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ABSTRACT. In a recent paper [17] we established an equivalence
between the Gurov-Reshetnyak and A, conditions for arbitrary
absolutely continuous measures. In the present paper we study
a weaker condition called the maximal Gurov-Reshetnyak condi-
tion. Although this condition is not equivalent to A., even for
Lebesgue measure, we show that for a large class of measures sat-
isfying Busemann-Feller type condition it will be self-improving as
is the usual Gurov-Reshetnyak condition. This answers a question
raised independently by T. Iwaniec and V.I. Kolyada.

1. INTRODUCTION

Throughout the paper, @)y will be a bounded cube from R", and p
will be a non-negative Borel measure on @)y absolutely continuous with
respect to Lebesgue measure. For f € L,(Qo) and for any subcube

Q C Q set
1
fan =3 /Q F@)dn, u(f:Q) = / () = fouldp.

A function f € L,(Qo) is said to belong BMO ) if

sup Q,(f; Q) < oo.
QCQo

Also we recall that the classes A,(p) and RH, (1), 1 < p,r < 00, consist
of all non-negative f € L,(Qo) for which there exists ¢ > 0 such that
for all @ C Qy,

(fou) (F YD), ) <e and  (f)gu < c(fou)

respectively. In the unweighted case (i.e., in the case when p is Lebesgue
measure) these objects were first considered in the classical works by
F. John and L. Nirenberg [15], B. Muckenhoupt [20], F. Gehring [9],
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and R. Coifman and C. Fefferman [5]. It has been quickly realized
that the theory developed in the unweighted case remains true for
doubling measures (i.e., for those measures p for which there exists
a constant ¢ > 0 such that u(2Q) < cu(Q) for all cubes @). Only
recently, it was shown in the papers by J. Mateu et al. [18] and by
J. Orobitg and C. Pérez [21] that most of important results concerning
BMO(u), Ap(p) and RH,(u) still hold for any absolutely continuous
measure g (and even for a wider class of measures). First of all, we
mention that all these objects are closely related. Namely (see [21]),

(L1) A= U A= | RH().

1<p<oo I<r<oo

and log f € BMO(u) for any f € A (n), and, conversely, given an
f € BMO(pu), there is A > 0 such that e € A, (). Also, conditions
expressed in the above definitions represent a kind of so-called self-
improving properties. Indeed, if f € L,(Qo) belongs to BMO(pu),
then f belongs to LF(Qo) for any 1 < p < oo (see [18]). Moreover,
A,(p) = A,_s5(p) and RH, (1) = RH,15(p) for some small § > 0
which may differ in each implication (see [21]).

In the mid 70s, L.G. Gurov and Yu.G. Reshetnyak [10, 11] introduced
in analogy with the definition of BMO(u) (in the unweighted case) the
class GR.(1),0 < € < 2, which consists of all non-negative f € L,(Qo)
such that for any @ C Q,

(1'2) Q,u(f; Q) S 5fQ,u'

This class has found interesting applications in quasi-conformal map-
pings and PDE’s (see, e.g., [3, 14]). Observe that (1.2) trivially holds
for ¢ = 2, and therefore only the case 0 < ¢ < 2 is of interest. It
turned out that (1.2) also represents a kind of self-improving prop-
erty. It was established in [3, 10, 11, 14, 19, 26] for Lebesgue measure
and in [7, 8] for doubling measures that if € is small enough, namely
0 <& < 27", then the GR,(¢) implies f € L% (Qy) for some p > 1.
In [16], it was shown that in the case of n = 1 and Lebesgue measure
this self-improvement holds for the whole range 0 < € < 2. In a recent
paper [17], the authors have established a rather surprising analogue
of (1.1), namely for any absolutely continuous p,

(1.3) As(m) = | GR:(w).

First, this result shows a close relation between the classes GR.(u)
and Ap(p). Second, it follows immediately that for any absolutely
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continuous p and n > 1 and for all 0 < ¢ < 2 the GR.(u) condition
implies higher integrability properties of f.

T. Iwaniec and V.I. Kolyada independently asked the authors whether
a weaker variant of (1.2):

(1.4) fiiéQo (x) <eM, o, f(x) pae in Qg

has an analogous self-improving property for all ¢ < 2. Here, as usual,

flo@ = sup Quf;Q) and Mo f(x)= sup |flou
Q3x,QCQo Q3z,QCQo

The property expressed in (1.4) we call the mazimal Gurov-Reshetnyak
condition, and denote it by MG R ().

Observe that the passing to maximal operators is a quite natural
and well-known approach to many questions mentioned above. For
example, Gehring’s approach to the reverse Hélder inequality [9] as
well as Bojarski’s proof of the Gurov-Reshetnyak Lemma for small
[3] were based on maximal function estimates. Actually, many papers
establishing the self-improving property of GR.(u) for small £ contain
implicitly the same for MGR.(u) (see, e.g., [3, 7, 19]). On the other
hand, author’s proof of (1.3) cannot be directly generalized to the class
MGR.(p). Therefore, the question of T.Iwaniec and V.I. Kolyada is
of interest for ¢ < e < 2.

In this paper we show that for a large class of measures, including any
doubling measures in R™ and any absolutely continuous measures in R*,
the maximal Gurov-Reshetnyak condition M GR. () is self-improving
for any 0 < ¢ < 2. The relevant class of measures will be given in the
following definition.

Definition 1.1. We say that a measure y satisfies the Busemann-Feller
type condition (BF-condition) if

_ il Mugxe(e) > A}
SDM()‘)— Ep M(E)

where the supremum is taken over all measurable sets £ C )y of
positive pu-measure.

<oo (0<A<]),

In the case of Lebesgue measure and the maximal operator associated
with the homothety-invariant differential basis, this condition coincides
with the well-known Busemann-Feller density condition (see, e.g., [4]
or [12, p. 122]).

Our main result is the following.

Theorem 1.2. Let u satisfy the BF-condition, and let 0 < & < 2.
Assume that a non-negative f € L,(Qo) satisfies the mazimal Gurov-
Reshetnyak condition MGR (). Then there is pg > 1 depending on
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W, e and n such that for all 1 < p < pg one has

(1'5) (fp)Q(hN < C(fQo,u)p’

where ¢ depends on p,,p and n.

Some comments about this result are in order. By (1.1) and (1.3),
the usual Gurov-Reshetnyak condition GR.(u) implies (1.5) with any
subcube @) C @ instead of ()y. Theorem 1.2 shows that although
we cannot obtain from the MGR.(u) condition such a nice conclu-
sion, we still have a higher integrability result. In fact, MGR.(u) is
really much weaker than GR.(p). Indeed, let n = 1,Qy = (0,1), p is
Lebesgue measure, and f, for example, is the characteristic function of
the interval (0,7/8). Then it is easy to see that fgou(x) < 1/2, while
Mg, f(x) > 7/8 for all z € (0,1). Thus, (1.4) holds for this function
with e = 4/7. However, f & A (p), since it is zero on a set of positive
measure. Hence, in view of (1.3), (1.2) cannot hold for this f with any
e < 2. This example shows also that the class GR.(u) in (1.3) cannot
be replaced by MGR.(u).

We make several remarks about the BF-condition. It is easy to see
that this condition holds provided M), has a weak type (p, p) property
with respect to u for some p > 0. A standard argument shows that
if 41 is doubling in R", then M, is of weak type (1,1). It is well-
known that in the case n = 1 the doubling condition can be completely
removed; namely in this case, M), is of weak type (1,1) for arbitrary
Borel measure u (see [22]). It has been recently shown in [23] that in
the case n > 2 for a large class of radial (and non-doubling, in general)
measures, including, for example, a Gaussian measure, M, will be of
strong type (p,p) for any p > 1. On the other hand, it was mentioned
in [25] that there exists p for which M, will not be of strong type (p, p)
for any p > 1. In Section 3 below we give an example of u (in the case
n = 2) for which the BF-condition does not hold.

We would like to emphasize that we still do not know whether the
BF-condition in Theorem 1.2 is really necessary. In other words we
do not know whether there exist an absolutely continuous measure u
on a cube Qy C R",n > 2, and a function f € L,(Qo) such that
does not satisfy the BF-condition, f satisfies (1.4) for some ¢ < 2 and
[ & Lh(Qo) for any p > 1.

Let us mention also that Theorem 1.2 gives yet another proof of
the Gurov-Reshetnyak Lemma for the whole range of ¢ if p is a BF-
measure.

The paper is organized as follows. In the next section we prove our
main result. Section 3 contains a detailed analysis of the BF-condition.
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2. PROOF OF MAIN RESULT

2.1. Some auxiliary propositions. We first recall that the non-
increasing rearrangement of a measurable function f on )y with respect
to p is defined by

fu(t) =inf{a >0 M{l’ €Qo:|f(@)]>a} <t} (0<t<u(Qo))
Set also f*(t —t_lfo 7)d7. Note that [2, pp. 43, 53]

2.1) / f;de:ECQﬁp / Fldu

and

1(Qo)
(2.2) FPdp = / firpdr (p>0).

Qo
We will need a local variant of the well-known Herz-type estimate

S () < (M f), ().
In the case of Qg = R™ and Lebesgue measure this result can be found
in [2, p. 122]. It was extended to arbitrary absolutely continuous
measures g in [1]. The case of the bounded cube Qg requires a slightly
modified argument based on the following covering lemma from [18].

Lemma 2.1. Let E be a subset of Qo with u(E) < pu(Qo), 0 < p < 1.
Then there exists a sequence {Q;} of cubes contained in Qo such that

(i) 1@ 0 B) = pul@Qs);
(i) UQi = Lj U Qi, where each of the family {Q;}icr, is formed

k=1i€Fy
by pairwise disjoint cubes and a constant B,, depends only on n;
(i) E' C U;Q;, where E' is the set of u-density points of E.

Proposition 2.2. For any f € L,(Qo) we have

(2.3) S (8) < en(Myuqo f)u(t) (0 <t < pu(Qo)),
where ¢, depends only on n.

Proof. Let Q = {z € Qo : M,q,f(x) > ( Qo f)n(t) ). Then for
some &y and for any 0 < &y we have p(Q2) <t < (1—0)u(Qo). Fix such
a 0 and apply Lemma 2.1 to the set €2 and number p=1—40. We get
a sequence {Q;} satisfying properties (i)-(iii) of the lemma. It follows
easily from (i) that p(Q; N Q°) > 0, and hence, |flq, , < (Mg, f); (1)
From this and from properties (1)-(iil) we obtain

B *
[ [ i1 < S5 @l £ 200

k=1 ’LEFk
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Letting 6 — 0 yields [, [f|du < But(M,.,q,f);(t). Therefore, for any
measurable set E C @y with u(F) =t,
[l [ Aldn [ Iflde < u(E\D) + B0, D0
E E\Q Q
< (B4 DH(Myuqof),():

Taking the supremum over all £ C @)y with p(E) =t and using (2.1)
completes the proof. O

Given a measurable f, define the local maximal function my ,, f (cf.
[24]) by

mauf (@)= sup (fxe), (@) (0<A<1).

Proposition 2.3. Suppose that p satisfies the BF-condition. Then for
any measurable f,

(24) (a0 < F(HeN) (0 <1< a(Qo).
Proof. 1t follows from the definitions that

{z € Qo:mauf(z) > a} ={z € Qo: MugyX{if>ay(x) > A}.
Therefore,

il € Qo mauf() > a} < gu(Npfo € Qo : [£(@)] > a,
which is equivalent to (2.4). O

Lemma 2.4. ([20, Lemma 4].) Let h be a non-negative and non-
increasing function on the interval [0, al, and assume that

%/Osh(f)df < Dh(s) (0<s<a/r)

for some D,;r > 1. Then if 1 <p< D/(D —1),

/Oa WP (r)dr < c</0 h(T)dT)p,

where ¢ depends on r,p and D.

Actually, this lemma was proved in [20] with r = 20 but exactly the
same argument works for any r > 1.
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2.2. Proof of Theorem 1.2. Choose some constants o, A € (0,1)
such that (1 — a)A > /2. Take an arbitrary 6 € (0,1 — X). Given a

cube @ C Qq, set Eg ={zx € Q: f(x) > fo,}, and let
Q={Q C Qo:pulEq) = an(Q)}.
Observe that if Q C Q, then fg,, < (fx@);(au(Q)). Therefore,

(2.5) M,.q,f(z) < max (mayuf(x), sup fQ,u>-
Q32,079

Assume that Q ¢ Q. Set ES = Q \ Eqg,
AQ) = {w € B« fou — [ (@) > ((fau — Nxeg), (Mn(EG)) }
and
A3(@Q) = {z € By f(@) > (fxms) (1= A = 8)u(E5))}.

Then 11(A1(Q) U Ax(Q)) < (1 — d)u(Eg) and u(E5) > (1 - a)u(Q).
Therefore we obtain

fQ,u < inf } ((fQ,u - f(y)) + f(y>)

T yeEH\{A1(Q)UA2(Q)
< ((fQ,u - f)XEgg)Z()\M(Eé)) + (fXEg,):((l — A= 5)M<EE)))

p@) 12 \ .
< u(ES) ﬁﬂ(@) /Eé(fQ,u — f)du+ (fXEé)#((l — A= 5)M(EQ))

0.(F;Q) + (Fx@) (1 = A =0)(1 = )u(Q))-

1
< -
201 —a)
This along with the maximal Gurov-Reshetnyak condition (1.4) yields

€
Sup f s S —]\47 f €T _I_m , f T ,
Q37,Q7Q on 201 — @) waof (@) SAC)

where v = (1 — A — §)(1 — «). From this and from (2.5) we obtain
MHyQOf(:E) S Cma’,uf($)v

20-9)_ and o = min(a, 7). Taking the rearrangements of

2A(1—a)—¢
both parts and using Propositions 2.2 and 2.3, we have

fur @) < efu(t/pu(a)) (0 <t < p(Qo)).

This implies easily

Fir () < epu(@) f(8) (0 <t < p(Qo)/eula’)),
which along with (2.2) and Lemma 2.4 completes the proof.

where ¢ =
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3. ON THE BF-CONDITION

First of all, we observe that we do not know whether for some ab-
solutely continuous p the function ¢, can take both finite and infinite
values. The following proposition represents only a partial answer to
this question.

Proposition 3.1. There exists a constant v < 1 depending only on n
such that if p,(v) < 00, then ¢, () < oo for all 0 < XA < 1.

Proof. Given a set E C Qo and 0 < A\ < 1, let E\, = {z € Qo :
M, ooxe(z) > A}. By Proposition 2.2, for any £ C @ C Qo,
min(1, u(E)/t) < en(Mpoxe),.(t)

or, equivalently,

@ <p{re@:M,oxe(x) > A} < pu(@QNE)).

Hence,
MMQDXE(‘%) < Cn)‘MMQOXEA (3:') (:B € QO)a

which yields
(3'1) ,u{x € Qo: MMQOXE > Cng)‘} < M{x €Qo: MH:QOXE)\ > 5}

Therefore,

@M(Cn)‘g) S @M(A)wu(g) (>\,€ E (07 1) : Af < 1/Cn)‘
This clearly implies the desired result if 0 < A < 1/¢,. The case
1/¢, < A < 1 follows from the monotonicity of ¢, (X). O

Remark 3.2. The last proposition means that Theorem 1.2 still holds
if one relaxes the BF-condition to

p{r € Qo Mygoxe >} < cu(E) YE C Qo

with some 0 < v < 1. Note that a similar condition with v = 1/2 for
the directional maximal operator appeared in [6] (see also [12, p. 372]),
where it was called a Tauberian condition.

Remark 3.3. Inequality (3.1) is a full analogue of the Lemma from [13],
which was proved there in a different context.

We give now an example of the absolutely continuous measure p on
the unit cube (0, 1)? which does not satisfy the BF-condition.
Let 6, L > 0 and

dp = (6x(-r.02(2,y) + X(0,02(z, y) ) dady.
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Given a point (x,y) € (0,L)?, let Q be a minimal cube contained in
(—2L,2L)* and containing (z,y) and the cube (—L,0)?. Then u(Q) =
zy + 0L?. Hence, setting F = (—L,0)?, we get

pQNE) oL?
. _ 2 > = .
(3.2) M, (—op2ny2XE(T,Y) > Q) Ty + 012

Denote ¢, = % — 1. Assuming dc, < 1, we get, by (3.2),

M, (—op2n2XE(T,Y) > A} S p{(z,y) € (0, L)% : xy < 6Ly}
W(E) = E

L dx 1
(33) > C)\\/(s — = C) log E

e\ L

Choose now a sequence of cubes {Q;} such that the cubes 2@Q); are
pairwise disjoint and U2,2Q; C (0,1)2. We divide each cube @Q; into
four equal quadrants, and let @) and @ be the first and the third
quadrants respectively. Let {0;} be a sequence of positive numbers
such that §; — 0 as i — oco. Set

o0

dp = (6ixqr(2,y) + xq (2, y)) drdy.

=1

Given a A € (0,1), there is an N such that d;cy < 1 for all i > N.
Hence, by (3.3),

p{ M 0,02 X > A} 1
7 > c) log
w(@Qy) x0;
This shows that p does not satisfy the BF-condition, since the right-
hand side of (3.4) tends to oo as i — oc.

(3.4) (i > N).

In conclusion we give one more proposition concerning the function
¢, which is probably of some independent interest. We recall that the
operator M, is said to be of restricted weak type (p,p) if there exists
¢ > 0 such that

(3.5) 0.(N) <A (0<A<1).

By the well-known interpolation theorem of E.M. Stein and G. Weiss
2, p. 233], (3.5) implies the strong type (q,q) of M, for ¢ > p. The
following proposition shows first that a slightly better estimate than
(3.5) allows us to get the strong type (p,p), and, second, it yields a
very simple proof of the Stein-Weiss theorem for M,,.
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Proposition 3.4. If fol @ (M) < oo, then M, is bounded on L

and

1Ml < ([ @ a0l (1< 0 < o)

Proof. By (2.2),

and

1 1 .
;@55/2|fwu::]§<foxxAu«9»dA,
thus,

Muf(x)g/o my . f(x)dA.

Applying Minkowski’s inequality along with Proposition 2.3 yields

1 1
190,815 = [ maflzgan < ([ eu)ean) 151
0 0

as required. O
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