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1 Selected past research

1.1 Differentiation of integrals in R2 by bases of intervals.
A. Zygmund’s program.

Let

MBf(x) = sup
B3I3x

|I|−1

∫

I

|f(y)| dy

where B is a differentiation basis, a collection of sets that are somehow natural for the
given problem.

A. Zygmund initiated the study of maximal functions associated with a differentiation
basis of some multi-dimensional intervals associated with various groups of dilations.
This is called in literature “Zygmund’s program”.

I was able to solve Zygmund’s program in the two-dimensional case [39].
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More specifically, if the dilations given by δt(x1, ..., xn) = (tx1, ..., txn) naturally
defines the basis to be the basis of all possible cubes in Rn. The corresponding maximal
operator is called Hardy-Littlewood maximal operator. It has weak type (1,1).

On the other hand, the dilations given by δt1,...,tn(x1, ..., xn) = (t1x1, ..., tnxn) natu-
rally defines the basis to be the basis of all possible n-dimensional intervals in Rn The
corresponding maximal operator is called strong maximal operator. It has weak type
L(log+ L)n−1 which is non-improvable.

Since the basis of cubes is a sub-basis of the basis of rectangles, the rarefaction of
the basis of rectangles can improve the weak type estimate, potentially makes a basis
with the intermediate L

√
log+ L weak type estimate in R2. In particular, Zygmund

conjectured that a collection of rectangles with the sides parallel to the coordinate axis
of dimensions s× t such that 0 < s ≤ 1, 0 < s2 ≤ t ≤ s is a such type basis.

It turns out that every maximal function associated with the translation invariant
basis of rectangles in R2 behaves as either a maximal function, associated with a basis
consisting of all squares and mapping L1 into weak L1, or a maximal function, asso-
ciated with all rectangles and mapping L log+ L into weak L1, and these classes cannot
be improved. I consider this alternative phenomenon extremely interesting and quite
unexpected. Moreover, I found a simple geometric characteristic that determines which
class, L1 or L log+ L, needs to be chosen.

1.2 Tauberian Condition of Córdoba-Fefferman and Lp bound-
edness of geometric maximal operators (with P. Hagel-
stein).

Córdoba and Fefferman in [8] introduced a Tauberian condition for the maximal operator
MB if there exists a finite constant C such that for any measurable set E ⊂ R2 one has
the inequality ∣∣∣∣

{
x : MBχE(x) >

1

2

}∣∣∣∣ ≤ C|E|.

In [8] it was characterized as a very weak type restriction on the basis B.
In joint work with Hagelstein [22] we discovered that for the most important case

of homothecy invariant bases B in Rn the condition is quite strong. It implies Lp-
boundedness of MB for large p. Recently, Bateman [4] prove that in the case of directional
maximal function in R2 it implies the Lp-boundedness of MB for all 1 < p ≤ ∞.

1.3 Differentiation of integrals in R2 by bases of convex sets.

It was noticed by A. Zygmund that the basis of all convex sets does not differentiate the
characteristic functions of certain open and closed sets. Since that time there has been
little interest in the basis of arbitrary rectangles due to its bad properties. However, I
found [38] that the investigation of this basis is not only interesting, but also reasonable.
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It turns out that if we partition the Lp-scale using the degree of integral smoothness, the
basis of arbitrarily oriented rectangles has quite convenient properties. It turns out that if
the modulus of continuity in L1(T2) norm satisfies the estimate ω(f, h) = O(h), h → +0
then the integral of f is differentiated by the basis of convex sets. So, the best first order
smoothness of functions guarantees the differentiation of integrals in a given sense. It is
remarkable that, firstly, this result is in essence two-dimensional and, secondly, no other
smoothness is sufficient for this. Recently, H. Aimar, L. Forzani and V. Naibo [1, 31]
have found a reasonable extension of this result to the multidimensional settings.

1.4 Tangential Fatou property. The problem of W. Rudin
(with F. diBiase, O. Svensson and T. Weiss).

The famous theorems of Fatou and Littlewood say that the bounded harmonic functions
in the unit disc D in the complex plane converge nontangentially almost everywhere
and fail to converge along the rotates of any given tangential curve. W. Rudin asked
a question whether exists a family of tangential curves whose shape vary from point to
point such that every bounded harmonic function has a limit a.e. along that curves.
The shocked answer is undecidable. It was established by F.Di Biase, O. Swensson, T.
Weiss and myself in [16]. The proof is based on delicate geometrical and analytical
considerations combined with the techniques of modern logic.

1.5 A∞ via Gurov-Reshetnyak condition (with A. Korenovskiy
and A. Lerner).

The famous A∞ is widely in use in modern Harmonic Analysis. There are few important
characterizations of this conditions found by R. Coiffman and Ch. Fefferman [9]. In
particular,

A∞ =
⋃
p>1

Ap =
⋃
q>1

RHq

where Ap denotes Muckenhoupt’s class and RHq denotes class of functions that satis-
fies the reverse Hölder inequality. All the known characterization are highly non-linear.
A. Korenovskiy, A. Lerner and myself [26] has found an almost linear form of A∞ con-
dition, proved that

A∞ =
⋃

0<ε<2

GRε

where GRε denotes class of nonegative functions that satisfies Gurov-Reshetnyak con-
dition

1

|Q|
∫

Q

|f(x)− fQ|dx ≤ εfQ, fQ =
1

|Q|
∫

Q

f(x)dx.
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1.6 F. Riesz Sun Rising Lemma in Rn (with A. Korenovskiy
and A. Lerner).

Famous Riesz Sun Rising Lemma allows to prove many one-dimensional inequalities with
the best constants. The proof heavily depends on the linear structure of open sets in R
and cannot be translated to Rn. A. Korenovskiy, A. Lerner and myself [27] proposed a
multidimensional version of Riesz Lemma, which allows to generalized several classical
one-dimensional results to Rn (for details see [24]).

1.7 Maximal functions of Fourier multiplier operators (with
W. Trebels).

Let m ∈ L∞(0, +∞) and denote by mt , t > 0 , the function mt(u) = m(tu) , u > 0 ;
define operators Tmt (t > 0) on L2(Rn) via their Fourier transform

(T̂mtf)(ξ) = mt(|ξ|)f̂(ξ).

Note that the Abel-Poisson means are defined by m(u) = e−u, the Gauss-Weierstrass
means by m(u) = e−u2

, the Bochner-Riesz means by m(u) = (1−u2)α
+. These means are

very important in the problems of Harmonic Analysis, Partial Differential Equations,
Theory of Probability etc. – convergence a.e. of the Poisson and the Gauss-Weierstrass
means is one of the basic facts of Harmonic Analysis. We mention that the important
problem of a.e. convergence of the Bochner-Riesz means is only partially solved when
n ≥ 2.

The question of convergence a.e. is related to the problem of the boundedness of the
corresponding maximal operator

T ∗
mf(x) = sup

t>0
Tmtf(x).

In this general setting not much investigations were done. We can mention papers of A.
Carbery [5], H. Dappa and W. Trebels [14] and recent papers of M. Crist, L. Grafakos,
P. Honźık, and A. Seeger [10, 19].

A. Kamaly, W. Trebels and myself in [25, 40, 41] found the application for the max-
imal multiplier theorems considerind the following problem: Under which smoothness
conditions on f does Tmtf converge a.e. towards f with a prescribed rate w(t) of con-
vergence?

1.8 Monge-Ampere PDE and the Bellman function of dyadic
maximal operator (with L. Slavin and V. Vasunin).

The following Bellman function B was introduce by F. Nazarov and S. Treil [32] for the
diadic maximal function Mϕ(x)

B(f, F, L) = sup
0≤ϕ∈Lp

loc(R)

{
〈(Mϕ)p〉Q : 〈ϕ〉Q = f ; 〈ϕp〉Q = F ; sup

R⊃Q
〈ϕ〉R = L

}
.
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Here Q and R are diadic intervals on the line and 〈ϕ〉Q = |Q|−1
∫

Q
ϕ(x) dx. The function

B is independent of Q and the domain of B is Ω = {(f, F, L) : 0 ≤ f ≤ L; f p ≤ F}. It
was shown in [32] that

B(f, F, L) ≤ pLp − pqLp−1f + qpF (1)

where 1/p + 1/q = 1. It gives us the inequality

1

|J |
∫

J

(Mf)p ≤ qp

|J |
∫

J

fp − 1

(p− 1)

(
1

|J |
∫

J

f

)p

which even a little bit better then classical Doob’s inequality.
The exact Bellman function B(f, F, L) was computed in a brilliant paper of Melas

[30], who managed to follow through on the original Bellman setup in [32] and find the
dyadic Bellman function. It turns out to be only C1 function. Namely, let H(z) =
−(p − 1)zp + pzp−1, H : [1,∞) → (−∞, 1] and ω : (−∞, 1] → [1,∞) be the inverse
function to H. In these terms

B(f, F, L) =

{
Fω

(
pfLp−1−(p−1)Lp

F

)p

L < qf

Lp + qp(F − fp) L ≥ qf

What is unique, however, about Melas’s approach is that he does not solve the Bell-
man PDE (nor does he establish what it may be) but instead relies on the geometrical
properties of the operator M combined in a quite sophisticated way with combinatorial
and analytical considerations. Slavin, Stokolos and Vasunin [37] were able to find the
Bellman PDE for B and get the function B(f, F, L) as a solution of that PDE.

B(f, F, L) = LpB(f/L, F/Lp, 1) and let G(x, y) = B(f/L, F/Lp, 1) where x = f/L, y =
F/Lp.

Now, it is enough to find G(x, y), which is a function of only two variables.

Slavin, Stokolos and Vasunin [37] were able to find the Bellman PDE for B. It turnes
out that the Bellman function came up as a solution of the following Monge-Ampere
boundary value problems:

(∗)




GxxGyy = G2
xy for 0 ≤ x ≤ 1; xp ≤ y

G(x, xp) = 1, pG(1, y) = Gx(1, y) + pyGy(1, y)

and

(∗∗)




GxxGyy = G2
xy for 0 ≤ x ≤ 1; xp ≤ y

G(x, xp) = 1, G(0, y) = 1 + qpy

whose solutions give us two different functions.
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The first one is

G(x, y) = yω

(
px− (p− 1)

y

)p

.

The second one has solution

G(x, y) = 1 + qp(y − xp)

To check that these functions indeed satisfies (*) and (**) is a simple direct computation.

In terms of f, F and L they might be written as

B(f, F, L) = LpG(f/L, F/Lp) = Fω

(
pfLp−1 − (p− 1)Lp

F

)p

.

and
B(f, F, L) = Lp + qp(F − fp).

correspondingly. These are parts of Melas function.
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2 Ongoing projects

2.1 Hypercontractivity of a certain semigroups of operators
(with L. De Carli and W. Urbina)

The theory of semigroups of operators is a crossroad of different areas of Mathematics,
among which we can mention PDE, functional analysis, harmonic analysis, the theory
of orthogonal polynomials and special functions, probability, and control theory.

A semigroup {Pt} is hypercontractive if for each initial condition 1 < p < ∞ there
exists a strictly increasing function q : R+ → [p,∞), such that, for every t > 0,

||Ptf ||Lq(t)(dµ) ≤ ||f ||Lp(dµ), .

whenever f ∈ Lp(dµ). This definition can be also extended to complex values of t, and
indeed the complex valued case has numerous and deep applications.

The hypercontractivity problem for the Ornstein-Uhlenbeck semigroup has been com-
pletely solved for real and complex values of t, but for other classical semigroups there
are still many open problems.

The Ornstein-Uhlenbeck semigroup {Tt} in Rd is a positive conservative symmetric
diffusion semigroup, strongly Lp-contractive for 1 ≤ p ≤ ∞. Its infinitesimal generator
is the Ornstein-Uhlenbeck operator,

Lf(x) =
1

2

d∑
i=1

[
∂2f

∂xi

(x)− xi
∂f

∂xi

(x)] =
1

2
∆f(x)− x · ∇f(x),

with invariant measure the gaussian measure γd(x).
L. Gross [21] proved that the hypercontractive property is equivalent to the fact that

the Ornstein-Uhlenbeck operator satisfies the (tight) logarithmic Sobolev inequality: for
any f ∈ L2(γd) with ∇f , in weak sense, belonging to L2(γd)

∫

Rd

|f(x)|2 log |f(x)|γd(dx) ≤ 1

2

∫

Rd

|∇f(x)|2γd(dx) + ||f ||22,γd
log ||f ||2,γd

, (2)

The logarithmic Sobolev inequality generalizes, for the gaussian measure, the classical
Sobolev inequality : for any function f ∈ L2(Rd) with ∇f ∈ L2(Rd), in weak sense, then
f ∈ Lp(Rd) for p−1 = (1

2
− 1

d
), and moreover,

||f ||p ≤ Cd

∫

Rd

|∇f(x)|2dx.

The Gaussian measure can be defined in spaces of infinite dimension and as the logarith-
mic Sobolev inequality is independent of dimension, it can be extended to this context
too.

One important application of the hypercontractive property of Ornstein-Uhlenbeck
semigroup is in the multiplier theory for Hermite expansions.
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The generalized Hermite polynomials were defined by G. Szëgo in [34] (see prob-
lem 25, p.380) as being orthogonal polynomials with respect to the measure dλ(x) =
dλµ(x) = |x|2µe−|x|

2
dx, with µ > −1/2.

The generalized Hermite polynomial of degree n and type µ can be defined using the
Laguerre polynomials Lγ

m as follows: for n even

Hµ
2m(x) = (−1)m(2m)!

Γ(µ + 1
2
)

Γ(m + µ + 1
2
)
L

µ− 1
2

m (x2) (3)

and for n odd

Hµ
2m+1(x) = (−1)m(2m + 1)!

Γ(µ + 3
2
)

Γ(m + µ + 3
2
)
xL

µ+ 1
2

m (x2), (4)

It can be proved that generalized Hermite polynomial satisfies the following differ-
ential equation

(Hµ
n )′′(x) + 2(

µ

x
− x)(Hµ

n )′(x) + 2(n− µ
θn

x2
)Hµ

n (x) = 0, (5)

with

θn =

{
1 if n is odd,
0 if n is even.

and n ≥ 0. Therefore, by considering the (differential-difference) operator

Lµ =
1

2

d2

dx2
+ (

µ

x
− x)

d

dx
− µ

I − Ĩ

2x2
, (6)

where If(x) = f(x) and Ĩf(x) = f(−x), Hµ
n turns out to be an eigenfunction of Lµ with

eigenvalue −n. This operator is one example of a Dunkl operator in one dimension. The
theory of Dunkl operators originated in [13] and it is nowadays a very rich theory.

Let us consider then the semigroup {T t
µ} associated with {Hµ

n},

T t
µf(x) =

∫ ∞

−∞
pµ(t, x, y)f(y)λ(dy),

where pµ(t, x, y) =
∑∞

n=0
γµ(n)

2n(n!)2
Hµ

n (x)Hµ
n (y)e−nt.

The family of operators {T t
µ}t≥0 is then a semigroup of operators with generator Lµ,

that we will call the generalized Ornstein-Uhlenbeck semigroup. For µ = 0, {T t
µ} reduces

to the Ornstein-Uhlenbeck semigroup. By using the generalized Mehler’s formula for
x, y ∈ R and |z| < 1,

∞∑
n=0

γµ(n)

2n(n!)2
Hµ

n (x)Hµ
n (y)zn =

1

(1− z2)µ+1/2
e
− z2(x2+y2)

1−z2 eµ

(
2xyz

1− z2

)
. (7)
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we can obtain the following integral expression of this generalized Ornstein-Uhlenbeck
semigroup

{
T t

µ

}
,

T t
µf(x) =

1

(1− e−2t)µ+1/2

∫ ∞

−∞
e
− e−2t(x2+y2)

1−e−2t eµ

(
2xye−t

1− e−2t

)
f(y)|y|2µe−|y|

2

dy. (8)

It is not known whether T µ
t is an hypercontractive semigroup or not. Because of

the relation between generalized Hermite polynomials and Laguerre polynomials (3),
the natural conjecture is that in fact T t

µ is hypercontractive. We plan to work on this
problem.

2.2 Sharpness of the ergodic Danford-Zygmund theorem (with
J. Rosenblatt).

Probably, it is not a surprise that there is strong relation between convergence of integral
means (i.e. differentiation of integrals) and convergence of ergodic means. In particular,
Danford [12] and Zygmnud [44] establish an ergodic version of the Jessen-Marcinkiewicz-
Zygmnud [23] theorem.

Theorem[12, 44] Let U, V be one-to-one measure-preserving maps of a measure space
Ω of finite measure onto itself, and let f ∈ L log+ L(Ω). Then

1

mn

n−1∑

k=0

m−1∑

l=0

f(UkV lx) a.e. convergent, as min(m,n) →∞

The proof of the JMZ theorem based on the summability of a certain maximal func-
tions. Fava [17] made precise the class of function to to which the the multidimensional
pointwise ergodic theorem applies. In two-dimensional case one needs to assume about
f that supn |

∑n
k=1 f(T kx)| ∈ L.

However, when one tries to prove the the Danford-Zygmund-Fava theorem for inte-
grable functions, then the control of the intermediate maximal function fails. Indeed, it
is actually the case that the multiple averages will not converge pointwise a.e. Results
about the failure of a.e. convergence when dealing with iterated processes are what is
essentially being addressed in Al-Husaini [2], Blackwell-Dubins [11], Derrinennic-Lin [15]
and Kachurovskii [24].

These examples demonstrates that the property of summability of a certain maxi-
mal functions are crucial in this setting. Stein’s phenomena state that for the Hardy-
Littlewood maximal function Mf and any cube Q, Mf ∈ L(Q) if and only if f ∈
L log+ L(Q). This result was transfer to the ergodic settings by Ornstein [33]. In
[22, ?] Hare, Stokolos and Hagelstein found a necessary and sufficient condition for
the Stein’s phenomena in case of rare maximal function. Argiris and Rosenblatt [3] has
studied convergence questions of the sequences Tnfn for operator sequences and suppre-
mum supn |fn| that is not integrable. They rased up a question about sharpness of the
Danford-Zygmund-Fava Theorem, proving the following
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Theorem[3](i) If U and V being a power of V then convergence has to be true for
all f ∈ L1(Ω).

(ii) If V is any ergodic invertible transformation and f is any positive function that is
not in L log+ L then there exists another ergodic transformation U such that convergence
is not longer happen.

In the Theorem ?? it mighty be not difficult to replace the hypothesis “U and V
being a power of V ” with the condition

∃(i, j) ∈ Z2 such that µ{x : U iV jx 6= x} = 0 (9)

On the other hand, there is an approach that allows one to prove that L log+ L condi-
tion in Theorem 2.2 is sharp provided non-periodicity of commuting measure preserving
transformations, i.e. that

∀(i, j) ∈ Z2 µ{x : U iV jx = x} = 0 (10)

Conjecture Let φ(x) = o(log(x)) where x →∞ and U and V are pair of commuting
invertible non-periodic m.p.t.s on Ω. Then there exist a function f ∈ Lφ(L)(Ω) such
that

1

mn

n−1∑

k=0

m−1∑

l=0

f(UkV lx) fail to convergent a.e. , as min(m,n) →∞

A very interesting question is to verify what’s going on when neither (9) nor (10) is
longer true. It might be that this way one can construct a pair of m.p.t. U and V such
that the Theorem A will be valid for L

√
log+ L function and not better - something that

Zygmund was very interested to know. Especially, having in mind that it is impossible
to do with the integral means. Let us be more specific about this in the following
subsection.

2.3 Regularity of the data and the boundary behavior of the
solutions of PDE (with V. Krotov).

Suppose that Ω is a bounded Lipschitz domain in Rn, n ≥ 2, µ is the Lebesgue measure
on ∂Ω,

Γ∗ε(P ) = {x ∈ Ω : |x− P | < a(dist (x, ∂Ω))ε}, P ∈ ∂Ω,

and
Nεu(P ) = sup{|u(x)| : (x) ∈ Γ∗ε(P )}

is the corresponding maximal operator.
For ε = 1, the domain Γ∗ε(P ) admits a nontangential approach to the boundary: if a

is sufficiently large (greater than the Lipschitz constant of the domain Ω), then Γ∗1(P )
contains a cone of fixed altitude and angle independent of P ∈ ∂Ω. But if ε < 1, then the
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domain Γ∗ε(P ) a tangential approach to the boundary; moreover, the degree of tangency
of Γ∗ε(P ) to ∂Ω increases as ε decreases.

Let p > 0 and m ∈ N. Introduce Hardy-Sobolev classes

Hp
m(Ω) =

{
u ∈ Cm(Ω) : ‖u‖Hp

m
=

m∑

l=0

‖N1(∇lu)‖Lp
µ(∂Ω) < ∞

}
.

Since
‖N1u‖Lp

µ(∂Ω) ≤ c
(|u(0)|+ ‖N1(∇u)‖Lp

µ(∂Ω)

)

then

‖u‖Hp
m(Ω) ³

m−1∑

l=0

∣∣∇lu(0)
∣∣ + ‖N1(∇mu)‖Lp

µ(∂Ω).

Theorem[28]. Suppose m ∈ N, 0 < p < (n− 1)/m, (n−mp− 1)/(n− 1) = ε. Then
for any function u ∈ Hp

m(Ω) the following inequality is valid:

‖Nεu‖Lp(∂Ω) ≤ c‖u‖Hp
m(Ω)

and for almost all P ∈ ∂Ω the limit Γε − limx→P u(x) exists.
For instance, the following sets of parameters satisfy the conditions of the theorem:

n = 4, p = 2, m = 1, ε = 1/3.
Since the solutions of the Dirichlet problem for the homogeneous real constant coef-

ficient elliptic PDE { Lu = 0 in Ω,
N1(∇m−1u) ∈ Lp(∂Ω)

and { Lu = 0 in Ω,
N1(∇mu) ∈ Lp(∂Ω)

belongs to Hp
m−1(Ω) and Hp

m(Ω) correspondingly one can claim the existence of tangen-
tial boundary values of the solutions.

Moreover, it is possible to control the rate of convergence.
It might by proved that for each function u ∈ Hp

m(Ω) all partial derivatives Dku of
order |k| < m have nontangential limits (denoted by Dku(P )) almost everywhere on
∂Ω. Theorefore, if l < m, then for each function u ∈ Hp

m(Ω) and almost all P ∈ ∂Ω the
expression Tl(x, P ; u) is meaningful, where

Tl(x, y; u) = u(x)−
∑

|k|<l

(x− y)k

k!
Dku(y)

the Taylor remainders of the function u ∈ C l(Ω). Let us introduce the notation

Wσu(x, P ) =
T[σ](x, P ; u)

|x− P |σ .
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It follows from the above that for σ < m this expression is well defined for u ∈ Hp
m(Ω)

and x ∈ Ω for almost all P ∈ ∂Ω.
The above theorem can be regarded as the limiting particular case σ = 0 of the

following theorem.
Theorem[28]. Suppose that p > 0, m ∈ N, 0 < σ < m < (n − 1)/p, (n − mp −

1)/(n− σp− 1) = ε. Then for any function u ∈ Hp
m(Ω) the following inequality is valid:

‖Nε(Wσu)‖Lp
ν(∂Ω) ≤ c‖u‖Hp

m(Ω)

and for almost all P ∈ ∂Ω

Γε − lim
x→P

T[σ](x, P ; u)

|x− P |σ = 0.

For instance, the following sets of parameters satisfy the conditions of the theorem:
σ = 1, n = 6, p = 2,m = 2, ε = 1/3. In this case T1(x, P, u) = u(x) − u(P ) − (x − P ) ·
∇u(P ) and along the tangential region Γ∗1/3(P )

u(x)− u(P ) = (x− P ) · ∇u(P ) + oP (1)(|x− P |) a.e.

What happen if mp > n − 1? In this case there is an integer l such that l ≤
m− (n− 1)/p < l + 1

Theorem[28]. Suppose that p > 0, m ∈ N, m ≥ (n− 1)/p, and l as above. Then if
u ∈ Cm(Ω), N1(∇mu) ∈ Lp(∂Ω), then:

1). If l = m− (n− 1)/p then almost all P ∈ ∂Ω the quantity ∇lu has a limit along
the regions of exponential rate of tangency

{
x ∈ Ω : |x− P | < a

(
ln

ediam(Ω)

dist(x, ∂Ω)

)− q−1
n−1

}
,

1

q
=

1

p
− m− l − 1

n− 1
;

In particular, if p = n− 1 > 1 the condition N1(∇u) ∈ Lp(∂Ω) implies that u has limit
along the domains

{
x ∈ Ω : |x− P | < a

(
ln

ediam(Ω)

dist(x, ∂Ω)

)−n−2
n−1

}
.

If n = 2 and p = 1, then it follows from N1(∇u) ∈ L(∂Ω) that u ∈ C(Ω̄).
2). If l < m− (n− 1)/p then ∇lu ∈ Lip(m− l − (n− 1)/p)
All the restrictions on the set of parameters are sharp. For example, let us consider

the Neumann problem for the Laplace equation. Let Ω ⊂ Rn be a Lipschitz domain,
and let g ∈ Lp(∂Ω) be a function with zero mean value. It is required to find a function
u on Ω with the properties





∆u = 0 in Ω,
Γ1 − lim νP · ∇u = g(P ) on ∂Ω,
N1(∇u) ∈ Lp(∂Ω)
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Here x · y is the inner product, and νP is the unit outer normal at point P .
Theorem[28]. Suppose that Ω is the unit ball in Rn, n ≥ 3, and 1 < p < n − 1.

Assume that Φ is a positive nonincreasing function with Φ(0+) = ∞. Then there exists
a function g ∈ Lp(∂Ω) with zero mean value such that the solution of the corresponding
Neumann problem for the Laplace equation does not have a limit along the domains

{x ∈ Ω : |x− P | < Φ(1− |x|)(1− |x|)1−p/(n−1)},

for a.e. P ∈ ∂Ω. If p = n− 1, then the same thing is true for the domains

{
x ∈ Ω : |x− P | < Φ(1− |x|)

(
ln

e

1− |x|
)−n−2

n−1

}
.

Currently we are working on the extension of Krotov’s results to the data from certain
Sobolev-Besov spaces which are particularly well adapted for measuring the smoothness
of data and solutions of mixed boundary value problems in Lipschitz domains.
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3 Future research

3.1 Zygmund’s programm in R3

The next natural step is to extend the mentioned in section 1.1 alternative to three
dimensions. Compared with the well understood two-dimensional case, this is much more
complicated. To study this case is an important matter, because one of the directions
for future development of classical harmonic analysis is a study of classes of operators
associated with multi-parameter groups of dilations in Rn. In a certain sense, this
is a natural “next step” after the classical Calderon-Zygmund theory and the theory of
tensor products of spaces. Usually, for each such group of dilations, there is an associated
maximal operator.

For instance, a classical example of a product operator is the Poisson integral for
biharmonic functions on the product of two halfplanes. One can majorize the maximal
Poisson operator by the strong maximal function and prove that Py ∗ f(x) → f(x) a.e.
as |y| → 0+, y = (y1, y2), where Pt(u) is the standard Poisson kernel and Py(x) =
Py1(x1)Py2(x2). The proof is based on splitting the kernel into pieces according to
|y1| ∼ 2−n, |y2| ∼ 2−m. This is a very special case of other naturally occurring examples,
such as Poisson integrals for symmetric spaces. In those spaces the chopping of the
Poisson kernel in a dyadic way leads to maximal functions of special types. For example,
in the simplest case of a Siegel domain with boundary space of real symmetric 2 × 2
matrices, the maximal function associated with the basis of three dimensional intervals
with side lengths (t, s,

√
ts) appears.

This is why Zygmund initiated the program of determining the differentiability prop-
erties of bases associated to multi-dimensional intervals corresponding to various groups
of dilations (for instance, the dilations given by δt,s(x, y, z) = (tx, sy, stz)) and considered
this as an extremely important topic. At the outset of this program, Zygmund consid-
ered the case of a basis B consisting of intervals in Rn whose respective side-lengths are
of the form φ1(x1, . . . , xk), . . . , φn(x1, . . . , xk), where the φi are increasing in each vari-
able separately and assume arbitrarily small values. Noting that the k-parameter strong
maximal operator differentiates L(log L)k−1(Rn) for any n ≥ k, Zygmund conjectured
that any such basis B should differentiate L(log L)k−1(Rn).

The first major success in this program was Córdoba’s proof in [7] that the set
of intervals of size (t, s,

√
ts) differentiates L(log L)(R3). Very recently, Fefferman and

Pipher [18] have found an alternative proof of this result. Córdoba’s proof provided
further evidence for the Zygmund Conjecture in that he also showed that if B is a basis
of intervals of side lengths t, s, φ(t, s) with φ monotonic in t and in s and taking on
arbitrarily small values, then B differentiates L(log L)(R3).

It is now known, however, that the Zygmund Conjecture does not hold in general.
In [35], Soria constructed a beautiful example of a basis of the form (t, tφ(s), tψ(s))
with non-decreasing functions φ(s) and ψ(s) which has the same differentiation proper-
ties as the basis of all possible three-dimensional intervals; in particular, differentiating

14



L(log L)2 but not L(log L).
Soria’s result sheds light on the complexity of three-dimensional case, while the two-

dimensional case is now completely understood.
Based on the above results one can suggests a suitable reformulation of the Zygmund

Conjecture. In particular, one might suspect the following:

Conjecture 1 To each maximal function M associated with a translation-invariant ba-
sis of multi-dimensional intervals in Rn there is an integer k such that L(log+ L)k is the
largest Orlicz class which M maps boundedly into weak L1.

Note that the R2 is proved. Recent developments also provide evidence for Conjecture
1 in higher dimensional cases. I was able to show in [36] that the differentiability
properties of the strong maximal operator remain unchanged if its basis is replaced
by any member of the large class of so-called rare bases. I am going to work on this
conjecture by further development of the methodology from [39, 36]

3.2 T. Iwaniec p∗ − 1 problem

One of the area of my future research is applications of Bellman functions to Lp-estimates
for the Beurling-Ahlfors operator. A celebrated conjecture of T. Iwaniec (1982) asserts
that the norm in Lp, 1 < p < ∞, of the Beurling-Ahlfors operator is p∗ − 1 where
p∗ is the maximum of p and its conjugate exponent. There are many interesting con-
sequences of this conjecture to quasiconformal mappings and to regularity results for
solutions of certain nonlinear PDE’s. The Beurling-Ahlfors operator, like many other
classical Caldern-Zygmund singular integrals, can be represented by certain Ito stochas-
tic integrals. From here the powerful sharp martingale inequality techniques of D.L.
Burkholder can be brought to bear to to make a progress on the conjecture. However
the most significant progress in the conjecture was done recently by A. Volberg and
O. Dragičević [42, 43] was based on Bellman functions techniques.

3.3 Bellman function for the Hardy-Littlewood maximal oper-
ator and Carleson embedding theorem

One can define the Bellman Function for the Hardy-Littlewood maximal function (non-
centered, non-diadic) in the same was as it was defined above for the diadic one.

Let us mentioned that as is it often the case in practice, the dyadic case figures
to be easier and more amenable to a Bellman function setup. The Lp-norm of the
Hardy-Littlewood maximal operator M in one dimension was handled by Grafakos and
Montgomery-Smith in [20], by a non-Bellman, essentially one-dimensional technique.
It turned out that the norm of diadic maximal function M and the Hardy-Littlewood
maximal function M different.
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At the moment there are even two alternative ways to find a Bellman Function for
the diadic maximal and no one for the continuous. Thus, it is a very interesting and
an important problem to find a Bellman Function for the Hardy-Littlewood maximal.
Additional intrigue to that problem is added by the fact, that both norms perfectly
expressed in terms of the above function ω(t):

‖M‖ = ω(0) ‖M‖ = ω(−1)

In [30] the following Bellman function for the Carleson diadic embedding theorem was
introduced

B̃(F, f, k) = sup

{∫

K

(Mϕ)p : ϕ ≥ 0, ‖ϕ‖p
p = F, ‖ϕ‖1 = f, |K| = k

}

This definition shows the relations between two Bellman functions. Thus, it is not a
big surprise that Melas in the same paper[30] has found the Bellman function for the
Carleson diadic embedding theorem too. It was found, again, by clever combinatorial
and geometrical arguments.

Now, it natural to propose the following problem for the future research: Find Bell-
man PDE for the Carleson diadic embedding theorem.
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