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Abstract: We present a simple criterion to decide whether the max-

imal function associated with a translation invariant basis of multidi-

mensional intervals satisfies a weak type (1, 1) estimate. This allows us

to complete Zygmund’s program of the description of the translation

invariant bases of multidimensional intervals in the particular case of

products of two cubic intervals. As a conjecture, we suggest a more

precise version of Zygmund’s program.

2000 MS Classifications: 42B25

Keywords and phrases: Covering Lemmas, Maximal Functions

1. Introduction

Let B be a differential basis in Rn, which we can treat as a family of open
bounded sets covering Rn, and let MBf be the corresponding maximal function:

MBf(x) = sup
B3I3x

|I|−1

∫

I

|f(y)| dy.

In many areas of harmonic analysis a key role is played by the so-called weak
type estimates for MBf , in particular the weak type (1, 1) estimate

|{MBf > λ}| ≤ C
‖f‖1

λ
, λ > 0, (1)

and the weak type L log+ L estimate

|{MBf > λ}| ≤ C

∫ |f |
λ

(
1 + log+ |f |

λ

)
dx, λ > 0. (2)

If MBf satisfies (1) or (2), then we also say that the basis B has the corre-
sponding weak type.

Roughly speaking, weak type estimates are quantitative forms of a.e. conver-
gence statements. With different levels of specification, this theory is presented
in [1, 9, 10, 11, 13, 16, 18, 21] etc.

An excellent explanation of the place of weak type estimates in harmonic
analysis is given in E. M. Stein’s encyclopedic monograph [17].

Let us only mention that the (1, 1) estimate is the best possible estimate
which may be required from a maximal function. It holds for the basis of all
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possible cubic intervals, but does not hold even for the rectangular intervals in
Rn, n ≥ 2.

Therefore it is vital to characterize those bases whose maximal function has
weak type (1, 1). For homothety invariant bases this was done in [9]. Namely,
for such bases the maximal function has weak type (1, 1) if the elements of the
basis are comparable with balls in measure, i.e. each R ∈ B may be embedded
in a ball D such that |B| ≥ c|D| with some universal constant c > 0.

Now let us consider the same question for translation invariant bases, which
we will call TI-bases for brevity. In spite of similarity of statement, this problem
is much more complicated. Therefore we restrict ourselves to TI-bases of mul-
tidimensional intervals (i.e. Cartesian products of one-dimensional intervals),
which are quite important in applications (cf. [3, 5, 6, 7, 8, 19, 21]).

It is well known that a basic method of investigating the properties of maxi-
mal operators is the study of the covering properties of the corresponding bases.
Moreover, properties of the maximal operator depend on the covering properties
of a certain finite family {Rα}. The idea is to choose a subfamily whose union
has measure comparable to the measure of the original family, but with as lim-
ited overlap as possible. Obviously, the best one can hope for is no overlap at all.
For bases consisting of cubes this can be achieved by application of a selection
procedure going back to Vitali and described in detail e.g. in [16]. Namely, we
say that a basis B has the Vitali covering property if there are constants c and C
such that every finite family {Rα | α ∈ A} ⊂ B has a subfamily {Rα | α ∈ A′}
such that ∣∣∣

⋃

α∈A

Rα

∣∣∣ ≤ c
∣∣∣

⋃

α∈A′
Rα

∣∣∣ and
∥∥∥

∑

α∈A′
χRα

∥∥∥
∞
≤ C. (3)

It is well known that (3) implies (1). P.Hagelstein [12] conjectured that (1) and
(3) are equivalent.

In this article we show the equivalence for the TI-basis of intervals.
Families of multidimensional cubes satisfy (3), which can be easily shown by

applying the Vitali selection procedure. However, the only property of cubes
used in this proof is that for any two cubes, there is always a translation placing
one of them inside the other. This justifies introducing the following terminol-
ogy.

Let us call two intervals I and I ′ comparable and write I ∼ I ′ if there exists
a translation placing one of them inside the other. In the opposite case we call
them incomparable and write I 6∼ I ′. In other words, if I = I1 × . . . × In and
I ′ = I ′1 × . . .× I ′n then I ∼ I ′ means that either |Ij | ≤ |I ′j | or |Ij | ≥ |I ′j | for all
j = 1, . . . , n. We call a family of intervals monotonic if it consists of pairwise
comparable intervals. The above considerations can be summarized in

Claim 1. If a basis B has the property that for some fixed natural m, any
finite subfamily of B decomposes into at most m monotonic subfamilies, then
B has weak type (1, 1).
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For a long time, the Vitali selection had been the only selection procedure
(up to inessential modifications) used to investigate maximal operators. As
shown by H. Bohr (see Note 1 in [2] ), this procedure does not apply to the
basis of multidimensional intervals. However, if we majorize the n-dimensional
strong maximal function Mf , i.e. the maximal function associated with the
basis of multidimensional intervals, by the composition of one-dimensional max-
imal functions in the directions of the coordinate axes, then iterative arguments
yield the desired result also in this case. Such considerations led to the proof
of the well known Jessen–Marcinkiewicz–Zygmund theorem, stating the differ-
entiation of integrals of functions in L(log+ L)n−1(Rn). A quantitative form of
this theorem, the weak type estimate

|{Mf > λ}| ≤ C

∫ |f |
λ

(
1 + log+ |f |

λ

)n−1

dx, λ > 0, (5)

was obtained much later by M. de Guzmán (see [9, 10]), again by iterative
considerations.

A geometric proof of the JMZ theorem was finally given due to deep studies
of A. Córdoba and R. Fefferman. In [4] they proved that the basis of all n-
dimensional dyadic intervals has the exponential covering property of type n−1
(see also [5]).

Due to the important role played by maximal functions in the theory of
singular integrals and in harmonic analysis in general, A. Zygmund initiated
a program of investigating maximal functions which cannot be reduced to the
case of product operators.

A classical example of a product operator is the Poisson integral for bi-
harmonic functions on the product of two halfplanes. One can majorize the
maximal Poisson operators by the strong maximal function and prove that
Py ? f(x) → f(x) a.e. as |y| → 0+, y = (y1, y2), where Pt(u) is the standard
Poisson kernel and Py(x) = Py1(x1)Py2(x2). The proof is based on splitting the
kernel into pieces according to |y1| ∼ 2−n, |y2| ∼ 2−m (see e.g. [18]).

This is a very special case of other naturally occurring examples, such as
Poisson integrals for symmetric spaces. In those spaces the above approach
leads to maximal functions of special types. For example, in the simplest case
of a Siegel domain with boundary space of real symmetric 2 × 2 matrices, the
maximal function associated with the basis of 3D intervals with side lengths
t, s,

√
ts appears.

Since this set of intervals is a 2-parameter collection, A. Zygmund conjec-
tured that the corresponding maximal function has the same weak type as the
2D strong maximal function. This conjecture has been proved by A. Córdoba
[3]. Actually, A. Córdoba solved Zygmund’s problem in a more general set-
ting corresponding to the case of intervals with side lengths t, s, φ(t, s) with φ
monotonic in t and in s.

This justifies the consideration of the following bases. Let φ1, . . . , φn be n
positive real functions of k variables, increasing in each variable separately and
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assuming arbitrarily small values. Consider the basis B of all intervals in Rn

whose side length in the i-th direction is determined by the function φi. It
has been conjectured that the differentiability properties of such a basis should
only depend upon the number of parameters, degrees of freedom in some sense,
involved. In particular, the basis should behave not worse than the basis of all
intervals in Rk; that is, it should differentiate the Orlicz class L(log+ L)k−1,
independently of the choice of the functions φ1, . . . , φn.

Córdoba’s result gives some support for this conjecture. However, it turned
out that in such general setting the conjecture is false. F. Soria [15] gave a
counterexample in the simplest possible case, when n = 3 and k = 2. He also
explored some positive results, the possibility of some aspects of the conjecture
remaining true. In all these examples we are forced to assume extra conditions
on the φi’s.

These results can be included among the cornerstones of the theory of dif-
ferentiation of integrals.

We state Córdoba’s theorem in the form suitable for further generaliza-
tions. For this purpose let us introduce the following binary property for three-
dimensional intervals:

pr(R1) ∼ pr(R2) ⇒ R1 ∼ R2, (7)

where pr(R) denotes the projection onto the (x, y) plane. By Córdoba’s lemma
[3, p. 30], every family of dyadic intervals satisfying (7) (i.e. such that each pair
in the family satisfies (7)) has the exponential covering property, which yields
weak type L log+ L of the corresponding maximal operator, while the three-
dimensional strong maximal function only has weak type L log2 L. A direct
generalization is the following

Claim 2. If a basis B of three-dimensional intervals has the property that
for some fixed natural m, any finite subfamily of B decomposes into at most m
subfamilies satisfying (7), then B has weak type L log+ L.

Before turning to generalizations of Claims 1 and 2, let us make a remark
concerning exposition. Obviously, when working in two and three dimensions,
it is convenient and advisable to use graphical representations. However, having
in mind multidimensional generalizations, it is preferable to have proofs without
drawings. We have managed to describe the geometric objects we use in visible
but formal terms, and thus avoid having recourse to any drawings.

2. Main Results

For every interval I ∈ B we denote by I∗ the concentric interval of minimal
measure containing I with side lengths of the form 2k, k ∈ Z. Thus to every
basis B of intervals we attach, in a natural way, another basis B∗ = {I∗ | I ∈ B},
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called the basis associated with B. Informally, B∗ is a dyadic skeleton of the
basis B. It is clear that

MBf(x) ≤ 2nMB∗f(x)

so the (1, 1) estimate for B∗ implies the estimate for B, generally with another
constant.

Theorem 1. Let B be a TI-basis of multidimensional intervals. If

B∗ does not contain arbitrarily long sequences of

pairwise incomparable elements, (w)

then MBf is of weak type (1, 1).

Proof. First, we prove the two-dimensional version, and then reduce the
general case to considerations of two-dimensional projections. For simplicity we
call two-dimensional intervals rectangles.

The proof consists in showing that property (w) is equivalent to the possibil-
ity of representing the associated basis as a finite union of monotonic families.

It is clear that the associated basis is generated by translations of rectangles
from some basic family, all elements of which have a common lower left vertex.
It is enough to show that this basic family may be split into a finite union
of monotonic families. Thus, till the end of the proof we assume that all the
rectangles considered have a common lower left vertex ; as will be seen from the
proof, this does not restrict generality.

It is clear that property (w) can be written in the form

∃k > 1 ∀R1, . . . , Rk ∈ B∗ ∃i 6= j, Ri ∼ Rj . (w)

Suppose that a finite family B̃ of rectangles R = H × V with dyadic side
lengths has this property. We will show that this family is a union of at most
k monotonic subfamilies. Choose an R1 ∈ B̃ of maximal height and let it be
the first element of B̃1. Put in B̃1 all R of the same height as R1, i.e. with
|V | = |V 1|. From the remaining ones, take those with height 2−1|V 1| and
arrange them arbitrarily in a sequence. Then step by step add to B̃1 all R
which are comparable with those already selected. Then from the remaining
ones pick those with height 2−2|V 1|, arrange them in a sequence etc. This gives
a family B̃1.

If there are R 6∈ B̃1, pick a highest one, say R2, and repeat the above
procedure for the remaining ones. This yields a family B̃2.

If there are R 6∈ B̃2, pick a highest one, say R3, and so on.
Suppose we have chosen subfamilies B̃1, . . . , B̃k, but there still is an R 6∈

B̃j , j = 1, . . . , k. As R 6∈ B̃k, it was dropped when compared with higher
rectangles, which means that there is a rectangle Rk ∈ B̃k higher than R, but
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narrower. In its turn, Rk 6∈ B̃k−1, and repeating the above considerations we
find Rk−1 ∈ B̃k−1 which is higher than Rk, but narrower. Then it is easy to
see that R, Rk and Rk−1 are pairwise incomparable. Next, Rk−1 6∈ B̃k−2, and
arguing similarly we find, this time, four pairwise incomparable rectangles R,
Rk, Rk−1 and Rk−2, and so on. Eventually, we get k +1 pairwise incomparable
intervals R, Rk, Rk−1, . . . , R1, contrary to property (w).

Accordingly, if a two-dimensional basis B has property (w), then by Claim
1 it is of weak type (1, 1).

The next lemma will be used in the proof of the general case.

Lemma 1. A family of n-dimensional rectangles is monotonic if and only if
its projections on the (x1, x2), (x1, x3), . . . , (x1, xn) planes are all monotonic.

Proof. The “only if” part is obvious. Let us prove the “if” part. Let B be
a family of n-dimensional intervals whose relevant projections are monotonic.
This means that if I ∈ B, I = I1 × . . . × In and I ′ ∈ B, I ′ = I ′1 × . . . × I ′n,
and |I1| ≤ |I ′1|, then |I2| ≤ |I ′2| since I1 × I2 ∼ I ′1 × I ′2. Also, |I3| ≤ |I ′3| since
I1 × I3 ∼ I ′1 × I ′3, etc. Thus, |Ij | ≤ |I ′j | for all j = 1, . . . , n, which means that
I ∼ I ′.

This completes the proof.

Now, let us introduce another selection procedure, which we call filtration.
Namely, if B has property (w), then it is clear that its (x1, x2) projection also
satisfies (w). Thus, applying the above two-dimensional argument we may split
every finite subfamily of B∗ into at most k families whose (x1, x2) projections
are monotonic families. Next, each of these families may be split into at most k
families whose (x1, x3) projections are monotonic, etc. Finally, we get a bounded
number of families whose projections onto the (x1, x2), (x1, x3), . . . , (x1, xn)
planes are all monotonic. According to Lemma 1, these families are themselves
monotonic and according to Claim 1, MBf is of weak type (1, 1).

This completes the proof of Theorem 1.

The following theorem demonstrates the sharpness of property (w).

Theorem 2. Let B be a TI-basis of multidimensional intervals which fails
property (w), i.e.

∀k > 1 ∃I1, . . . , Ik ∈ B∗ ∀i 6= j, Ii 6∼ Ij . (s)

Then MBf is not of weak type (1, 1) and moreover, it satisfies an inequality
reverse to (2): for any 0 < λ < 1 there exists a set E such that

|{MBχE > λ}| ≥ C

∫
χE

λ
log

χE

λ
dx
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with some constant C independent of E and λ.

Theorems 1 and 2 together state that MBf is of weak type (1, 1) if and
only if the number of pairwise incomparable intervals in the associated basis is
bounded.

For the basis of all rectangles, the proof of the inequality of Theorem 2 is very
simple, it uses the so-called “Bohr staircase” (cf. [13], [9]). For natural k and
j = 0, 1, . . . , k let Ij denote the rectangle [0, 2k−j ]× [0, 2j ]. Set Y = I0 ∪ . . .∪ Ik

and let Θ be the unit square. The set Y resembles a staircase, and it is called the
Bohr staircase; H. Bohr noticed some extremal properties of such sets and used
them to prove that the Vitali lemma does not hold for families of rectangles.

Since for any interval forming Y , say I, we have

|Θ ∩ I|
|I| =

|Θ|
|I| =

1
2k

it follows that {MχΘ ≥ 2−k} ⊃ Y and so

|{MχΘ ≥ 2−k}| ≥ |Y | ≥ 1
2
(k + 1)2k|Θ| = 1

2

∫
χΘ

2−k

(
1 + log+

2

χΘ

2−k

)
dx.

However, if we consider a basis of rectangles with a rare ratio of side lengths,
e.g. 22j

, then the measure of the Bohr staircase becomes k22k

, and instead of
the logarithm we only get a double logarithm.

In the next lemma we present a construction which replaces the Bohr stair-
case for rare rectangles. The resulting set looks more like a garden grating than
a staircase, but if we move all the slats to the lower left corner close to each
other, then we get exactly the Bohr staircase.

Lemma 2. Let I1, . . . , Ik be pairwise incomparable two-dimensional intervals
with dyadic side lengths. Then for each positive integer k there are two sets Θ
and Y in the plane such that

|Y | ≥ k2k−2|Θ|

and for every x ∈ Y there is a shift τ such that for some j,

x ∈ τ(Ij) and |τ(Ij) ∩Θ| ≥ 21−k|τ(Ij)|.

Proof. As usual, let x = (x1, x2). Without loss of generality assume that
I1, . . . , Ik have a common lower left vertex. Let Ij = I1

j × I2
j , |I1

j | = 2−mj and
|I2

j | = 2−nj . Assume I1
1 ⊂ I1

2 ⊂ . . . ⊂ I1
k while I2

1 ⊃ I2
2 ⊃ . . . ⊃ I2

k ; in other
words, m1 > . . . > mk and n1 < . . . < nk.
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Define

Θ1 =
{

x1 ∈ I1
k :

k−1∏

j=1

2mj−mk−1−1∑
s=0

χI1
j
(x1 − 2s|I1

j |) = 1
}

,

Θ2 =
{

x2 ∈ I2
1 :

k∏

j=2

2nj−n1−1−1∑
s=0

χI2
j
(x2 − 2s|I2

j |) = 1
}

.

By geometric reasons it is clear that |Θ1| = 21−k|I1
k | and |Θ2| = 21−k|I2

1 |. Set
Θ = Θ1 ×Θ2. Then |Θ| = 22−2k|I1

k | · |I2
1 |.

Now set Y 1
k = I1

k , Y 2
1 = I2

1 and

Y 1
i =

{
x1 ∈ I1

k :
k−1∏

j=i

2mj−mk−1−1∑
s=0

χI1
j
(x1 − 2s|I1

j |) = 1
}

,

Y 2
i =

{
x2 ∈ I2

1 :
i∏

j=2

2nj−n1−1−1∑
s=0

χI2
j
(x2 − 2s|I2

j |) = 1
}

for i = 1, . . . , k − 1 and i = 2, . . . , k respectively. By geometric reasons, |Y 1
i | =

2−(k−i)|I1
k | and |Y 2

i | = 21−i|I2
1 |, so if Yi = Y 1

i × Y 2
i , then |Yi| = 21−k|I1

k | · |I2
1 |.

Further, let Y = Y1 ∪ . . . ∪ Yk. The side lengths of the intervals involved
being dyadic rationals, we have

|Y | ≥ 1
2

k∑

i=1

|Yi| = k2−k|I1
k | · |I2

1 | = k2k−2|Θ|.

It is clear that each Yi is a disjoint union of rectangles, each of which is a shift
of Ii, say τ(Ii), and

|τ(Ii) ∩Θ|
|τ(Ii)| =

|Ii ∩Θ|
|Ii| =

|Yi ∩Θ|
|Yi| =

|Θ|
|Yi| =

22−2k|I1
k | · |I2

1 |
21−k|I1

k | · |I2
1 |

= 21−k,

which completes the proof of Lemma 2.

Lemma 3. If a family of multidimensional intervals has property (s), then
so does its projection onto some two-dimensional plane.

Proof. Indeed, if every two-dimensional projection fails (s), then each such
projection satisfies (w). An application of the filtration procedure now splits
B∗ into a finite number of monotonic families. But then it would be impossible
to choose infinitely many pairwise incomparable intervals from B∗, contrary to
(s). This proves the lemma.
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Now, let us turn to the proof of Theorem 2. Define the basis B∗ in the
same manner as B∗ but replacing “circumscribed” dyadic intervals of minimal
measure with “inscribed” dyadic intervals of maximal measure. It is easy to
see that properties (w) and (s) may be written either in terms of B∗ or B∗,
whichever is preferable. So, we assume that

∀k ≥ 1 ∃R1, . . . , Rk ∈ B∗ ∀i 6= j, Ri 6∼ Rj . (s)

Without loss of generality we may assume that B has property (s) when pro-
jected onto the (x1, x2) plane, so if Rj = Ij × Qj where Ij and Qj = Q3

j ×
. . . × Qn

j are two-dimensional and (n − 2)-dimensional intervals respectively,
then I1, . . . , Ik satisfy the assumptions of Lemma 2. Choose Θ and Y as in that
lemma and let

J i = Qi
1 ∪ . . . ∪Qi

k (i = 1, . . . , n),
U = Θ× J3 × . . .× Jn, W = Y × J3 × . . .× Jn.

Now, let x = (x1, . . . , xn) ∈ W . Since (x1, x2) ∈ Y , by Lemma 2 for some
Ij there is a translation τ such that (x1, x2) ∈ τ(Ij). As xs ∈ Js and Qs

j ⊂ Js

for s = 3, . . . , n, there are translations τs in the direction of the xs axes such
that xs ∈ τs(Qs

j) ⊂ Js, s = 3, . . . , n. We now define the final translation as the
composition τ̄ ≡ τ ◦ τ3 ◦ . . . ◦ τn.

Then τ̄(Rj) = τ(Ij) × τ1(Q3
j ) × . . . × τn(Qn

j ), and so τ̄(Rj) ⊂ W , and
τ̄(Rj) ∩ U = (τ(Ij) ∩Θ)× τ1(Q3

j )× . . .× τn(Qn
j ). Thus

|τ̄(Rj) ∩ U |
|τ̄(Rj)| =

|τ(Ij) ∩Θ|
τ(Ij)

≥ 21−k,

which implies that
W ⊂ {x : MB∗χU (x) ≥ 21−k}.

But

|W | = |Y | · |J3| · . . . · |Jn| ≥ k2k−2|Θ| · |J3| · . . . · |Jn| = k2k−2|U |.

So

|{x : MB∗χU (x) ≥ 21−k}| ≥ |W | ≥ k2k−2|U | ≥ 1
2

∫
χU

21−k
log2

χU

21−k
dx.

Since it is clear that 2−nMB∗f(x) ≤ MBf(x), for sufficiently small 0 < λ < 1
we get

|{x : MBχU (x) ≥ λ}| ≥ 1
2n+3

∫
χU

λ
log2

χU

λ
dx.

This completes the proof of Theorem 2.
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Corollary 1. A TI-basis B of multidimensional intervals has weak type
(1, 1) if and only if it has property (w).

3. The Two-Dimensional Case

Corollary 2. A TI-basis of two-dimensional rectangles with sides parallel
to the coordinate axes has either weak type (1, 1) or weak type L log+ L, but
never an intermediate weak type Lϕ(L).

We now make a few comments on differentiation of integrals in R2. It is well
known that a direct consequence of the (1, 1) estimate is the differentiation of
integrals of locally summable functions (for details see [9, 10, 16]). The basis of
all cubes differentiates integrals of all summable functions (Lebesgue theorem),
while the basis of all n-dimensional rectangles differentiates integrals of func-
tions from L(log+ L)n−1. From these results it follows that the differentiation
properties of a basis can be improved by making it sufficiently rare. Zygmund
proposed the following rarefaction of the basis of all two-dimensional intervals
(see [21, Ch. 6, §4]). Let B be the TI-basis consisting of the two-dimensional
intervals whose side lengths s, S satisfy S2 ≤ s ≤ S ≤ 1. Is it then true that B

differentiates L
√

log+ L? R. Moriyón proved (see [9, App. IV]) that this is not
the case: B does not differentiate o(L log+ L). This shows that a rarefaction of
this kind does not improve the differentiation properties of the basis.

Our results indicate that no rarefaction within the class of TI-bases per-
mits the differentiation properties of bases to be improved in a continuous way.
More precisely, if B is a TI-basis then either B differentiates L, or B does not
differentiate o(L log+ L) (for details see [20]).

4. The Three-Dimensional Case

In contrast to the two-dimensional situation, a complete description of the
three-dimensional case is still an open problem, even for homothety invariant
bases. However, some information can be deduced from Theorems 1 and 2.
Let the Córdoba basis be the TI-basis of three-dimensional intervals with side
lengths s, t and st. According to Córdoba’s solution of Zygmund’s conjecture [3]
the corresponding maximal operator has L log+ L weak type. Having in mind
Theorems 1 and 2 we come to the conclusion that Corollary 2 still holds for any
TI-subbasis of the Córdoba basis.

For the general case, every TI-basis of three-dimensional intervals has weak
type L log2 L. Clearly, if a basis has property (w), then it is of weak type (1, 1).
If we want to have weak type L log+ L, we have to require a condition weaker
than (w). Since the two-dimensional situation is fairly clear, it is natural to
look for a condition concerning two-dimensional projections of the basis.

10



Strictly speaking, we can weaken property (w),

∃k > 1 ∀R1, . . . , Rk ∈ B∗ ∃i 6= j, Ri ∼ Rj (w)

by introducing the following condition:

∃k > 1, ∀R1, . . . , Rk ∈ B∗ with pr(Ri) pairwise comparable,
∃i 6= j, Ri ∼ Rj , (C)

or the following property, in a sense conjugate to (C):

∃k > 1, ∀R1, . . . , Rk ∈ B∗, ∃i 6= j, pr(Ri) ∼ pr(Rj), (Z)

where pr(R) denotes the projection of the three-dimensional interval R onto the
(x, y) plane.

It turns out that such a formal approach is most fruitful.

Theorem 3. If a basis B satisfies (C) or (Z), then it has weak type L log+ L.

Proof. In what follows, we assume R = pr(R) × I. We show that every
finite family with property (C) is a union of at most k families satisfying (7).

Choose any R1 ∈ B∗ and let it be the first element of a basis B1. We next
consider only those R ∈ B∗ which are inside R1.

Put in B1 all R which are the same height as R1, i.e. |I| = |I1|. From the
remaining ones take those with height 2−1|I1| and arrange them arbitrarily in a
sequence. Then step by step add to B1 those R which satisfy (7) together with
all those selected earlier.

From the remaining ones, consider those with height 2−2|I1|, arrange them
in a sequence, add to B1 those R which satisfy (7) together with those selected
earlier, etc. We thus get a basis B1.

If there are R 6∈ B1, then choose a highest one, say R2, and repeat the above
procedure for the remaining ones, which gives a basis B2.

If there are R 6∈ B2, then choose a highest one, say R3, and so on.
Suppose we have thus obtained bases B1, . . . , Bk but there is an R 6∈ Bj ,

j = 1, . . . , k. As R 6∈ Bk, there is Rk ∈ Bk failing (7), i.e. pr(R) ∼ pr(Rk) but
R 6∼ Rk. However R was compared with the previous ones, which are no lower,
and it was dropped, so Rk can be considered no lower, and since the definition
of comparability implies that (7) always holds for rectangles of equal height we
can assume that Rk is higher than R, which together with R 6∼ Rk yields

pr(Rk) ⊂ pr(R), I ⊂ Ik, Ik 6⊂ I.

In turn, Rk 6∈ Bk−1. Repeating the above considerations, we deduce that
there exists Rk−1 ∈ Bk−1 such that Rk 6∼ Rk−1 and

pr(Rk−1) ⊂ pr(Rk), Ik ⊂ Ik−1, Ik−1 6⊂ Ik.
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Hence
pr(Rk−1) ⊂ pr(R), I ⊂ Ik−1, Ik−1 6⊂ I,

which means that R, Rk and Rk−1 are pairwise incomparable, but there projec-
tions are pairwise comparable.

Continuing this process, we obtain k+1 intervals R, Rk, Rk−1, . . . , R1 which
are pairwise incomparable, but their projections are pairwise comparable. But
this contradicts property (C).

Thus, we have shown that every finite family with property (C) can be
represented as a union of at most k subfamilies satisfying (7), which yields the
weak type L log+ L of the maximal operator, with a constant linear in k.

Consider now property (Z). Recall that the Jessen–Marcinkiewicz–Zygmund
theorem was generalized by Zygmund [22], who proved that the basis of n-
dimensional intervals with k sides of equal length differentiates integrals of
functions from L(log+ L)n−k. The proof is based on iterating estimates for
the k-dimensional maximal function and n − k one-dimensional ones. In the
three-dimensional case, Zygmund’s basis consists of cartesian products of ele-
ments of a basis of squares and one-dimensional intervals. In view of Theorem
1, the definition of this basis can be naturally generalized. Namely, we de-
fine a Zygmund basis to consist of cartesian products of monotonic bases and
one-dimensional intervals. Such a basis has weak type L log+ L, which can be
proved using Zygmund’s scheme. However, if a basis has property (Z), then by
Theorem 1, every finite subfamily decomposes into at most k families from the
Zygmund basis, which gives weak type L log+ L of the maximal operator, with
a constant again depending linearly on k.

This completes the proof of Theorem 3.

Corollary 3. If a basis B fails property (w) but enjoys property (C) or
(Z), then B has weak type L log+ L, and this estimate is sharp.

To prove the corollary it is sufficient to note that the sharpness of the esti-
mate follows from Theorem 2, since the basis fails (w).

5. Multidimensional Conjecture

Theorems 1, 2 and 3 justify the introduction of the following conjecture
which can be regarded as specification of Zygmund’s program.

Conjecture. If s is a minimum of exponents r so that TI-basis of multi-
dimensional d-intervals has weak type L(log+ L)r, then s is an integer (0 ≤ s ≤
d− 1) and the basis is of weak type L(log+ L)s.

This conjecture looks so unusual that it is even hard to say whether confirm-
ing or rejecting it would be more surprising. At the moment we have a positive
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evidence but only for the two-dimensional case or more generally for the case of
products of two cubic intervals.
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