
Abstract Classes and Pure Virtual
Functions

In this article we will be discussing abstract classes, and
how they are implemented in C++. The first part of the article
will define abstract classes and describe how to use them as tools
for Object Oriented Design. The second half of the article will
concern itself with their implementation in C++, and some of the
quirks and pitfalls that surround their use.

While it is true that all objects are represented by a class, the
converse is not true. All classes do not necessarily represent
objects. It is possible, and often desirable, for a class to be
insufficient to completely represent an object. Such classes are
called abstract classes.

The illustrations used in this article conform to the “Booch
Notation” for Object Oriented Design. This is a rich and
expressive notation which is very useful for presenting OOD
concepts. Where necessary I will digress to explain some of this
notation.

What is an Abstract Class?

Simply stated, an abstract class is a class which does not
fully represent an object. Instead, it represents a broad range of
different classes of objects. However, this representation
extends only to the features that those classes of objects have in
common. Thus, an abstract class provides only a partial
description of its objects.

Because abstract classes do not fully represent an object,
they cannot be instantiated. At first it may seem a little odd that
a class is incapable of having any instances. But everyday life is
full of such classes. We may describe a particular animal as
belonging to the class of all Mammals. However, we will never
see an instance of the class Mammal! At least not a pure
instance. Every animal belonging to the class Mammal must
also belong to a class which is subordinate to Mammal such as
Mouse, Dog, Human, or Platypus. This is because the class
Mammal does not fully represent any animal. In Object
Oriented Design, we will never see an instance of an abstract
class, unless it is also an instance of a subordinate class. This is
because the abstract class does not fully represent any object.
As Booch says: “An abstract class is written with the expectation
that its subclasses will add to its structure and behavior...”1

0

Abstract
Class

The icon above represents a class. Note the ’0’ in the lower
left corner. This represents the cardinality of the class, or the
number of instances that the class can support. Since this class

can support ‘0’ instances, its is abstract.
According to Rumbaugh: “Abstract classes organize features

common to several classes.”2 What are the “common features”
mentioned by Rumbaugh? They are features of the class’s
interface. For example, consider the classes Window and
Door. At first glance these classes may not seem to have
anything to do with each other. But both share some interesting
common features. They are both holes in a wall. They both
have particular locations and sizes with respect to the wall.
They both may exists in one of three states: {OPEN, CLOSED,
LOCKED}. Finally, they can be sent similar messages: {open,
close, lock}. Thus, we can describe both classes as inheriting
from a common abstract base, Portal, which contains all the
common features of their interface.

Portal

Window Door

0

STEREOTYPES AND POLYMORPHISM. Notice how
this allows Window and Door objects to be stereotyped. They
can both be referred to as Portals. While this is an incomplete
description of either a Door or a Window, it is nonetheless
accurate and useful.

This ability to stereotype an object is a powerful design
tool. It allows us to bundle all the common aspects of a set of
objects together into an abstract class. As Lippman says: “[An
abstract class] provides a common public interface for the entire
class hierarchy.”3 This common interface allows us to treat all
such objects according to the stereotype. While such treatment
may not be socially acceptable when dealing with humans, it
provides for great efficiencies when dealing with software
objects.

For example, consider the Door and Window classes when
they do not inherit from a common base:

class Window
{
public:
enum WindowState {open, closed, locked};
void Open();
void Close();
void Lock();
void GetState() const;
int GetXPos() const;
int GetYPos() const;
int GetHeight() const;

int GetWidth() const;
private:
WindowState itsState;
int itsXPos, itsYPos, itsWidth, itsHeight;

};

class Door
{
public:
enum DoorState {open, closed, locked};
void Open();
void Close();
void Lock();
void GetState() const;
int GetXPos() const;
int GetYPos() const;
int GetHeight() const;
int GetWidth() const;

private:
DoorState itsState;
int itsXPos, itsYPos, itsWidth, itsHeight;

};

These two classes are horribly redundant. They cry for
some form of unification. That unification is supplied by
creating the abstract base class.

class Portal
{
public:
enum PortalState {open, closed, locked};
virtual void Open() = 0;
virtual void Close() = 0;
virtual void Lock() = 0;
void GetState() const;
int GetXPos() const;
int GetYPos() const;
int GetHeight() const;
int GetWidth() const;

private:
PortalState itsState;
int itsXPos, itsYPos, itsWidth, itsHeight;

};

class Window : public Portal
{
public:
virtual void open();
virtual void close();
virtual void lock();

};

class Door : public Portal
{

public:
virtual void open();
virtual void close();
virtual void lock();

};

The efficiencies that we gained are obvious. Several of the
Portal member functions can be reused. The declarations for
Door and Window are terse and understandable in terms of the
functionality of Portal. Moreover, both Window and Door
can be stereotyped as a Portal when convenient. For example:

void TornadoWarning(List<Portal*> thePortals)
{

ListIterator<Portal*> i(thePortals);
for (; !i.Done(); i++)
{

(*i)->Open();
}

}

Forgive the obvious license with the semantics of the
ListIterator. Clearly this method for opening all Doors and
Windows is superior to handling each type separately. As the
application matures, more types of Portals will probably be
added. However, since the TornadoWarning function deals with
all species of Portals, it will not have to change. Thus, the
polymorphic behavior of the abstract class Portal provides a
more maintainable and robust design.

It should be stressed that forcing Door and Window to
inherit from Portal is not necessary to the proper functioning of
the application. The application could be designed without the
abstract class. However, creating the abstract Portal class
results in a superior design which promotes polymorphism, and
code reuse.

Designing Applications with Abstract Classes

During the first stages of a design, we usually have a good
idea of the concrete classes that we need. As the design is
refined, we should begin to find common features amongst some
of these classes. These common features are not always
obvious. They may come from different parts of the design, and
may have different names and configurations. It sometimes
takes a careful eye to spot them.

For example, Jim, Bill and Bob are working on the design of
the software that will control a car crushing machine. Jim is
responsible for the control panel, Bill for the hydraulics control
and Bob for the servo motors.

Jim has designed an Indicator class for the control panel. It
looks like this:

class Indicator
{
public:
enum IndicatorState {on,off};
Indicator(const IndicatorAddress&)
void TurnOn();
void TurnOff();
IndicatorState GetState() const;

};

Bill has designed a Valve class for controlling the
hydraulics. It looks like this:

class Valve
{
public:
enum ValveState {open, closed};
Valve(const ValveAddress&)
void Open();
void Close();
int IsValveOpen() const;
double GetFlowRate() const;

};

Bob has designed a Motor class for controlling the servos.
It has the following interface:

class Motor
{
public:
enum MotorState {running, stopped};
Motor(const MotorAddress&)
void SetState(const MotorState);
MotorState GetState() const;
void SetSpeed(int);
int GetSpeed() const;

};

In this simple example, the common features aren’t too hard
to find. Each of these classes has a binary state, methods to alter
that state, and methods to interrogate that state. The forms and
names of these methods are dissimilar, but their functions are
common. Thus we can create an abstract base class Actuator
which defines the common points of each:

class Actuator
{
public:
enum ActuatorState {on, off};
Actuator();

virtual void Activate() = 0;
virtual void Deactivate() = 0;
ActuatorState GetState() const;

};

class Indicator : public Actuator
{

Indicator(const IndicatorAddress&);
virtual void Activate();
virtual void Deactivate();

};

class Valve : public Actuator
{

Valve(const ValveAddress&);
virtual void Activate();
virtual void Deactivate();
double GetFlowRate() const;

};

class Motor : public Actuator
{
public:
Motor(const MotorAddress&);
virtual void Activate();
virtual void Deactivate();
void SetSpeed(int);
int GetSpeed() const;

};

In a more complex application, commonality can be much
harder to detect. The names and forms of the methods can
disguise the intrinsic similarities. Thus, care should be exercised
in the search for commonality. The effort spent in the search
will be paid back with a more maintainable design which
supports a higher degree of code reuse.

FACTORING. In the Actuator example, we found the
common features of the concrete classes, and promoted them to
the abstract base. Rebecca Wirfs-Brock, et. al. call this
factoring4 They go on to state a profound principles of Object
Oriented Design: “Factor common responsibilities as high as
possible.” The higher, in the inheritance hierarchy, common
features can be factored, the more chances for re-use and
polymorphism are engendered.

Have we factored the features in the example high enough?
Our example didn’t have very many features, but there is still
room for some more factoring. It seems unlikely that the
Motor class will be the only class requiring a speed setting. So
we might want to create an abstract subclass of Actuator with
methods for handling speed. However, speed is just a variable
quantity. We can generalize it by creating the abstract class
VariableActuator:

Actuator

Variable
Actuator

Motor

ValveIndicator

0

0

This provides us with the opportunity to derive other
variable controlled actuators from the common base. For
example, we could create a variable brightness lamp, or a
variable speed fan.

EVOLUTION OF CONCRETE CLASSES. As the
iterative process of design continues to add more and more detail
to the application model, classes which had been concrete will
tend to become abstract. As we incorporate more of the details
of the application into the design, classes which had been
specific become the generalities for the new details.

For example, as the car crusher design proceeds, Bill
discovers that he needs a safety valve which opens
automatically when a pressure limit is exceeded. Bill could
simply derive SafetyValve from the current Valve class.
However, this assumes that the the SafetyValve is going to
share all the features of the simple valve. This may not be the
case. Bill might be better off creating an abstract class to
represent all valves, and then deriving SimpleValve and
SafetyValve from that common base.

Actuator

Variable
Actuator

Motor

ValveIndicator

0

00

Simple
Valve

Safety
Valve

By taking this tack, Bill has created a generalization which
fits not only his existing concrete valve classes, but any new
valve class that may be needed in the future.

This process of factoring common elements, higher and
higher into the inheritance hierarchy as the design progresses, is
typical. The more details that are added to the design, the more
abstract classes are created to deal with the common generalities.

PURE INTERFACES. Note that abstract classes define
features which are common to the interfaces of their derived
classes. But what implementation should be provided by the
abstract class? For example, what is the implementation for
Actuator::Activate(). There is no sensible implementation!
It is only the derived classes that know how to deal with the
Activate method. Indicator::Activate() turns on a real
indicator lamp. SimpleValve::Activate() causes a real life
valve to open. Motor:Activate() turns on a real motor. But
Actuator::Activate() can’t do anything because it doesn’t
have anything “real” to interface to. Thus, Actuator::
Activate() is a pure interface devoid of any implementation.

It is the pure interfaces within an abstract class which define
the common features encapsulated within it. They are the basis
for the polymorphic behavior of abstract classes. The impure
interfaces, those interfaces which have implementations, contain
the code which is re-used by all the derived classes.

Pure Virtual Functions

In C++, pure interfaces are created by declaring pure virtual
functions. A pure virtual function is declared as follows:

virtual void Activate() = 0;

The “= 0” on the end of the declaration is supposed to
represent the fact that the function has no implementation.

However, as we will see, implementations are sometimes
provided.

In C++, a class with a pure virtual function is an abstract
class. The language provides special semantics for abstract
classes. It enforces the constraint that abstract classes cannot
have any instances. Thus the compiler will not allow an instance
of an abstract class to be created. If you attempt to declare or
create one, the compiler will complain:

Actuator myActuator; // error
Actuator* myActuator = new Actuator; // error;

This constraint does not, however, prevent you from
declaring pointers and references to abstract classes. The
compiler allows such constructs, and will allow them to refer to
instances of concrete classes which have the abstract class
somewhere in their inheritance hierarchy.

Actuator* myActuator = new Indicator;
Actuator& anActuator = *(new Indicator);

Such pointers and references are very useful for taking
advantage of the polymorphic attributes of abstract classes. The
pure virtual functions of the abstract class are bound to the
implementations defined in the instances to which they refer.

myActuator->Activate(); // Turn on indicator.
anActuator.Deactivate();// Turn off indicator.

Including a pure virtual function in a class is the only way to
tell the compiler that the class is abstract. This is sometimes
considered to be a limitation. It has been suggested that an
‘abstract’ keyword be added to the language so that classes
could explicitly be declared abstract.

abstract class Actuator; // suggested syntax.

However, in my opinion, this would create a redundancy in
the language. A truly abstract class must contain a pure
interface; otherwise, it would be instantiable.

INHERITING PURE VIRTUAL FUNCTIONS. Pure
virtual functions behave differently depending upon the version
of the compiler you are using. Cfront 2.0 did not allow pure
virtual functions to be inherited by derived classes. If the base
class had a pure virtual function, then that function had to be
declared in the derived classes, either in pure form or in impure
form. Thus:

class Valve : public Actuator
{
public:

virtual void Activate() = 0;
virtual void Deactivate() = 0;

};

This restriction was relaxed in the 2.1 version of the
compiler, so pure virtual function can be inherited without
specifically being declared. If they are not declared in the
derived class, they are inherited in pure form, making the
derived class abstract.

class Valve : public Actuator
{

// This class is abstract.
// It inherits the pure virtual functions
// Activate() and Deactivate()

};

INSTANCES OF ABSTRACT CLASSES. Although it
is impossible to explicitly create an instance of an abstract class,
such instances can temporarily exist during construction or
destruction. Instances under construction are only as complete
as the currently executing constructor has made them. Instances
under destruction are only as complete as the executing
destructor has left them. Because these instances are
incomplete, the language prevents the virtual mechanism from
calling any virtual functions in classes which either have not
been constructed yet, or have been destructed already. What
might happen if a pure virtual function of such an incomplete
object were called?

The language specification (Arm 10.3) says that calling a
pure virtual function from a constructor of destructor is
undefined. This means that if f() is defined as pure virtual in
class C, then calling f() from a constructor or destructor of C is
an error.

For exmaple, let us assume that the designer of Actuator
wanted to initialize the instance in the deactivated state. To
do this he called Deactivate() in the constructor:

Actuator::Actuator()
{

Deactivate();
}

But Deactivate() is defined as pure virtual in Actuator.
So this is an error. In fact, it is an error that compilers can
easilty detect, so most will issue some kind of error message.
However, it is unreasonable to expect a compiler to detect all the
myriad ways in which pure virtual functions can be invoked
from constructors or destructors. The error can be hidden by a
slight, and very reasonable modification to the example above.

class Actuator

{
public:
enum ActuatorState {on, off};
Actuator();
virtual void Activate() = 0;
virtual void Deactivate() = 0;
ActuatorState GetState() const;

private:
void Init();

};

Actuator::Actuator()
{

Init();
}

void Actuator::Init()
{

Deactivate();

}

Here, the designer has, quite reasonably, created a private
Init() function which will be called by the constructor. Init
calls Deactivate in order to initialize the device in the
“deactivated” state.

The same bug still exists. Deactivate() will still be called
within the context of the Actuator constructor. But this time,
the compiler will probably not complain. Thus, when an
Indicator is created, the call to Deactivatewill attempt to
invoke a non-existent implementation, and will very likely crash.

PURE VIRTUAL IMPLEMENTATIONS Sometimes it is
convenient for pure virtual functions to have implementations.
C++ allows this. The implementation is coded in exactly the
same way as the implementation of any other member function:

void Actuator::Activate()
{

/* Do something clever here */

}

There are not very many good reasons to supply
implementations for pure virtual function. After all, a pure
virtual function represents a pure interface whose
implementation would make no sense in the context of the
abstract class. But sometimes there are exceptions.

For example, assume we have a virtual function IsValid
which checks the instance to see if it is in a valid state. The
general form of such a function will be:

class MyClass : public MyBase

{
typedef MyBase superclass;
public:
int IsValid() const;
/* ... */

};

int MyClass::IsValid() const
{

int retval = 0;
if (superclass::IsValid())
{

if (/* I am valid */)
{

retval = 1;
}

}
return retval;

}

Note the call to the super class. When IsValid is called for
an instance, it checks to see if the portion of the instance which
is described by its base class (superclass) is valid. If so, it
checks its own parts and returns 1 if they are ok, and 0 if they
are not. Each IsValid function in each of the base classes
repeats this procedure. Thus, when IsValid is called for an
instance, the call is passed all the way up the inheritance
hierarchy.

Now, lets presume that the base most class of the hierarchy
is as follows:

class Validatable
{
protected:
virtual int IsValid() = 0;

};

In other words, the abstract base class describes the set of all
classes which have IsValid functions.

Can the immediate derivatives of Validatable obey the
IsValid protocol by passing the call up to their superclass (i.e.
Validatable)? This would be very desirable since we don’t
want to have one convention for immediate derivatives of
Validatable, and another for its indirect derivatives. If at all
possible, we want all the derivatives of Validatable to use the
same form for IsValid().

Fotunately, the ARM(10.3) allows implementations of pure
virtual function to be called explicitly by using their qualified
name.

if (Validatable::IsValid()) ...

Thus, if we supply the following implementation for the

pure virtual function Validatable::IsValid(), then the
immediate derivatives of Validatable can obey the superclass
protocol.

int Validatable::IsValid()
{

return 1;
}

PURE VIRTUAL DESTRUCTORS. There is one aspect
of pure virtual functions which the language specification does
not define very well. This is the behavior of pure virtual
destructors. Pure virtual destructors are an oddity. They are, I
suspect, an accident of syntax rather than a designed feature.
They look like this:

class OddClass
{
public:
virtual ~OddClass()=0; // valid but strange.

};

A destructor is not a normal function, it cannot be inherited
(ARM 12.4), it cannot be overridden and it cannot be hidden. A
virtual destructor is not a normal virtual function. It does not
share the same name as the base class destructor, and it is not
inherited. A pure virtual function is meant to be inherited, its is
the interface for a feature which is to be defined in a derived
class. So what is a pure virtual destructor? It is not an interface
for a destructor which is to be defined by a derived class,
because destructors cannot be inherited. It is not a function
without an implementation, becauseit will be called as the
destructor for the class, and so it must be implemented. The
only guaranteed feature of a pure virtual destructor is that it
makes the class that contains it abstract.

Using Abstract Classes

Although programs are not allowed to instantiate abstract
classes, in every other way they can be used to manipulate
normal objects. Classes may contain pointers or references to
abstract classes.

class ActuatorTimer
{
public:
ActuatorTimer(Actuator&);
void SetTimer(int);
int GetTimer() const;
void Start();

private:
Actuator& itsActuator;

};

This declaration shows the interface of a class which will
activate an actuator for a specified period of time, and then turn
it off again. Any derivative of Actuator can be used as an
argument to the ActuatorTimer constructor. The specified
Actuator will be polymorphically activated and deactivated by
the ActuatorTimer class.

Summary

Abstract classes provide a powerful design technique which
promotes code re-use and polymorphism. According to Coplien:
“The power of the object paradigm in supporting reuse lies in
abstract base classes.”5 Abstract classes are produced by
factoring out the common features of the concrete classes of the
application. Although such factorings are sometimes hard to
find, the effort put into finding them is usually well worth the
benefits of the extra maintainability and reusability. In general,
common features should be factored out and moved as high as
possible in the inheritance structure.

In C++, pure virtual function are used to specify the pure
interfaces of abstract classes. An abstract class in C++ must
have at least one pure virtual function. Although pure virtual
functions typically have no implementation, C++ allows
implementations to be given to them. The user must take care
not to invoke pure virtual functions in the constructors or
destructors of an abstract class.

Although abstract classes cannot be instantiated, they can be
used in every other way to represent normal objects. They can
be contained or passed by reference, and their interface can be
used to invoke their intrinsically polymorphic behavior.

References

1 Booch, Object Oriented Design with Applications,
Benjamin/Cummings, 1991

2 Rumbaugh, et. al. Object-Oriented Modeling and
Design, Prentice-Hall,1991

3 Lippman, C++ Primer, second edition, Addison-
Wesley, 1991

4 Wirfs-Brock, et. al. Designing Object-Oriented
Software, Prentice-Hall, 1990

5 Coplien, Advanced C++ Programming Styles and
Idioms, Addison-Wesley, 1992

