of these classes into the Conf i g-
ur eDOSMbdenVi si t or . Notethat this class has exactly the same functionsthat it had in Figure 2. Moreover, they
are implemented in exactly the same way.

The Accept function in the derivatives of Modemuse dynani ¢_cast to cast across the visitor hierarchy from
ModemVi si t or to the appropriate abstract visitor class. Note: thisis not a downcast - it isacross cast. It is one of
the great benefits of dynamic_cast that it can safely cast to any class anywherein the inheritance structure of the object
it operates on.

Now what happens if we never use Hayes modems with Unix? The Conf i gur eUni xMbdenVi si t or class will

simply not inherit from HayesVi sitor. Any attempt to use a Hayes modem with Unix will cause the
dynam c_cast inHayesModem : Accept function to fail, thus detecting the error at that point.

There are no dependency cycles anywherein this structure. New Mbdemderivatives have no affect on existing modem
visitors unlessthose visitors must implement their functionsfor those derivatives. New Modemderivatives can be add-
ed at any time without affecting the users of Modem the derivatives of Modem or the users of the derivatives of Mb-
dem The need for massive recompilation is completely eliminated.

APPLICABILITY

This pattern can be used anywhere the VISITOR pattern can be used:
» When you need to add a new function to an existing hierarchy without the need to alter or affect that hierarchy.

» When there are functions that operate upon a hierarchy, but which do not belong in the hierarchy itself. e.g. the
ConfigureForDOS / ConfigureForUnix / ConfigureForX issue.

» When you need to perform very different operations on an object depending upon itstype.

This pattern should be preferred over VISITOR under the following circumstances:
» When the visited class hierarchy will be frequently extended with new derivatives of the Element class.
» When the recompilation, relinking, retesting or redistribution of the derivatives of EI enment isvery expensive.

STRUCTURE (SeeFigure4.)

PARTICIPANTS

» Element. The base class of the hierarchy which needs to be visited. Visitors will operate upon the classes within
this structure. If you are using visitor to add functionsto a hierarchy, thisis the base class of that hierarchy

« EI1,E2, ... The concrete derivatives of El erment that requirevisiting. If you are using visitor to add functionsto a
hierarchy, you will write one function for each of these concrete derivatives.

» Visitor. A degenerate base class. This class has no member functions at all. It sole purposeis as aplace holder in
the type structure. It is the type of the argument that is taken by the Accept method of El enent . Since the
derivatives of El emrent usethisargument inadynani c_cast expression, Vi si t or must have at least one
virtual function -- typically the destructor.

« E1Visitor, E2Visitor, ... The abstract visitors that correspond to each of the concrete derivatives of El enent .
Thereis aone to one relationship between these classes. Each concrete derivative of EI enment will have a corre-
sponding abstract visitor. The abstract visitor class will have one pure virtual Vi si t method that takes arefer-
ence to the concrete El enent derivative.

» VisitForF. Thisisthe actual visitor class. It derivesfrom Vi si t or so that it can be passed to the Accept func-
tion of El enent . It also derives from each of the abstract visitorsthat correspond to the concrete classes that this
visitor will visit. Thereis no need for the visitor to derive from all the abstract visitor classes; it only needsto
derive from the ones for which it will implement Vi si t functions.

COLLABORATIONS

1. The process begins when a user wishes to apply one of the visitorsto an object in the El enrent hierarchy. The
user does not know which of the concrete derivatives of El ermrent it actualy has; instead is simply has areference
(or apointer) toan El errent .

2. Theuser createsthe visitor object. (e.g. Vi si t For F in Figure 4) The visitor object represents the function that
the user would like to invoke upon the El enent .

3. Theuser sendsthe Accept messageto the El ement and passes the visitor object asareferencetoaVi si t or.

igure 4: Acyclic Modem Visitor

Element

Accept(Visitor& =0

!

1

!

voi d El:: Accept(Visitor& v)

ev->Visit(*this);
el se
/'l Accept Error

}

if (ElVisitor* ev = dynam c_cast<E1Visitor*>(&v))

VisitForF

El E2 «degenerate»
Visitor
== —+>Accept (Visitorg& Accept (Visitor&)
I
i A A A
I i i
| Y Y
! ElVisitor E2Visitor
!
: Visit(E1&) =0 Visit(E2&) =0
i
i
|
i
i
i

Vi si t (E18)
Vi si t (E28)

4. The Accept method of the concrete derivative of El enent usesdynam ¢_cast tocasttheVi si t or object

to the appropriate abstract visitor class (e.g. E1Vi si t or from Figure 4).

5. If thedynam c_cast succeeds, thenthe Vi si t messageis sent to the visitor object using the interface of the
abstract visitor class. The concrete derivative of El ement is passed along with the Vi si t message.

6. Theactua visitor object executesthe Vi si t method.

CONSEQUENCES

The consequences of this pattern are the same as those for VIsITOR with the following additions:

+ All dependency cycles are eliminated. Derivatives of Element do not depend upon each other. Recompilation is

minimized.

+ Partia visitation is natural and does not require additional code or overhead.

- dynani c_cast can beexpensivein terms of runtime efficiency. Moreover, its efficiency may vary asthe class
hierarchy changes. Thus, AcvcLic VISITOR may be inappropriate in very tight real time applications where run

time performance must be predictable
- Some compilers don't support dynamic_cast.

- Some languages don’t support dynamic type resolution, and/or multiple inheritance.

- InC++,theVi si t or classmust have at least onevirtual function. Since the classis also degenerate, wetypicaly

make the destructor virtual.

- Useof this pattern implies that there will be an abstract visitor class for each derivative of Element. Thus, classes
tend to proliferate rapidly.

SaAMPLE CODE

Thefollowing is the code for the Modem example used in Figure 3.

/1l Visitor is a degenerate base class for all visitors.
class Visitor

public:

virtual ~Visitor() = 0;
The destructor is virtual, as all destructors ought to be.
it is also pure to prevent anyone fromcreating an
instance of Visitor. Since this class is going to be
used in a dynam c_cast expression, it rmust have at |east
one virtual function.

~ Y~~~
~ Y~~~

b
cl ass Mbdem
publi c:
virtual void Accept(Visitor& const = 0;
b
cl ass HayesModem
cl ass HayesModenVi sit or
public:
virtual void Visit(HayesMbdem&) const = O;
1
cl ass HayesModem : public Mddem
public:
virtual void Accept(Visitor& v) const;
1
voi d HayesMbdem : Accept (Visitoré& v) const
i f (HayesModenVi sitor* hv = dynam c_cast <HayesMbdenVi sitor*>(&v))
hv->Visit(*this);

el se
/1 AcceptError
}

cl ass Zoomvbdem
cl ass ZoonModenVi si t or
public:
virtual void Visit(Zoomvbden®) const = O;
b
cl ass Zoomvbdem : public Mydem
public:
virtual void Accept(Visitor& v) const;
b
voi d ZoonModem : Accept (Visitor& v) const
i f (ZoomvbdemVisitor* zv = dynam c_cast <Zoom\vbdenVi sitor*>(&v))

zv->Visit(*this);
el se
/1 AcceptError

}

N R

/1 ConfigureFor DOSVi si t or

/1

/1 This visitor configures both Hayes and Zoom nodens
/1 for DOCS.

/1

cl ass ConfigureForDosVisitor : public Visitor

, public HayesModenVi sitor
, public ZoomvbdenVi sit or

publi c:
virtual void Visit(HayesModem®); // configure Hayes for DOS
virtual void Visit(Zoomvbden®); // configure Zoom for DOS
b
N T
/1 ConfigureForUnixVisitor
/1
/1 This visitor configures only Zoom nodens for Unix
/1

cl ass ConfigureForUnixVisitor : public Visitor
, public Zoom\VbdenwWi sitor

public:
virtual void Visit(Zoomvbden®); // configure Zoom for Unix

KNOWN USES

We have used this pattern in several of the projects we have consulted for. It has been used in the design of the “Mark
Facility Controller” created by the Toolkit Working Group at X erox. It hasalso been used inthe ETSYNCARB project.®

NOTES

This pattern solves a particularly nasty problem of tangled dependencies. | find thisinteresting in light of the fact that
it depends on two such controversial features. The pattern would not be possible were it not for multiple inheritance
and run time type information; both of which have been attacked as being “non-0O0".

What's wrong with recompiling?

Recompiles can be very expensive for a number of reasons. First of all, they take time. When recompiles take too
much time, devel opers begin to take shortcuts. They may hack a change in the “wrong” place, rather than engineer a
change in the “right” place; simply because the “right” place will force a huge recompilation. Secondly, a recompila
tion means a new object module. In this day and age of dynamically linked libraries and incremental |oaders, generat-
ing more object modules than necessary can be a significant disadvantage. The more DLLs that are affected by a
change, the greater the problem of distributing and managing the change. Finally, arecompile means a new release of
every module which needed recompiling. New releases require documentation, and testing; causing potentially huge
amounts of manpower to be invested.

5. see‘publications at www.oma.com

L EGEND

egend of the 0.91 UML Notafion

Directional
Associ ation
A2 <€
dependency
X S GEEEEEEEEEEE

Base Class

I nheritance

Derived

Bi -di recti onal
Associ ation

Aggr egati on
By Reference

Aggregation
By Val ue

P1

Al

