ON TANGENTIAL APPROACH REGIONS FOR BOUNDED
HARMONIC FUNCTIONS IN THE UNIT DISC

FAUSTO DI BIASE, ALEXANDER STOKOLOS, OLOF SVENSSON, AND TOMASZ WEISS

ABSTRACT. We study bounded harmonic functions defined on the unit disc
and their boundary behaviour along tangential approach regions whose shape
may change from point to point, thus solving a problem posed by W. Rudin in
1979 and completing the picture given by the basic theorems of Fatou (1906),
Littlewood (1927) and Nagel & Stein (1984).

1. MOTIVATION AND RESULTS

We study the boundary behaviour of bounded harmonic functions, defined in the
unit disc D = {z € C: |z| < 1}, along tangential approach regions whose shape may
possibly change from point to point. The boundary of D, denoted D, is the set
{w € C: |w| = 1}; it is identified, via the map s € R — ¢** € 9D, to the quotient
group R /27 Z, from which it inherits the Lebesgue measure m; thus, m(0D) = 2.
The first motivation of the present work comes from our desire to completely clarify
a claim made in the introduction to Littlewood (1927), where the Author proved
the failure of almost everywhere convergence of bounded holomorphic functions
in the unit disc along rotated copies of any given curve in the unit disc ending
tangentially to the boundary. This ‘negative’ theorem of Littlewood complements
the ‘positive’ theorem of Fatou (1906), where the almost everywhere nontangential
convergence of bounded holomorphic functions in the unit disc is established. In
his paper, Littlewood claims that there is

no possible question, in the negative theorem, of allowing [the tan-
gential curve] to vary its shape [from point to point].

We provide the needed clarification of this claim and articulate our results! in four
theorems, only the first of which may be fairly considered to be within the reach of
1927 technology or amenable to Littlewood’s proof.

The second motivation, closely connected to the first, comes from our desire to give
a complete answer to a question asked in Rudin (1979), where the Author looks
at Littlewood’s claim from the positive side and asks whether almost everywhere
convergence of bounded holomorphic functions in the unit disc could possibly hold
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along a given family of tangential curves, ending at the various boundary points —
by Littlewood’s theorem, this hypothetical ‘good’ family of tangential curves could
not possibly be rotation invariant.

The crucial property about curves is isolated by the following notion.

Definition. A tress is a family v = {y(w)},csp Where y(w) is a nonempty subset
of the unit disc such that the set {w} U~y(w) is connected, for each w € 9 D.

Note. We show that this notion is indeed sufficient in order to state and prove
our results in a simple and natural fashion. In the notion of tress, it is important
to require that the set {w} U y(w) is connected, in order to obtain the extension
of Littlewood’s theorem as in Theorem 1.4. Indeed, if the set {w} U y(w) is not
connected, then it may consist of a Nagel-Stein type tangential sequence, for which
almost everywhere convergence does indeed hold; cf. Nagel & Stein (1984). The
Nagel-Stein phenomenon holds in great generality; see Di Biase (1998).

A preliminary reduction. Since the core of the problem belongs to harmonic
analysis, we may restrict ourselves, without loss of generality, to the space h* (D),
consisting of real valued functions harmonic and bounded on D. Indeed, Fatou
(1906) also proved that for every h € h* (D), there is a measurable subset F'(h) C
0D of Lebesgue measure 27 such that for each w € F'(h) the limit of h(z), as z = w
and \1@;_|ZZ|| > 0, exists for each ¢ > 0; this limit is denoted h,(w). Thus, h, is an
almost everywhere defined function on 0D and h, € L*°(0D). Points in F(h) are
called Fatou points of h. The Poisson integral operator P : L*(0D) — h*° (D)

recaptures h from h,, since h = P[h,]; see Fatou (1906).

Definitions. Let v be a tress. If

y(e®w) = {e¥z: z € y(w)}
for each w € 0D and s € R, then v is called rotation invariant. If each set y(w) is
tangential to 0D at w, i.e., for each w € D and € > 0, there is 6 > 0 such that
if z € y(w)ND and |z —w| < J then |1z_—|51|| < €, then v is called tangential. If, for
each w € 0D, there is a continuous map ¢, : [0,00) — D whose image is equal to
~v(w) and such that lim; _ ¢, (7) = w then v is called a tress of curves.
Let h € h*(D). The convergence set of h along v, denoted C(h,~), is the set
consisting of those points w € F'(h) such that h converges to h,(w) along v(w),
i.e., for each € > 0 there is § > 0 such that if z € y(w) and |z —w| < ¢ then
|hy(w) — h(z)| < e. The divergence set of h along v, denoted D(h,7), is the set
cousisting of those points w € 9D such that h(z) does not converge to any number
as z » w and z € y(w).

Note. The divergence set and the convergent set are disjoint. However, the former
is not defined to be the complement of the latter. Therefore, our results turn out
to be the most stringent possible ones.

Littlewood’s theorem can be restated as follows: If 7 is a tangential, rotation in-
variant tress of curves then there is h € h*°(D) such that m(D(h,7)) = 27. Our
Theorem 1.4 shows that, Littlewood’s claim notwithstanding, it is possible, in the
‘negative theorem’, to allow the approach regions to change their shape from point
to point, i.e., it is indeed possible to prove a Littlewood type theorem for tangen-
tial tresses that are not assumed to be rotation invariant, the only extra hypothesis
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being a natural condition, of a qualitative nature, to be given below. However,
Littlewood’s claim can be given the following precise rendition.

Theorem 1.1. There exists a tangential tress of curves v such that for each h €
h* (D), the outer measure of the set C(h,v) is 27.

Notes. Theorem 1.1 gives a precise rendition of Littlewood’s claim but it also raises
further questions, whose answers indicate that the claim itself, in its vague but
peremptory form, did not describe the complete picture, since our answers were
not accessible to 1927 technology. Moreover, in Theorem 1.4 we will show that,
Littlewood’s claim notwithstanding, under certain natural conditions, of a qualita-
tive nature, it is possible to extend Littlewood’s theorem to tangential tresses that
are not assumed to be rotation invariant.

Observe that Theorem 1.1 does not guarantee that the set of convergence thereby
considered is measurable, but only that its outer measure is equal to 27. Indeed,
Rudin’s question may be formulated as one about the truth value of the following
statement:

There is a tangential tress of curves 7 such that for each h € h* (D)
the set C(h,~y) is measurable and it has measure 2.

One may be tempted to apply the law of the excluded middle and deduce that the
statement we have highlighted must be either true or false. However, Godel’s work
warns us of other possibilities.

In order to prove a statement in Analysis, we ultimately deduce it from the axioms
of Zermelo Fraenkel together with the Axiom of Choice; following the literature?,
we denote these axioms by ZFC. Godel showed that a statement can be deduced
from ZFC if and only if it holds in every model of ZFC. For example, the Continuum
Hypothesis holds in some but not all models of ZFC, by results of P. Cohen (1963-
1964); cf. Cohen (1966) and Kunen (1980).

A priori, it may be the case that bounded harmonic functions behave differently
in different models of ZFC, but not in radically different ways. In the following
Theorems 1.2 and 1.3 we prove that the boundary behaviour of h*° (D) functions
along tresses is radically different in different models of ZFC.

Theorem 1.2. There is a model of ZFC where the following statement holds: there
exists a tangential tress of curves v such that for each h € h*™ (D), the set C(h,~)
1s measurable and it has measure 2.

Theorem 1.3. There is a model of ZFC where the following statement holds: for
every tangential tress vy there exists h € h* (D) such that the set D(h,v) has outer
measure equal to 27.

Note. It is not possible to prove, in Theorem 1.3, that the set D(h,v) can be made
measurable and of measure 27, because Theorem 1.1 is a theorem in ZFC and
therefore it holds in every model of ZFC.

Littlewood’s claim notwithstanding, it is indeed possible to extend Littlewood’s
theorem to families of tangential approach regions that are not assumed to be
rotation invariant, the only extra hypothesis being given in the following natural
(but novel) condition, of a qualitative nature.

2For background on these matters, see Drake (1974), Jech (1978).
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Definition. A tress v is regular if for each open set O C D, the subset of 9D given
by
FHO) E {w e D : O N (w) # 0}
is a measurable subset of 0 D.
The set y+(0) is called the shadow projected by O along .

Examples. A rotation invariant tress is necessarily regular, since its shadows are
open subsets of 0. Other interesting and equally natural examples of regular
tresses are given by the inner function images of radii. An inner function is an
analytic function f : D — D whose nontangential limit f,(w) belongs to 0D for
almost every w € 9. If f is an inner function then almost every point u € 9D is
equal to f,(w) for at least one w € 9D. If u € D and if there is at least one point
w € OD such that f,(w) = u then we define f,(u) & {flrw) : 0 <r < 1, fy(w) =
u}; the definition of f, at the other points of 9D is not influential since those points
form a null set; then f, is a regular tress.

Note. The set v*(B), where B is the boundary of a sawtooth regions, appear (im-
plicitly) in the proof by A. Calderén of the so-called local Fatou theorem®. We now
sketch the technique, due to E.M. Stein, showing the relevance of the sets y+(0) in
the study of the nontangential maximal functions, i.e. when v = I is the family of
nontangential approach regions of fixed width, in the upper half space R x (0, c0)
and O is an open subset of the upper half space (obtained as superlevel set of a
certain function). In this case, it follows that the shadow I'*(O) is open and, there-
fore, one may apply a Whitney type decomposition in order to control the relevant
nontangential maximal function; see Fefferman & Stein (1971) and Stein (1993).
For extensions and other applications, see Di Biase (1998).

Theorem 1.4. For each regular, tangential tress v, there exists h € h*(D) such
that the set D(h,7y) is measurable and has measure 27.

Note 1. Our notions of tress and regular tress appear to be the weakest qualitative
properties forcing a family of tangential approach regions to yield to the conclusion
of a Littlewood’s type theorem, such as the one we obtain in Theorem 1.4. The
very statement of Theorem 1.4 is a significant extension of Littlewood’s theorem.
The proof of Theorem 1.4 is achieved using techniques quite different than those
used by Littlewood, whose proof was based on

a result of Khintchine concerning the rapidity of the approximation
of almost all numbers by rationals.

The quote is from Zygmund (1949) where a simpler proof of Littlewood’s theorem,
avoiding the use of Khintchine’s theorem, is given. Our proof of Theorem 1.4 is
based on Zygmund’s technique.

Note 2. Theorem 1.4 recaptures some results of Rudin (1988), proved using complex
analysis methods and under more stringent hypothesis. Our use of purely real
variable methods makes it possible to extend our results to higher dimensional
situations®.

3 'he local Fatou theorem for harmonic functions is a real-variable higher dimensional version
of Privalov’s extension of Fatou’s theorem; see Stein & Weiss (1971) and references therein.

4We intend to elaborate these extensions in a forthcoming paper. See also Aikawa (1990) and
Aikawa (1991).
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2. PrRooOF OF THEOREM 1.1

We shall need the existence of a special partition of 9D in a continuous family of
disjoint sets of full outer measure.

Lemma 2.1 (Lusin & Sierpifiski (1917)). There is a collection {Gu},¢(o,1) of mu-
tually disjoint subsets of O, such that (a) for each u € (0,1), the set G, has outer
measure equal to 27; (b) 0D = U, 0,1) Gu-

Now, we recall the following qualitative® consequence of Fatou’s theorem.

Lemma 2.2. For each h € h® (D) there exists a tangential tress of curves vy, such
that the set C(h,vy) is equal to F(h) and, therefore, m(C(h,vy)) = 2.

Proof. Let w € F(h). For each n € N, there is r(n) > 0 such that if z € D,
|z —w| < r(n) and |1z:‘1:‘| = 2" then |h(z) — hy(w)| < i; we may assume that
r(n +1) < $r(n) and (1) < 1/2. Choose z(1) € D such that |z(1) — w| = r(1)
and |f£1‘)z(7f;}|| = 2. Let z(2) be the point z € D located on the same side as z(1)
with respect to the radius ending at w and such that ‘f:lfll =2and |z —w| =7(2).

Connect the points z(1) and z(2) with the segment of the curve

[z—w
el
them. Let z(3) be the point z € D located on the same side as z(2) with respect to

| = 2 between

the radius ending at w such that |z — w| = |w — 2(2)| and ‘1Z:|2|| = 22. Connect z(2)
with z(3) with the arc of the circle |z — w| = |w — 2(2)| between them. Proceed by
induction, obtaining a curve ending tangentially at w, along which h converges to

hb (w) (I
We are now ready to prove Theorem 1.1.

Proof. Since the sets (0,1) and h°° (D) have the same cardinality, the result given
in Lemma 2.1, yielding a decomposition of 0 into sets of full outer measure,
yields one such decomposition where the index set is A% (D). Thus, we have a
disjoint union 0D = {Jp,cpe(n) G(h), where each set G/(h) has full outer measure
and sets indexed by different functions are disjoint. For w € G(h) N F(h) define
v(w) £ 4 (w). For w € G(h) \ F(h) define v(w) as the set of points z € D such
that 1 — |z| = |z — w|® and z is located on one side of the radius ending at w. Thus,
7 is a tangential tress of curves. We claim that for each A € h*° (D) the set C(h,~)
has outer measure equal to 2. Indeed, it suffices to show that C(h,~y) contains
G(h) N F(h), since the intersection of a subset of 9D of outer measure 27 with a
measurable subset of 0D of measure 27 is a subset of 0D of outer measure 27.
Now, the inclusion G(h) N F(h) C C(h,~) follows from the construction of v. O

3. PROOF OF THEOREM 1.2

3.1. Analytic Preliminaries. The results of this section are analytic results valid
in any model of ZFC.

First, we need to clarify the relation between the boundary behaviour of h € h*° (D)
at a point e* € D and the differentiability properties of h;, at e?*.

5The quantitative version given in Boehme & Weiss (1971) will be useful later on.
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Definition. If h € h*°(D), s € R, § > 0 and v € R we define

s+t
1/ (hy (™) — v) dul .

def
h*(s,0;v) = sup
0<t|<o

Note. The limit of %f:“ h,(e®) du as t — 0 exists and is equal to v if and only if
limh*(s,8;v) =0.
610

Observe that h*(s,d;v) is an increasing function of 6.

Theorem 3.1 (Fatou (1906) and Loomis (1943)). Let h € h*™°(D) and s € R. Then
the following conditions are equivalent.

(i) e’ € F(h) and h,(e'*) = v;

(ii) limgyo h*(s,0;v) =0

Definition. Let ¢ be a continuous function ¢ : [0, 00) — D ending at €** and assume
that ¢ can written in the form

(1) = |e(7)]e*ef (T
where 8 = 6(7) > 0 is a continuous functions of 7 such that lim,_,, 8(7) = 0 and

. o(r)
lim ——— =+00.
o0 1 —[¢(7)]
Then c is called an upper tangential curve ending at e**. The function 6 = 0(r)
(uniquely determined by c) is called the angle of ¢ with respect to e**.

Theorem 3.2 (Boehme & Weiss (1971)). Let h € h*°(D), e € F(h) and v =
hy(e%). Let ¢ be an upper tangential curve ending at €' and let § be the angle of c
with respect to €. If
: o(r)
lim ————h"*(s,20(7);v) = 1
R ey (5,20(7);v) =0 (3.1)
then
lim h(c()) = hy(e’).
T—0Q
Note. Thus, h converges to h,(e**) along the tangential curve ¢ as long as ¢ is not
too tangential, in the sense that (3.1) holds.
A diagonal type argument yields the following result.

Corollary 3.3. If {h¢}, is a countable collection of elements of h*°(D) and w €
F(hg) for each £ € N then there is an upper tangential curve ¢ = ¢(T) ending at w
such that lim, o he(c(7)) = (he), (w) for each £ € N.

Proof. Let vy & (he),(w) and write w = e**. Define 6(1) = e~7. Write H((,7) =
he*(s,20(7); ve). Choose ki > 0 such that if 7 > &y then H(1,7) < 5. Choose
ky > ki such that if 7 > ky then H(1,7) < 3 and H(2,7) < 5. Choose
ks > ky such that if 7 > ks then H(1,7) < 55, H(2,7) < 55 and H(3,7) <

0(r)
I—[e(r)]

lates linearly between 27 and 2/t when 7 goes from 7 = k; to 7 = kj;1. Then
lim; o0 %H(Z, 7) = 0 for each £ and Theorem 3.2 yields the desired result. O

23%. Continue inductively in a similar way. Define ¢ so that interpo-
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3.2. The statement of Theorem 1.2 holds in any model of ZFC in which
the Continuum Hypothesis holds.

Proof. Let I be a set having the cardinality of the continuum and let < be a well-
ordering of I (use the Axiom of Choice). It follows that if a € I then the initial
segment {k € I : k < a} is at most countable, since we have placed ourselves in a
model of ZFC in which the Continuum Hypothesis holds.
Observe that, in any model of ZFC, the set h*°(D) has the cardinality of the con-
tinuum, , i.e. the same cardinality as 0 D.
Let {ha},e; be alist of all bounded harmonic functions in D and let {wg},., be
a list of all points in . If 3 € I then the set

T(B) déf{ozE I:a<pandwg € F(hy)}
is at most countable. Then Corollary 3.3 shows that there exists a continuous curve
cp 1 [0,00) — D in D ending tangentially at wg and such that if « € T'(8) then

Jim fa(cs(s)) = (ha), (ws) (32)

Define v(wg) & cg(0,00). We claim that for each a € I the set C(hq,7) is mea-
surable and it has measure equal to 27. Indeed, consider the set F'(hy) of Fatou
points of h, and consider its subset

S(e) € {ws : a < B and ws € F(hy)}

obtained by removing at most countably many points. Thus, S(«a) is measurable
and it has measure 27. We claim that S(a) C C(hq,y)- Indeed, if w € S(a) then
w = wg for some B € I such that @ < 3 and wg € F(hy). Thus, a € T(8) and
therefore (3.2) holds, i.e. w = wg € C(hqg,7)- O

Definitions. A set has small cardinality if its cardinality is stricly less than the
cardinality of the continuum. The Baire space NV is the collection of all sequences
of natural numbers. Thus, f € NV if and only if f : N — N is a sequence of natural
numbers. The dominating order <. in the Baire space is an order relation defined
as follows: f <, g if and only if there exists an integer m such that f(n) < g(n)
for each n > m.

We say that a model of ZFC has Property D if and only if for each S C N of small
cardinality there is a g € N such that f <, g for every f € S.

We say that a model of ZFC has Property Unif (N') = ¢ if and only if every subset
of D of small cardinality has Lebesgue measure zero.

Note. There are models of ZFC where both these properties hold but the Contin-
uum Hypothesis does not hold; see Bartoszynski & Judah (1995).

3.3. The statement of Theorem 1.2 holds in any model of ZFC having
Properties D and Unif (V) =c.

Proof. The proof closely parallels the preceding one, the main difference being that,
instead of a diagonal type argument (via the proof of Corollary 3.3) we use Property
D. Let I be a set having the cardinality of the continuum and let < be a well-
ordering of I. Let {hq},.; be a list of all bounded harmonic functions in D and
let {wg}4c, be a list of all points in 9. If 3 € I then the set

def

T(B) ={a€el:a<pand wg € F(hy)}



8 F. DI BIASE, A. STOKOLOS, O. SVENSSON, AND T. WEISS

has small cardinality.

We claim that Theorem 3.2, and Property D imply that there exists a continuous
curve cg : [0,00) — D in D ending tangentially at wg and such that if a € T'(8)
then (3.2) holds. Indeed, write wg = €', and, for each a € T'(8), let vy = (ha),(wp)
and define f, € NV by letting f,(n) be the smallest integer k such that

¥ _ 1
(ha)"(5,2¢ " 0a) < onfn

for all £ > k. Then the family {fo},e7(5) C N has small cardinality. Property

D implies that there is an element f € N such that f, <, f for each a € 7).
We may always assume that f is strictly increasing. The upper tangential curve
¢ = cg ending at wg with angle 8(t) = e 7 and such that % interpolates
linearly between 2" and 2"*! when 7 is between f(n) and f(n + 1) has the re-
quired property, by Theorem 3.2. Indeed, if @ € T'(8) then there is a k such that
if n > k then fo(n) < f(n). Thus, if n > k and f(n) < 7 < f(n + 1) then

%(ha)*(s, 27 5vq) < &

Define v(wg) df cg(0,00). We claim that for each a € I the set C(hq,7) is mea-
surable and it has measure equal to 27. Indeed, consider the set F'(h,) of Fatou
points of h, and consider its subset
S(e) = {ws : a < B and wg € F(hq)}

obtained by removing a certain set of small cardinality (thus a null set, because of
our hypothesis on the model of ZFC we are working in). Thus, S(«) is measurable
and it has measure 2r. We claim that S(a) C C(hq,7)- Indeed, if w € S(a) then
w = wg for some # € I such that @ < f and wg € F(hy). Thus, o € T(8) and
therefore (3.2) holds, i.e. w = wg € C(hqa,7)- O

4. PROOF OF THEOREM 1.3

4.1. Preliminaries. The results of this section are analytic preliminaries holding
in any model of ZFC. We do not assume that the tress is regular.

Notation. If B C 9D then we denote by 1p : 9D — {0, 1} the function equal to
lon B and 0 on 0D \B.

Lemma 4.1. Assume that B C 0D is open and that m(0D\B) > 0. Let vy be a
tangential tress. Then for almost every w € 0D \B the following holds:
liminf P[1g](z) =0 (4.1)
=1
Proof. The proof is a variant of a technique used by Zygmund (1949), mutatis
mutandis. For the benefit of the reader, we sketch the proof. Fatou’s theorem
implies that
lim P[1p](rw) =0 (4.2)
rtl

An application of Egorov’s theorem shows that for each ¢ > 0 there is a perfect
subset A of 9D \{B} such that the limit in (4.2) is uniform for w € A and m(4) >
2r — m(B) — e. We may assume that each w € A is a limit point of a sequence
wei?» € A where 6, — 0 and 6,, > 0 for n even, 6, < 0 for n odd. It follows
that (4.2) holds at each point w € A, since {w} U~y(w) is connected, and, therefore,
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v(w) intersects the radii ending at we' for an appropriate subsequence of n's,
close enough to the boundary. The conclusion follows because € is arbitrary. O

The arc in 0D of center €' and radius r > 0 is the subset of ) given by
{e¥:0—r<s<O+r}.

Definition. Let T'(w) &' {z € D: |z — w| < 2(1 — |2|)}, for each w € &D. Thus, T

is a tress. If J is an arc in 0D, define

AJ)E{zeD:T*{z}) c J}
The proof of the following basic and well known estimate is omitted.
Lemma 4.2. There is a number ¢ > 0 such that
PlL)(z) 2 &
for each arc J C 0D and each z € A(I).

Definition. If B C D is open and 7 is a tress, then we define Z.,(B) as follows®:
w € Z,(B) if and only if w € 0D \{B} and there is a sequence Jj, of arcs contained
in B such that for all K € N

Y(w) NA(Tg) # 0
and for each € > 0 there is n, such that the set Ji is within the ball in C centered

at w of radius ¢, for k& > n..

Note. The following result shows why the set Z,(B) is of interest to us, and why
we shall construct the open set B in such a way that (i) the set Z,(B) is large and
(ii) the set B has small measure.

Lemma 4.3. Assume that w € Z,(B). Then
limsup P[1g](z) > ¢1 .

z—w

z€y(w)

Proof. It follows from Lemma 4.2, since P[1;] < P[1g]if J C B. O
4.2. The Generalized Egorov Property.

Definition. We say that the Generalized Egorov Property holds in a model of
ZFC if the following statement holds: For every e¢ > 0, every sequence of real
valued functions defined on @D and converging pointwise to zero has a subsequence
converging uniformly on a subset of 0 D whose outer measure is greater than 27w —e.

Note. The functions in the previous statement are not necessarily measurable (when
they are, Egorov’s theorem yields a stronger conclusion, in any model of ZFC).

Theorem 4.4 (Weiss (2003)). The Generalized Egorov Property is independent of
ZFC.

Note. In particular, there is a model of ZFC where the Generalized Egorov Property
holds. The proof uses forcing; see Weiss (2003).

6 his definition is inspired by the technique used in Zygmund (1949).
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4.3. The statement in Theorem 1.3 holds in any model of ZFC where the
Generalized Egorov Property holds.

Proof. Define the function 7 : 9D x — (0, 1] by 7(w, z) Lt |11u_lz|| forw € 9D,z € D.
Let 7 be a tangential tress and consider the sequence of everywhere defined functions
fn: 0D — (0,00) gauging the order of tangency at the various points:

Fo(w) & sup{r(w,2) : z € y(w), |z —w| < 2n/n}. (4.3)

Observe that 1 > f,(w) > frt1(w) and that lim, o fr(w) = 0 for each w € 9D,
since 7y is tangential.

If N € N then there is a set Cy C 0D whose Lebesgue outer measure is greater
than 27 — 2%\, and such that the sequence {f,,} converges uniformly to 0 on Cy.
We may and will assume that C'y C C 1 for all N € N. Thus, there is an element
on € NV such that

if (€N and n > ¢n(€) then sup fn(w) <27°.
welCn

Define a strictly increasing sequence ¢ € N dominating each ¢p, as follows. Let

¢(1) > ¢1(1), ¢(2) > max{¢1(2),$2(2)}, ¢(3) > max{¢(3),#2(3),¢3(3)}, and so
on. Then ¢(i) > ¢n (i) for all i > N.

It follows that

c(k) Lof sup for)(w) < 2-k
weCy

If J C 9D is the arc {e?® : § —r < s < 6 +r} of center e and radius r > and
0 < ¢ < 1, then we denote cJ & {e¥* : 0 —cr < s < 0+ cr} the arc of center e
and radius cr. Thus, m(cJ) = ecm(J).

For n,p € Nand 1 < p < n define J(n,p) d:ef{eis c(p— 1)%7T <s <p27“} C OD.
Define

o (k)
I, = | e(k)J(6(k), p)

p=1

Then
m(Ily) < 2me(k) < 2m27F.
Define
B(t) = | I
k=t

Let

oo
D= JCw.
1
Then the outer measure of D is equal to 2.

Claim. If {y € N then D \ B({y) C Z,(B(ly)).
If h € h*°(D) and w € 9D, we define

osc(h; w) £ Jim sup h(z) — liminf h(z) .

z€v(w) ze€v(w)
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Consider 1g(¢) € L*(0D) and its Poisson integral P[lg()] € h**(D). Lemma 4.1
and Lemma 4.3 imply, in conjunction with the Claim, that there is a set N(€) of
Lebesgue measure zero such that if w € (D \ B(¢)) \ N(¢) then

osc(P[lg(gl;w) > c1.
For ¢ > 1 to be determined later, we define, following Zygmund (1949),

(o9}

ef _
g< Zq ‘I -

(=1
It follows that

Plg] = Zq_gp[lB(l)]'
-1

def

Define N & UPN(¢). Then m(N) = 0. Define B = N B(¢). Then m(B) = 0.
We now show that if w € (D \ B) \ N then osc(P[g];w) > 0. Indeed, let £ be the
smallest integer n such that w ¢ B(n). Then w belongs to the open set

-1
() B(k) (4.4)
k=1

For k = 1,2,...,£ — 1, the function 1p(;) is equal to 1 on the set (4.4); since this
set is open, it follows that for each k =1,2,...,/—1

osc(P[lp];w) =0.

On the other hand,
osc(q~ Pllp);w) > ¢ ‘el

and
_ = 1
osc( Y g FPllppliw) < Y ¢ F<q lj-
k=€+1 k=t+1 q
It follows that )
osc(P[g];w) > ¢ 1 — q_‘qq_—1 >0

if ¢ is chosen greater than teL.

1
Since the set (D \ B)\ N has outer measure equal to 2, the proof is completed. O

Proof of the Claim. Assume that wg € D\ B({y). The set y(wp) contains a branch
ending tangentially at wo from one side. Assume it ends at wg, say, from the right.
Let Ny € N be such that wg € Cn,. Let pg > 0 be such that if z € y(wp) and
|z — wo| < po then 7(wp,z) < 271 Choose 29 € v(wp) such that |zo — wo| < po.
Choose £; € N such that £, > £y, {1 > Ny and
27
o(l1)

Let ¢ > ¢;. Then wo & B({). Let k > ¢. Then wo & Ij,. Let p € {1,2,...,¢(k)} be
such that the arc

< 2710|IU0 — 20| .

T = e(k)J(9(k), p)
is closer to w from the right. We know that wy € Cy, since k > Ny. Thus,

sup {T(Wo,z) 1z € y(wo), |z —wo| < %} < (k).
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Let wy be the center of the arc Ji. Then there is a point 21 € y(wp) such that
|21 — wo| = |w1 — wol

and z; is located on the same side as y(wg). Observe that |w; —wo| < % It
follows that T(wo,21) < (k). Thus, z; € A(Jy).

5. PROOF OF THEOREM 1.4

The proof follows the same scheme of the proof of Theorem 1.3. The main obser-
vation is that now all the functions and sets involved are measurable. Indeed, the
functions f,, defined in (4.3) are measurable, because the tress is regular. We leave
the details to the reader.

REFERENCES

Aikawa, H. 1990. Harmonic functions having no tangential limits. Proc. Amer.
Math. Soc., 108, 457-464.

Aikawa, H. 1991. Harmonic functions and Green potentials having no tangential
limits. J. London Math. Soc. (2), 43, 125-136.

Bartoszynski, T., & Judah, H. 1995. Set Theory. On the Structure of the Real Line.
A K Peters.

Boehme, T.K.., & Weiss, M.L. 1971. Extensions of Fatou’s theorem to tangential
asymptotic values. Proc. Amer. Math. Soc., 27, 289-298.

Cohen, P.J. 1966. Set Theory and the continuum hypothesis. Benjamin.

Di Biase, F. 1998. Fatou Type Theorems. Maximal Functions and Approach Regions.
Birkhauser.

Di Biase, F., Stokolos, A., Svensson, O., & Weiss, T. 1998. Tangential boundary
behaviour of bounded harmonic functions in the unit disc. Geometry Seminars
1996-97, 63-68.

Drake, F.R. 1974. Set Theory. North-Holland.

Fatou, P. 1906. Séries trigonométriques et séries de Taylor. Acta Math., 30, 335—
400.

Fefferman, C., & Stein, E.M. 1971. Some maximal inequalities. Amer. J. Math.,
93, 107-115.

Jech, T. 1978. Set Theory. Academic Press.

Kunen, K. 1980. Set Theory. An Introduction to Independence Proofs. North-
Holland.

Littlewood, J.E. 1927. Mathematical notes (4): On a theorem of Fatou. J. London
Math. Soc., 2, 172-176.

Loomis, L.H. 1943. The converse of the Fatou theorem for positive harmonic func-
tions. Trans. Amer. Math. Soc., 53, 239-250.

Lusin, N., & Sierpiriski, W. 1917. Sur une deécomposition d’un intervalle en une
infinité non dénombrable d’ensembles non mesurables. C. R. Académie des Sci-
ences, 165, 422-424.

Nagel, A., & Stein, E.M. 1984. On certain maximal functions and approach regions.
Adv. Math., 54, 83-106.

Rudin, W. 1979. Inner function images of radii. Math. Proc. Cambridge. Philos.
Soc., 85(2), 357-360.

Rudin, W. 1988. Tangential H*°-images of boundary curves. Math. Proc. Cam-
bridge. Philos. Soc., 104(1), 115-118.



ON TANGENTIAL APPROACH REGIONS FOR BOUNDED HARMONIC FUNCTIONS 13

Stein, E.M. 1993. Harmonic Analysis: real-variable methods, orthogonality, and
oscillatory integrals. Princeton University Press.
Stein, E.M., & Weiss, G.L. 1971. Introduction to Fourier analysis on Euclidean
spaces. Princeton University Press.
Weiss, T. 2003. A note on generalized Egorov’s theorem. Preprint, Submitted.
Zygmund, A. 1949. On a theorem of Littlewood. Summa Brasil. Math., 2(5), 51-57.
October 14, 2003 h 16:52 min

DIPARTIMENTO DI SCIENZE, UNIVERSITA ‘G. D’ANNUNZzIO’, VIALE PINDARO 87, 65127 PESCARA,
ITALYy
E-mail address: f£.dibiaseQunich.it

DEPAUL UNIVERSITY, DEPARTMENT OF MATHEMATICAL SCIENCES, 2320 NORTH KENMORE AVE.
CHICAGO 1L 60614, U.S.A.
E-mail address: astokoloQdepaul.edu

DEPARTMENT OF SCIENCE AND TECHNOLOGY, CAMPUS NORRKOPING, LINKOPING UNIVERSITY,
60174 NORRKOPING, SWEDEN
E-mail address: olosv@itn.liu.se

INSTITUTE OF MATHEMATICS, AKADEMIA PODLASKA, 08-110 SIEDLCE, POLAND
E-mail address: tomaszweiss@go2.pl



