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Abstract. We find explicitly the Bellman function for the dyadic maximal operator on
Lp as the solution of a Bellman PDE of Monge–Ampère type. This function has been
previously found by A. Melas [M] in a different way, but it is our PDE-based approach
that is of principal interest here. Clear and replicable, it holds promise as a unifying
template for past and current Bellman function investigations.

1. Introduction

For a locally integrable function g on Rn and a set E ⊂ Rn with |E| 6= 0, let 〈g〉
E

=
1
|E|

∫
E g be the average of g over E. Let p > 1 and q > 1 be conjugate exponents, i.e.

p−1 + q−1 = 1. Let ϕ be a nonnegative locally Lp-function on Rn. Fix a dyadic lattice D
on Rn and consider the dyadic maximal operator

Mϕ(x) = sup
I3x;I∈D

〈ϕ〉
I
.

Following F. Nazarov and S. Treil [NT], we define the Bellman function for Mϕ

(1.1) B(f, F, L) = sup
0≤ϕ∈Lp

loc
(Rn)

{
〈(Mϕ)p〉

Q
: 〈ϕ〉

Q
= f ; 〈ϕp〉

Q
= F ; sup

R⊃Q
〈ϕ〉

R
= L

}
.

Observe that B is independent of Q and well-defined on the domain

Ω = {(f, F, L) : 0 < f ≤ L; fp ≤ F}.
Finding B will, among other things, provide a sharp refinement of the Hardy–Littlewood–
Doob maximal inequality

(1.2) ‖Mϕ‖p ≤ q‖ϕ‖p.

In [NT], the authors show that B(f, F, L) ≤ qpF − pqfLp−1 + pLp, which implies (1.2).
A. Melas in [M], using deep combinatorial properties of the operator M and without relying
on the Bellman PDE, finds B explicitly. In contrast, we develop a boundary value problem
of Monge–Ampère type that B must satisfy (assuming sufficient differentiability) and solve
it, producing the function from [M]. Our approach has been used as the foundation of several
recent Bellman function results. We first restrict our attention to the one-dimensional case
and then show that the Bellman function does not depend on dimension.
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2. Finite-differential and differential properties of B

Let Q be an interval and Q−, Q+ its left and right halves, respectively. Let (f±, F±) =
(fQ± , FQ±), (f, F ) = ((f−, F−) + (f+, F+))/2. Taking suprema in the identity

〈(Mϕ)p〉
Q

=
1
2
〈(Mϕ)p〉

Q−
+

1
2
〈(Mϕ)p〉

Q+

over all ϕ with appropriate averages, we obtain

(2.1) B(f, F, L) ≥ 1
2
B(f−, F−,max{f−, L}) +

1
2
B(f+, F+,max{f+, L}).

Any function B satisfying this pseudo-concavity property on Ω will be a majorant of the
true Bellman function. The following theorem phrases this condition in a differential form.

Theorem 2.1. Let z = (f, F ). Assuming sufficient smoothness on the Bellman function
B, condition (2.1) holds for all admissible triples if and only if

(2.2) det
(

∂2B

∂z2

)
= 0, Bff ≤ 0, BL ≥ 0 on Ω; 2BfL + BLL ≤ 0, BL = 0 when f = L.

3. Homogeneity, boundary value problem, solution

We reduce the order of the PDE in (2.2) by using the multiplicative homogeneity of
B : B(f, F, L) = LpB(f/L, F/Lp, 1) def= LpG(x, y), where x = f/L, y = F/Lp. In addi-
tion, F = fp only for functions that are constant on Q, so B(f, fp, L) = Lp, meaning
G(x, xp) = 1. Coupling this with the first and the last conditions in (2.2), we get a boundary
value problem for G on the domain {(x, y) | 0 < x ≤ 1;xp ≤ y} :

(3.1) GxxGyy = G2
xy; G(x, xp) = 1; pG(1, y) = Gx(1, y) + pyGy(1, y).

We look for the solution of the Monge–Ampère equation (3.1) in the general parametric
form

(3.2) G(x, y) = tx + f(t)y + g(t); x + f ′(t)y + g′(t) = 0.

Fix a value of t, i.e. fix one of the straight-line trajectories in (3.2). Let (u(t), up(t)) be
the point where that trajectory intersects the lower boundary y = xp. We have

G(u, up) = tu(t) + f(t)up(t) + g(t) = 1; u(t) + f ′(t)up(t) + g′(t) = 0.

Differentiating the first equation and using the second one, we get, after some algebra,
f = −t/(pup−1), g = 1 − tu/q . Assume now that the trajectory intersects the right
boundary x = 1 at the point (1, v(t)). Then G(1, v) = t + fv + g. On the other hand,
parametrization (3.2) implies Gx = t, Gy = f(t) and so the second boundary condition in
(3.1) becomes G(1, v) = t

p +fv. This gives g = −t/q, allowing us to express t = q/(u−1).
Simplifying, we obtain a complete solution of the form (3.2):

(3.3) G(x, y) =
y

up
; x− qu− 1

qup
y − 1

q
= 0.

In terms of the original variables, we get a Bellman function candidate near the boundary
f = L :

(3.4) B(f, F, L) = Fu−p (f/L, F/Lp) .
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4. From the candidate to the true function

4.1. B ≥ B . One can readily verify that the rest of conditions (2.2) are satisfied by
the candidate (3.4). Therefore, property (2.1) holds and one can perform the Bellman
induction: take any non-negative function ϕ ∈ Lp

loc(Rn) and an interval Q0 ∈ D. For an
interval Q ⊂ Q0, Q ∈ D, let XQ = (fQ, FQ, LQ) with f, F, and L defined as in (1.1).
Then

B(fQ0 , FQ0 , LQ0) ≥
1
2
B(X(Q0)−) +

1
2
B(X(Q0)+)

≥ 1
|Q0|

∑

Q⊂Q0, |Q|=2−n|Q0|
|Q|B(XQ) ≥ 1

|Q0|
∑

Q⊂Q0, |Q|=2−n|Q0|
|Q|Lp

Q(4.1)

=
1
|Q0|

∑

Q⊂Q0, |Q|=2−n|Q0|
|Q|( sup

R⊃Q
〈ϕ〉R)p −→ 〈(Mϕ)p〉Q0 , as n →∞.

Here we have used that B ≥ Lp. Taking supremum on the right over all ϕ with the above
XQ0 we get B ≥ B.

4.2. B ≤ B . To get the reverse inequality, we need to construct, for every point (f, F, L) ∈
Ω, a sequence of nonnegative functions on (0, 1), {ϕn}, so that

lim
n→∞〈(Mϕn)p〉

(0,1)
≥ B(f, F, L).

To do this, we use the trajectories t = const of the Monge–Ampère equation from Section 3.
In the original variables, this gives

(4.2) f =
L

q
+ AF.

On the boundary f = L going along these trajectories yields the extremal sequence

(4.3) ϕn(t) =





αnL 0 < t < 2−n

ϕn(2kt− 1) 2−k < t < 2−k+1, k = 2, ..., n

βnϕn(2t− 1) 1
2 < t < 1.

The definition is understood recursively, whereby the function is defined on a portion of
(0, 1), then on the same portion of the remaining part, and so on. The numbers αn and
βn are chosen so that 〈ϕn〉(0,1)

= L and 〈ϕp
n〉(0,1)

= F. This means

1
2n

αn +
1
2
βn =

1
2n

+
1
2
;

1
2n

αp
n +

1
2
βp

n

F

Lp
=

(
1
2n

+
1
2

)
F

Lp
.

One can show that αnMϕn ≥ ϕn and αn → u(1, F/Lp) with u defined by (3.3). Therefore,

lim
n→∞〈(Mϕn)p〉

(0,1)
≥ lim

n→∞
1
αp

n
〈ϕp

n〉(0,1)
= lim

n→∞
F

αp
n

= Fu−p(1, F/Lp) = B(L, F, L),

which gives B(L,F, L) ≥ B(L,F, L).
On the boundary F = fp the situation is simple: here the only test functions are con-

stants and so B(f, fp, L) = B(f, fp, L) = Lp. Having constructed the extremal sequences
on the two boundaries, we get the extremal sequence at any point (f, F, L) with f > L/q
as their weighted dyadic rearrangement built along the unique extremal trajectory of the
form (4.2) passing through the point.

One observes, however, that trajectories (4.2) cannot be used with A < 0, since they then
would intersect the “forbidden” boundary f = 0. (It is forbidden because, for a nonnegative
function, f = 0 implies F = 0. ) In fact, in the region 0 < f < L/q, no trajectory can lean
either to the left or to the right (the forbidden boundary to the left, the existing extremal
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trajectory f = L/q to the right). We conclude two things: the trajectories are vertical in
this region and the candidate (3.4) no longer works there. However, this is quickly rectified:
If G(x, y) = a(x)y + b(x), then G(x, xp) = 1 implies that G(x, y) = 1+a(x)(y−xp). Now
GxxGyy −G2

xy = −(a′(x))2 = 0, and G(1/q, y) = qpy implies that a(x) = qp . Thus we get
the unique two-piece Bellman function candidate

(4.4) B(f, F, L) =

{
Fu−p (f/L, F/Lp) L < qf

Lp + qp(F − fp) L ≥ qf.

(In the notation of [M], u−p(x, y) = ωp((px − p + 1)/y)p. ) This B still satisfies (2.1).
Therefore, Bellman induction (4.1) works. We now need an extremal sequence proving that
B ≥ B in the region L ≥ qf. There is a unique extremal trajectory passing through each
point of the region. However, the trajectory is vertical and so intersects the boundary of
Ω at a single point; as a result we cannot use a weighted average of boundary extremal
sequences like we just did for the region L > f/q. We deal with it by tilting the trajectory
slightly to the right, which produces a (distant) second boundary point, at the boundary
f = L. This lets us use the extremal sequence ϕn from (4.3), while simultaneously reducing
the tilt. Namely, fix (f, F, L) and k ≥ 1. Define γk and Fk so that L− γk = 2k(f − γk)
and Fk − γp

k = 2k(F − γp
k). (Observe that γk → f and Fk → ∞. ) Using (4.3), form a

sequence {ϕk,n}∞n=1 with 〈ϕk,n〉(0,1)
= L and 〈ϕp

k,n〉(0,1)
= Fk, so that 〈(Mϕk,n)p〉

(0,1)
→

B(L,Fk, L), as n →∞. Let

ψk,n(t) =





ϕk,n(2kt) 0 < t < 2−k

γk 2−k < t < 1
2L− f 1 < t < 2.

Direct computation shows that 〈ψk,n〉(0,1)
= f, 〈ψp

k,n〉(0,1)
= F, and 〈ψk,n〉(0,2)

= L. Then

〈(Mψk,n)p〉
(0,1)

≥ Lp(1− 2−k) + 2−k〈(Mϕk,n)p〉
(0,1)

−−−→
n→∞ Lp(1− 2−k) + 2−kB(L,Fk, L)

−−−→
k→∞

Lp + (F − fp)u−p(1,∞) = Lp + qp(F − fp),

5. Several dimensions

It turns out that the Bellman function (1.1),(4.4) is dimension-free. Fix a dyadic cube
Q and let Q1, ..., Q2n be its dyadic offspring. Then

B

(
2−n

2n∑

k=1

zk, L

)
≥ 2−n

n∑

k=1

B(zk,max{fk, L}).

Therefore, we can run the induction (4.1) to prove that B ≥ B. The other direction is
shown by a trivial modification of the one-dimensional maximizing sequences. A similar
argument can be used to show that the same Bellman function works for the maximal
operator on trees, the setting of choice in [M].
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