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ABSTRACT. This paper is an attempt to understand a phenomena of maximal opera-
tors associated to bases of three dimensional rectangles of dimensions (¢, 1/t, s) within
a framework of more general Soria bases. Jessen-Marcinkiewicz-Zygmund Theorem
implies that the maximal operator associated with a Soria basis continuously maps
Llog? L into L. We give a simple geometric condition which guarantees that
Llog? L class cannot be enlarged. The proof of the result is a further development
of the methods from [8] and is related to the theorems of A.Cdérdoba [1], F.Soria [7],
R. Fefferman and J. Pipher [4].

In this paper we will deal with translation invariant collections consisting of
certain multi-dimensional rectangles (i.e. Cartesian products of one-dimensional
intervals). We will call them bases. The main result about a basis consisting
of the all possible n-dimensional rectangles is the famous Jessen-Marcinkiewicz-
Zygmund Theorem. The quantitative version of this theorem is this weak type
L(log™ L)™' estimate for the strong maximal operator

1
M f(x) = sup i J |f(y)|dy
n—1
{Msf > A} §/|f)\|<1—|—log+ ’{‘) ) (1)

We will say that a basis B is weak type L(log™ L)? if condition (1) holds with
n — 1 replaced by j and M f is replaced by

Mgf () = sup = | I7(pldy.
ReB ’R‘ R>x

The estimate (1) was established by N. Fava [3] and independently by M.
de Guzman [5]. Testing the inequality on the characteristic function of a unit
disc indicates that it is sharp. Omne can look on it as a result of action of the
corresponding maximal operator on ¢ function (for more discussions see ”final
remarks” on p. 3240 of [4]).

This estimate gets worse by a logarithmic factor with each increment of the
dimension. On the other hand, A. Zygmund [9] demonstrated that the basis con-
sisting of the Cartesian product of k-dimensional cubes and n— k one-dimensional
intervals has a weak type L(log™ L)"~*. Thus, it would be natural to expect that
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the properties of the bases become worse with the addition of extra degree of free-
dom and vice versa, the properties of the bases become better with the reduction
of the degree of freedom. A. Zygmund has conjectured that if the basis consists
of the n-dimensional rectangles which have side length as functions of the same k
independent variables (k < n), then the basis should behave like the basis of all
k-dimensional rectangles. For example, a basis of two dimensional rectangles of
side-length (¢, ¢(t)) with nondecreasing ¢(t) has a weak type (1,1). A. Cérdoba
[1] proved Zygmund’s conjecture for an important particular case, establishing
that the basis of three dimensional rectangles of dimensions (t, s, h(t,s)) contin-
uously maps Llogt L into weak L when h(t,s) is a function non-decreasing in
each variable.

In spite of the progress that has been made towards the proof of the hypoth-
esis, it turns out that in such generality the conjecture is false. F. Soria [7] has
constructed a beautiful example of the basis of three dimensional rectangles of di-
mensions (¢,t¢(s),t(s)) with the non-decreasing functions ¢(s) and (s), which
has the same property as the basis of all possible three dimensional rectangles.

Soria’s result shed a light on the complexity of the three dimensional case,
while the two dimensional case now is totally understood.

Let us be more specific. We call two rectangles R and R’ comparable and
denote this R ~ R’ if there exists a translation placing one of them inside the
other one. In the opposite case we call them incomparable and write R «# R'.

Now, for every rectangle R € B we denote by R* the concentric rectangle of
minimal measure containing R with side lengths of the form 2*, k € Z. Thus, to
every basis B we attach, in a natural way, another basis B* = {R* | R € B} - a
dyadic skeleton of the basis B. It is clear that B and B* have the same weak type
estimates.

In [8] the following property

3k>1VR1,...,Rk€B*3i§£j, RZ‘NRj, (W)
and an alternative one
Vk>13R1,...,Rk€B*Vi7Aj, RZ'%JRJ (S)

were introduced.

It turns out that in the two dimensional case the s-property makes a basis bad.
Any basis possessing the s-property behaves like the basis of all two dimensional
intervals while any basis possessing the w-property behaves like the basis of all
two dimensional cubes (for more details see [8]).

A model two dimensional basis with the s-property is provided by the basis of
rectangles of dimensions (t,1/t). It is a weak type Llog™ L basis and this is the
best possible estimate. The appearance of the logarithmic factor is a result of the
integration of the 1/t function.

Switching to three dimensional space and considering the basis of three dimen-
sional rectangles of dimensions (¢,1/t,s) one can expect that the extra degree
of freedom brings an extra logarithm into the weak type estimate. Surprisingly,
this is not the case. F. Soria [7] noticed that this basis is a weak type Llog® L
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basis too. And this happened again because any two different rectangles from
(t,1/t)-basis are incomparable! Thus, the three dimensional case turns out to be
totally different from the two dimensional case - both comparableness and incom-
parableness can improve the properties of bases.

The problem of investigating the three dimensional case is in the lack of cov-
ering methodology. The arsenal of tools is very limited: there are only standard
Vitaly (see e.g. [6]), Cordoba-Fefferman [2], Cordoba [1] and Fefferman-Pipher [4]
covering arguments. Further development of the general case seems quite difficult.
Thus, it would be natural to study some particular important bases. For instance,
a basis consisting of Cartesian products of the two dimensional rectangles forming
a certain basis B in the XY -plane (we will call it a projection basis) and arbitrary
one-dimensional intervals in the Z-direction. We will call such bases Soria bases,
because the (t,1/t,s)-basis is a model case. An understanding of the behavior
of these relatively simple bases would be a significant step forward towards the
understanding of the general situation.

There are examples of Soria basis of weak type (1,1), of weak type Llog™* L,
and of weak type Llog? L. The purpose of the current note is to introduce
a simple geometric property which implies Llog? L weak type for Soria bases
(compare with Llog™ L for the (¢,1/t,s)-basis). Note, that the projection basis
for (t,1/t,s) is the (¢, 1/t)-basis, which consists only of incomparable rectangles;
an intersection of any two such rectangles does not belong to the basis.

A behavior something opposite to this is specified by the following property:

Vk >13Ry,...,R; € By* V’L#], (Ri'%‘Rj)&(RiﬂRjGBO*). (iS)
Here By* denotes rectangles from B* with the left lower vertices at the origin.

Theorem. Let B be a Soria basis with is-property. Then for any 0 < A < 1
there exists a set & such that

[{Ma(e) > M 2 € [ X 1og? XE do

with some constant C' independent of E and \.

Proof. For a two dimensional rectangle R let pr,(R) and pr,(R) denote the
projections of R onto the X and Y axis, respectively. The (is) property implies
that

Vk>13RI e B* (1<j<k, 1<q<j),
k k
Ry# Ry, 1<q#p<k,
prx(Rffl) = prx(Rf]), pry(Rffl) = pry(R;H), g=1,...,j—1.
Geometrically, this means that the stair-shaped set

X;= | R
1<q<j
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contains an imbedding “Russian-dolls” system of staircases, each of which in turn
is a union of rectangles from B* (see picture below).

l l [

The characteristic features of these pictures is that each succeeding picture is
an entire fragment of the previous one.

Now, for each rectangle R{ let Hf denotes prx(Rg ) and V;j denotes pry(Rg ),
i.e. Rl = H] x V7, Define the set © and the family of sets Y*. Set

k—1 2ma—mEp—1_1
@1:{331 GH,lj: H Z XH§($1—23|H5|):1},
q=1 s=0

2nq—n1—171

k
@2:{m26‘/1k:H 3 quk(x2—25|vq’f\):1}
q=2 s=0

and © = ©! x ©2.

From geometric reasoning, it is clear that (O = 217F|HF| 02| = 217F| V|,
and so |©] = 227 2% HE| - |V

Next, for fixed 1 <i < j <k let V' = HF, v* =V,

' k—1 2ma—mg—1_1
Y :{xl et [ X XHg(x1—23|H§D:1},
q=i s=0

‘ k—j+i 2nqg—n1—1_1
Yf’] = {m eVl H Z quk(a:g — 28"/;1k‘) = 1}
q=2 s=0
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and Yz.j = Y;l’j X Yf’j . From geometric reasoning again,
Y =20y YR = 2 B,
and hence
V7| =27 V] (L<i < <R).

Further, from the definition of the sets Yil’j and Yiz’j it follows that Yil’j is a
union of translates of the intervals HF, while Yf’] is a union of translates of the
intervals ka_ j+i- By the assumptions of the theorem

k k—1 i+1 j
HY = H; :---:Hij :HZ.J
and
kE_ y/k—1 _ _1/J
Vo =Vor ==V 4y

which upon substituting k — j + ¢ for ¢ yields

k _1J
Vicjri = Vi

)

Thus, Yil’j consists of translated intervals HZJ , and Yf’j consists of translated
intervals Vij . Consequently, Y;j consists of translated rectangles Rg , i.e. for every
(x1,m2) € Y;j there is a translation 7 such that T(Rg) > (x1,m2). Similarity
considerations show that

r(B)nel _|rRinel _[y/ne|
Im(R))| IR]| v/l
Further, the definitions of ©! and ©? imply that
etcyM, e’cy?,

hence © C Yz-j and

Y/ne|l |e

_olj o
\Yj| _|Yj|_2 (1<i<j<k).
K] (2

Now set
U=0x0,1], 2/ =v/x[0,2"7], =R x[0,2"] (1<i<j<hk).

)

Obviously, the Iij are pair-wise incomparable three dimensional rectangles with
dyadic side lengths, so if we set

then

k J kK J kE 7
W]~ DS = 303 2y = 303 2k ai e = 95 2k (k + 1)U,

j=1 i=1 j=11i=1 j=11i=1
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By the above considerations, for every (ml,‘xg, x3) € W there is rectangle Iz-j and
a translation 7 such that (z1, 22, x3) € 7(I]) and
7(1]) = 7(R]) x [0,2"77],

where 7 was defined above. Hence,

TF)NU| _ [f(B)ne| _|Rlne| 2 _ .,

(1)) 2k (R))| 2R} 2¢7Y '
These estimates show that
W C {x: Mg-(xv)(z) > 2'7F},

o M (u)(o) 2 274 2 (W] 2 2200 2 172 [ X tog? 30 i,

which is reverse to the Llog? L estimate.
This completes the proof of the Theorem.
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