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Abstract. The study of one-dimensional rare maximal functions was started in [5, 4]. The main
result in [5] was obtained with the help of some general procedure. The goal of the present article is
to adapt the procedure (we will call it “dyadic crystallization”) to the multidimensional setting and
to demonstrate that rare maximal functions have properties not better than the Strong Maximal
Function.

The well-known Jessen–Marcinkiewicz–Zygmund theorem [6] states that the differentiation basis
of all n-dimensional intervals differentiates a.e. the integrals of all functions from L(log+ L)n−1.
The importance of this theorem is discussed, for example, in [7, 3]. Miguel de Guzmán [2, 3]
found the quantitative version of the theorem by proving the following weak type estimate for the
corresponding maximal function Mf (the so called “Strong Maximal Function”)

|{x : Mf(x) > λ}| .
∫
|f(x)|

λ

(
1 + log+ |f(x)|

λ

)n−1

dx (1)

where . denotes inequality with a constant depending only on dimension.
This is the best possible estimate as can be easily seen from the following example which is a

multidimensional dyadic version of the well-known Bohr’s construction (see Note 1 in [1]). Let Q
be the unit cube, m be an arbitrary positive integer, α ≡ (i1, . . . , in) be such that i1 + · · ·+ in = m
and

Iα ≡ [0, 2i1 ]× · · · × [0, 2in ].

Then it is clear that |Iα| = 2m, Q ⊂ Iα and |Q ∩ Iα| = 2−m|Iα|. Hence

Xm ≡
⋃

i1+···+in=m

Iα ⊂
{
x : MχQ(x) ≥ 2−m

}
.

All the Iα are pairwise incomparable n-dimensional intervals, hence∣∣{x : MχQ(x) ≥ 2−m
}∣∣ ≥ |Xm| &

∑
i1+···+in=m

|Iα| = 2m
∑

i1+···+in=m

1.

Since {(i1, . . . , in) : i1 + · · ·+ in = m} = {(i1, . . . , in−1, m− (i1 + · · ·+ in−1)) : i1 + · · ·+ in−1 ≤ m},
we have #{(i1, . . . , in) : i1 + · · ·+ in = m} = #{(i1, . . . , in−1) : i1 + · · ·+ in−1 ≤ m}.
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On the other hand, {i1 ≤ m/(n−1), . . . , in−1 ≤ m/(n−1)} ⊂ {i1 + · · ·+ in−1 ≤ m}. Altogether,
this gives ∑

i1+···+in=m

1 ≥
∑

i1≤ m
n−1

,...,in−1≤ m
n−1

1 & mn−1. (2)

Thus ∣∣{x : MχQ(x) ≥ 2−m
}∣∣ & mn−12m|Q| &

∫
χQ

2−m

(
1 + log+ χQ

2−m

)n−1

dx (3)

and (1) cannot be improved.
Now, if one tries to repeat the same procedure for the basis whose side lengths are not just all

dyadic, but more sparse, e.g. like 2−n2
, then the above procedure does not work because the desired

inequality ∑
i21+···+i2n−1≤m

1 & mn−1

is false. In fact, ∑
i21+···+i2n−1≤m

1 ∼ m(n−1)/2.

To circumvent this difficulty, we will use a procedure we call dyadic crystallization. We hope
that it will be a good complement to the basic harmonic analysis procedures like linearization,
dualization, etc. The reader can observe the result of application of the procedure by comparing
Figures 1 and 2 below and get a justification of its name.

The one-dimensional crystallization runs as follows. Given a number m and a sequence of integers
k0 < · · · < kj < . . . (or equivalently, a sequence of intervals of lengths 2k0 , . . . , 2kj , . . . ) let

Yj ≡
{
x ∈ [0, 2km ] : rki

(x) = 1 for all i = j, . . . ,m
}

where ri(x) = sign sin(π2−ix) are the standard Rademacher functions extended to the whole real
line. The sets Yj consist of disjoint dyadic intervals of length 2kj and have the following easily
verified properties:

Yj ⊂ Yj+1, |Yj+1| = 2|Yj|.
Now, in general assume that we are given a number m ≥ 1 and a sparse family of n-dimensional

intervals whose projections on the s-th axis have lengths 2k0(s), . . . , 2kj(s), . . . .
Then one can form dyadic crystals Y s

j in each variable with the properties

Y s
j ⊂ Y s

j+1, |Y s
j+1| = 2|Y s

j |
for s = 1, . . . , n. We have

Y s
0 ⊂ Y s

j , |Y s
j | = 2j|Y s

0 |. (4)

For each fixed α = (i1, . . . , in) such that i1 + · · ·+ in = m we define

Yα ≡ Y 1
i1
× · · · × Y n

in .

Since each Y s
is is a union of disjoint dyadic intervals of length 2kis (s), it is clear that each Yα is

a union of disjoint congruent n-dimensional dyadic intervals I whose side lengths are of the type
2ki1

(1), . . . , 2kin (n).
Now, we construct a crystal

Xm ≡
⋃

i1+···+in=m

Yα.
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We call Xm a crystal because it has a self-similar structure. Applying the crystallization to the set
of rectangles in Figure 1 we will get the crystal in Figure 2. In other words, the set in Figure 2
“sprouts” from the set in Figure 1 using the crystallization procedure.

Figure 1

Figure 2

The figures present the two-dimensional case with m = 2. There are 4 “high” congruent rectan-
gles I which form a set Y(0,2), 4 “middle” rectangles which form a set Y(1,1), and 2 “low” rectangles
which form a set Y(2,0).

Let Q = Y 1
0 × · · · × Y n

0 (in the figure these are the black rectangles). It is clear that Q ⊂ Yα and
the crucial property is the following:

|I ∩Q|
|I|

=
|Yα ∩Q|
|Yα|

(5)

where I are congruent n-dimensional intervals forming Yα.
Since Q ⊂ Yα, (4) yields

|Yα ∩Q|
|Yα|

=
|Q|
|Yα|

=
|Y 1

0 |
|Y 1

i1
|
. . .

|Y n
0 |

|Y n
in
|

= 2−i1 . . . 2−in = 2−m. (6)

This together with (5) implies that Xm ⊂ {x : MχQ(x) ≥ 2−m}, and by (6) and (2),

|{x : MχQ(x) ≥ 2−m}| ≥ |Xm| &
∑

i1+···+in=m

|Yα| = 2m|Q|
∑

i1+···+in=m

1 & mn−12m|Q|. (7)

Hence, (7) implies (3).
The above considerations prove the following theorem.
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Theorem. Let Rs, s = 1, . . . , n, be arbitrary infinite sets of integers. Let Mf be a maximal
function with respect to n-dimensional intervals whose s-th side length can be any number 2k with
k ∈ Rs, regardless of what the other side lengths are.

Then for any 0 < λ < 1 there is a measurable bounded set Q such that

|{x : MχQ(x) ≥ λ}| &
∫

χQ

λ

(
1 + log+ χQ

λ

)n−1

This theorem demonstrates that the rarefaction of the side length of the intervals does not improve
the properties of the corresponding maximal function.

Indeed, if

|{x : Mf(x) > λ}| .
∫

ϕ

(
|f(x)|

λ

)
dx

then ∣∣{x : MχQ(x) ≥ 2−m
}∣∣ . ϕ(2m)|Q|.

Comparing this with (7) yields ϕ(2m) & mn−12m.
This gives us a better understanding of the behavior of translation invariant subbases of the basis

of all multidimensional intervals. The general situation is still very unclear and only a few partial
results are known so far.
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