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Abstract. This paper is an attempt to understand a phenomena of maximal opera-

tors associated to bases of three dimensional rectangles of dimensions (t, 1/t, s) within

a framework of more general Soria bases. Jessen-Marcinkiewicz-Zygmund Theorem
implies that the maximal operator associated with a Soria basis continuously maps

L log2 L into L1,∞. We give a simple geometric condition which guarantees that
L log2 L class cannot be enlarged. The proof of the result is a further development

of the methods from [8] and is related to the theorems of A.Córdoba [1], F.Soria [7],

R. Fefferman and J. Pipher [4].

In this paper we will deal with translation invariant collections consisting of
certain multi-dimensional rectangles (i.e. Cartesian products of one-dimensional
intervals). We will call them bases. The main result about a basis consisting
of the all possible n-dimensional rectangles is the famous Jessen-Marcinkiewicz-
Zygmund Theorem. The quantitative version of this theorem is this weak type
L(log+ L)n−1 estimate for the strong maximal operator

Msf(x) = sup
all R

1
|R|

∫
R3x

|f(y)|dy :

|{Msf > λ}| ≤
∫

|f |
λ

(
1 + log+ |f |

λ

)n−1

. (1)

We will say that a basis B is weak type L(log+ L)j if condition (1) holds with
n− 1 replaced by j and Msf is replaced by

MBf(x) = sup
R∈B

1
|R|

∫
R3x

|f(y)|dy.

The estimate (1) was established by N. Fava [3] and independently by M.
de Guzmán [5]. Testing the inequality on the characteristic function of a unit
disc indicates that it is sharp. One can look on it as a result of action of the
corresponding maximal operator on δ function (for more discussions see ”final
remarks” on p. 3240 of [4]).

This estimate gets worse by a logarithmic factor with each increment of the
dimension. On the other hand, A. Zygmund [9] demonstrated that the basis con-
sisting of the Cartesian product of k-dimensional cubes and n−k one-dimensional
intervals has a weak type L(log+ L)n−k. Thus, it would be natural to expect that
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the properties of the bases become worse with the addition of extra degree of free-
dom and vice versa, the properties of the bases become better with the reduction
of the degree of freedom. A. Zygmund has conjectured that if the basis consists
of the n-dimensional rectangles which have side length as functions of the same k
independent variables (k < n), then the basis should behave like the basis of all
k-dimensional rectangles. For example, a basis of two dimensional rectangles of
side-length (t, φ(t)) with nondecreasing φ(t) has a weak type (1,1). A. Córdoba
[1] proved Zygmund’s conjecture for an important particular case, establishing
that the basis of three dimensional rectangles of dimensions (t, s, h(t, s)) contin-
uously maps L log+ L into weak L when h(t, s) is a function non-decreasing in
each variable.

In spite of the progress that has been made towards the proof of the hypoth-
esis, it turns out that in such generality the conjecture is false. F. Soria [7] has
constructed a beautiful example of the basis of three dimensional rectangles of di-
mensions (t, tφ(s), tψ(s)) with the non-decreasing functions φ(s) and ψ(s), which
has the same property as the basis of all possible three dimensional rectangles.

Soria’s result shed a light on the complexity of the three dimensional case,
while the two dimensional case now is totally understood.

Let us be more specific. We call two rectangles R and R′ comparable and
denote this R ∼ R′ if there exists a translation placing one of them inside the
other one. In the opposite case we call them incomparable and write R 6∼ R′.

Now, for every rectangle R ∈ B we denote by R∗ the concentric rectangle of
minimal measure containing R with side lengths of the form 2k, k ∈ Z. Thus, to
every basis B we attach, in a natural way, another basis B∗ = {R∗ | R ∈ B} - a
dyadic skeleton of the basis B. It is clear that B and B∗ have the same weak type
estimates.

In [8] the following property

∃k > 1 ∀R1, . . . , Rk ∈ B∗ ∃i 6= j, Ri ∼ Rj , (w)

and an alternative one

∀k > 1 ∃R1, . . . , Rk ∈ B∗ ∀i 6= j, Ri 6∼ Rj . (s)

were introduced.
It turns out that in the two dimensional case the s-property makes a basis bad.

Any basis possessing the s-property behaves like the basis of all two dimensional
intervals while any basis possessing the w-property behaves like the basis of all
two dimensional cubes (for more details see [8]).

A model two dimensional basis with the s-property is provided by the basis of
rectangles of dimensions (t, 1/t). It is a weak type L log+ L basis and this is the
best possible estimate. The appearance of the logarithmic factor is a result of the
integration of the 1/t function.

Switching to three dimensional space and considering the basis of three dimen-
sional rectangles of dimensions (t, 1/t, s) one can expect that the extra degree
of freedom brings an extra logarithm into the weak type estimate. Surprisingly,
this is not the case. F. Soria [7] noticed that this basis is a weak type L log+ L
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basis too. And this happened again because any two different rectangles from
(t, 1/t)-basis are incomparable! Thus, the three dimensional case turns out to be
totally different from the two dimensional case - both comparableness and incom-
parableness can improve the properties of bases.

The problem of investigating the three dimensional case is in the lack of cov-
ering methodology. The arsenal of tools is very limited: there are only standard
Vitaly (see e.g. [6]), Cordoba-Fefferman [2], Cordoba [1] and Fefferman-Pipher [4]
covering arguments. Further development of the general case seems quite difficult.
Thus, it would be natural to study some particular important bases. For instance,
a basis consisting of Cartesian products of the two dimensional rectangles forming
a certain basis B in the XY -plane (we will call it a projection basis) and arbitrary
one-dimensional intervals in the Z-direction. We will call such bases Soria bases,
because the (t, 1/t, s)-basis is a model case. An understanding of the behavior
of these relatively simple bases would be a significant step forward towards the
understanding of the general situation.

There are examples of Soria basis of weak type (1,1), of weak type L log+ L,
and of weak type L log2 L. The purpose of the current note is to introduce
a simple geometric property which implies L log2 L weak type for Soria bases
(compare with L log+ L for the (t, 1/t, s)-basis). Note, that the projection basis
for (t, 1/t, s) is the (t, 1/t)-basis, which consists only of incomparable rectangles;
an intersection of any two such rectangles does not belong to the basis.

A behavior something opposite to this is specified by the following property:

∀k > 1 ∃R1, . . . , Rk ∈ B0
∗ ∀i 6= j, (Ri 6∼ Rj) & (Ri ∩Rj ∈ B0

∗). (is)

Here B0
∗ denotes rectangles from B∗ with the left lower vertices at the origin.

Theorem. Let B be a Soria basis with is-property. Then for any 0 < λ < 1
there exists a set E such that

|{MB(χE) > λ}| ≥ C

∫
χE

λ
log2 χE

λ
dx

with some constant C independent of E and λ.

Proof. For a two dimensional rectangle R let prx(R) and pry(R) denote the
projections of R onto the X and Y axis, respectively. The (is) property implies
that

∀k ≥ 1 ∃Rj
q ∈ B∗ (1 ≤ j ≤ k, 1 ≤ q ≤ j),

Rk
q 6∼ Rk

p , 1 ≤ q 6= p ≤ k,

prx(Rj−1
q ) = prx(Rj

q), pry(R
j−1
q ) = pry(R

j
q+1), q = 1, . . . , j − 1.

Geometrically, this means that the stair-shaped set

Xj =
⋃

1≤q≤j

Rj
q
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contains an imbedding “Russian-dolls” system of staircases, each of which in turn
is a union of rectangles from B∗ (see picture below).

The characteristic features of these pictures is that each succeeding picture is
an entire fragment of the previous one.

Now, for each rectangle Rj
i let Hj

i denotes prx(Rj
i ) and V j

i denotes pry(R
j
i ),

i.e. Rj
i = Hj

i × V j
i , Define the set Θ and the family of sets Y k. Set

Θ1 =
{
x1 ∈ Hk

k :
k−1∏
q=1

2mq−mk−1−1∑
s=0

χHk
q
(x1 − 2s|Hk

q |) = 1
}
,

Θ2 =
{
x2 ∈ V k

1 :
k∏

q=2

2nq−n1−1−1∑
s=0

χV k
q
(x2 − 2s|V k

q |) = 1
}

and Θ ≡ Θ1 ×Θ2.
From geometric reasoning, it is clear that |Θ1| = 21−k|Hk

k |, |Θ2| = 21−k|V k
1 |,

and so |Θ| = 22−2k|Hk
k | · |V k

1 |.
Next, for fixed 1 ≤ i ≤ j ≤ k let Y 1,k

k = Hk
k , Y 2,k

1 = V k
1 ,

Y 1,j
i =

{
x1 ∈ Hk

k :
k−1∏
q=i

2mq−mk−1−1∑
s=0

χHk
q
(x1 − 2s|Hk

q |) = 1
}
,

Y 2,j
i =

{
x2 ∈ V k

1 :
k−j+i∏
q=2

2nq−n1−1−1∑
s=0

χV k
q
(x2 − 2s|V k

q |) = 1
}
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and Y j
i ≡ Y 1,j

i × Y 2,j
i . From geometric reasoning again,

|Y 1,j
i | = 2−(k−i)|Hk

k |, |Y 2,j
i | = 2−(k−j+i−1)|V k

1 |,

and hence
|Y j

i | = 2−2k+j+1|Hk
k | · |V k

1 | (1 ≤ i ≤ j ≤ k).

Further, from the definition of the sets Y 1,j
i and Y 2,j

i it follows that Y 1,j
i is a

union of translates of the intervals Hk
i , while Y 2,j

i is a union of translates of the
intervals V k

k−j+i. By the assumptions of the theorem

Hk
i = Hk−1

i = · · · = Hj+1
i = Hj

i

and
V k

q = V k−1
q−1 = · · · = V j

q−(k−j),

which upon substituting k − j + i for q yields

V k
k−j+i = V j

i .

Thus, Y 1,j
i consists of translated intervals Hj

i , and Y 2,j
i consists of translated

intervals V j
i . Consequently, Y j

i consists of translated rectangles Rj
i , i.e. for every

(x1, x2) ∈ Y j
i there is a translation τ such that τ(Rj

i ) 3 (x1, x2). Similarity
considerations show that

|τ(Rj
i ) ∩Θ|

|τ(Rj
i )|

=
|Rj

i ∩Θ|
|Rj

i |
=
|Y j

i ∩Θ|
|Y j

i |
.

Further, the definitions of Θ1 and Θ2 imply that

Θ1 ⊂ Y 1,j
i , Θ2 ⊂ Y 2,j

i ,

hence Θ ⊂ Y j
i and

|Y j
i ∩Θ|
|Y j

i |
=

|Θ|
|Y j

i |
= 21−j (1 ≤ i ≤ j ≤ k).

Now set

U ≡ Θ× [0, 1], Zj
i ≡ Y j

i × [0, 2k−j ], Ij
i ≡ Rj

i × [0, 2k−j ] (1 ≤ i ≤ j ≤ k).

Obviously, the Ij
i are pair-wise incomparable three dimensional rectangles with

dyadic side lengths, so if we set

W =
k⋃

j=1

j⋃
i=1

Zj
i

then

|W | ∼
k∑

j=1

j∑
i=1

|Zj
i | =

k∑
j=1

j∑
i=1

2k−j |Y j
i | =

k∑
j=1

j∑
i=1

2k−j2j−1|Θ| = 2k−2k(k + 1)|U |.
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By the above considerations, for every (x1, x2, x3) ∈ W there is rectangle Ij
i and

a translation τ̄ such that (x1, x2, x3) ∈ τ̄(Ij
i ) and

τ̄(Ij
i ) = τ(Rj

i )× [0, 2k−j ],

where τ was defined above. Hence,

|τ̄(Ij
i ) ∩ U |

|τ̄(Ij
i )|

=
|τ(Rj

i ) ∩Θ|
2k−j |τ(Rj

i )|
=
|Rj

i ∩Θ|
2k−j |Rj

i |
=

21−j

2k−j
= 21−k.

These estimates show that

W ⊂ {x : MB∗(χU )(x) ≥ 21−k},

|{x : MB∗(χU )(x) ≥ 21−k}| ≥ |W | ≥ k22k−2|U | ≥ 1/2
∫

χU

21−k
log2 χU

21−k
dx,

which is reverse to the L log2 L estimate.
This completes the proof of the Theorem.
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