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1. Introduction

In this paper we define directional ergodicity and directional weak
mixing for finite measure preserving Zd and Rd actions and we study
the structure of the set of directions for which an ergodic or weak mix-
ing action fails to be directionally ergodic or weak mixing. Given a
dynamical system defined by the action of a group G, it is natural to
study the sub-dynamics of the action. In particular, one can ask what
dynamical properties of the action of G are inherited by the group ac-
tions one obtains by restricting the original action to sub-groups of G.
In the 1980’s Milnor introduced the more general idea of directional
dynamics for Zd actions [6]. He defined the directional entropy of a Zd
action in all directions, including irrational ones. The study of direc-
tional entropy has been a productive line of research (see for example[7],
[8], [10], [13]). In addition, the idea of defining directional dynamical
properties more generally has led to other advances in dynamics, most
notably expansive sub-dynamics introduced in [2].

There has been recent interest in directional recurrence properties
of discrete group actions. In [5] Johnson and one of the authors inves-
tigated directional recurrence properties of infinite measure preserv-
ing actions of Zd. Their work has been generalized by Danilenko [3]
who also investigated directional rigidity properties of infinite measure
preserving actions of Zd and of the Heisenberg group. There the au-
thor establishes a framework for studying these questions for actions
of groups Γ that are lattices in simply connected nilpotent Lie groups.

In this paper we investigate the directional ergodicity and weak mix-
ing properties of Zd actions. There are multiple examples in the litera-
ture to suggest that mixing properties (spectral properties more gener-
ally) of a Zd action are not necessarily inherited even by its sub-actions.
We note in particular an example of Bergelson and Ward [1] from the
late ’90’s (which we discuss in detail below) of a weak mixing Z2 action
with no ergodic sub-actions, the example of Ferenczi and Kaminski that
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is weak mixing and rigid, but all of whose one-dimensional sub-actions
are infinite entropy Bernoulli actions [4], and Rudolph’s example [11]
of a rank one Z2 action with a Bernoulli one-dimensional sub-action.
Other related work in this area for Zd actions includes Ward’s work
on mixing of all orders in oriented cones [14] for algebraic actions of
Zd, as well as Ryzhikov’s result [12] that the generic Zd action can be
embedded only in an Rd action all of whose sub-actions are weak mix-
ing. Directional ergodicity was investigated for continuous groups as
well. Pugh and Shub [9] gave a spectral characterization of the failure
of directional ergodicity along an e-dimensional direction of an ergodic
Rd action, e < d. Our work here is most closely related to the work of
Pugh and Shub and of Ryzhikov.

Let (X,µ) denote a non-atomic Lebesgue probability space and let
{T g}g∈G denote a measurable and measure preserving action of G = Zd
or Rd on X. We abbreviate the triple (X,µ,{T g}{g∈G}) by T in case G =

Zd and T if G = Rd. Given 1 ≤ e ≤ d, let Ge,d denote the Grassmanian
manifold of e-dimensional planes in Rd, and set Gd = ⋃eGe,d. We define
an e-dimensional direction in Rd or Zd to be an element L ∈ Ge,d. We
note that if e = 1 and d = 2 then a direction is specified by an angle
θ ∈ [0, π).

In the existing work on directional dynamics there have been two
approaches to defining directional properties for Zd actions. One can
define the directional property in a direction L ∈ Ge,d, as in Milnor’s def-
inition of directional entropy, intrinsically using rational approximants
n⃗i of L and studying the behavior of the collection {T n⃗i}. Alterna-
tively, given a direction L, one can associate to T an Re action in that
direction by considering the unit suspension flow of T , restricted to the
subgroup corresponding to the direction L. For directional entropy the
two definitions are equivalent [8]. In the infinite dimensional case the
two definitions are also equivalent for directional recurrence [5] but not
for directional rigidity and the question for recurrence in the case of
groups Γ as described above remains open [3].

Here we begin by defining directional ergodicity and weak mixing
for a Zd action via its unit suspension. We expand the work of Pugh
and Shub to include a characterization of directional weak mixing of an
Rd action in terms of its spectral measure. We then prove a structure
theorem relating the maximal spectral types of a Zd action and that
of its unit suspension. This theorem allows us to give an intrinsic
definition of directional ergodicity and weak mixing of the Zd action
in terms of its maximal spectral type, even in irrational directions. In
a separate paper we address the question of defining directional weak
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mixing and ergodicity intrinsically in the Zd action using the behavior
of the action along approximants of the direction.

We address several additional questions. We consider the structure
of the sets of directions L ⊂ Gd that can fail to be ergodic or weak
mixing for a Zd action and give examples achieving certain possible
sets of bad directions.

We also note that if a Zd action T embeds in an Rd action T , it
would be possible to define directional ergodicity and weak mixing of
T using the behavior of T along the corresponding subgroup of Rd.
We show that the unit suspension and embedding definitions always
coincide for directional weak mixing, for any Zd action. On the other
hand, we show that an ergodicity assumption on T is both necessary
and sufficient to preserve directional ergodicity between embeddings
and suspensions.

Ryzhikov’s work in [12], placed in the context we provide in this
paper, shows that a generic Zd action is weak mixing in all directions.
Here we give a Fourier analytic proof, using the spectral characteriza-
tions that we provide for directional weak mixing. Using similar tech-
niques we also provide an example of a rigid, weak mixing Zd action
that is weak mixing in every direction.

We now provide more formal statements of our results.

1.1. Defining directional properties. A direction L ∈ Ge,d corre-
sponds to a subgroup of Rd. Given an Rd action T , ergodicity and weak
mixing in the direction L then have an intrinsic meaning in terms of
the subgroup action TL = (X,µ,{T v⃗}v⃗∈L).

Definition 1.1. We say an Rd action T is ergodic (or weak mixing)
in the direction L ∈ Ge,d, if the restriction of T to the subgroup corre-
sponding to L, TL is ergodic (weak mixing).

As mentioned in the previous section, we wish to define ergodicity
or weak mixing of a Zd action T in a direction L ∈ Ge,d in terms of the
behavior of its unit suspension along the corresponding subgroup of Rd.
We establish some notation necessary to define a unit suspension flow.
Let λ denote Lebesgue measure on [0,1)d, for w⃗ ∈ Rd let ⌊w⃗⌋ denote
the vector in Zd obtained by taking the floor of each component of w⃗,
and let {w⃗} = w⃗− ⌊w⃗⌋. The unit suspension of T is the µ×λ-preserving
Rd action T̃ = (X × [0,1)d, µ × λ,{T̃ v⃗}v⃗∈Rd) defined by

T̃ v⃗(x, r⃗) = (T (⌊v⃗+r⃗⌋)x,{v⃗ + r⃗}).

Before we use the directional behavior of T̃ to define directional
properties of T we note that there are some obvious obstructions to
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directional ergodicity and weak mixing for a unit suspension Rd action
introduced by functions that depend only on the torus and hence not
relevant to the dynamics of T . In order to eliminate these obstructions
we make some further definitions.

We let Ĝ denote the dual of the group G and we recall the following
classical definition of the point spectrum of a G action T :

Spec(T ) = {γ ∈ Ĝ ∶ ∃ f ∈ L2(X,µ) with f(T gx) = γ(g) ⋅ f(x) ∀g ∈ G}.

An element γ ∈ Spec(T ) is called an eigenvector of T and a function f
defined as above is called an eigenfunction for T . If G = Zd, then for
γ ∈ Ĝ, γ ∶ Zd → C, is given by γ(n⃗) = e2πiα⃗⋅n⃗, for some α⃗ ∈ Rd. But if
α⃗′ = α⃗+n⃗ for n⃗ ∈ Zd, then the corresponding γ′ = γ, so an element α⃗ ∈ Td
determines γ uniquely, and we identify Ĝ = Td. Similarly, when G = Rd

then γ ∈ Ĝ, γ ∶ Zd → C, is given by γ(v⃗) = e2πiv⃗⋅ω⃗, for some ω⃗ ∈ Rd,

where now since ω⃗ completely determines γ, we identify Ĝ = Rd.
Define the set G ⊂ L2(X × [0,1)d, µ×λ) given by functions f(x, r⃗) =

G(r⃗) for some G ∈ L2([0,1)d, λ). Let H = G⊥ so that L2(X × [0,1)d, µ×
λ) = G ⊕H. We say ω⃗ ∈ SpecH(T ) if ω⃗ is an eigenvalue for T with an
eigenfunction f ∈ H. Note that the constant functions belong to G and
so are orthogonal to any f ∈ H. We are now ready to define directional
weak mixing and ergodicity for Zd actions.

Definition 1.2. Let T be a measurable and measure preserving action
of Zd on a Lebesgue space (X,µ) with unit suspension T̃ . Let L ∈ Ge,d

for 1 ≤ e ≤ d.

(1) T is ergodic in the direction L if 0⃗ /∈ SpecH(T̃L).
(2) T is weakly mixing in the direction L or has continuous spectrum

in the direction L if SpecH(T̃L) = ∅.

Finally, we establish notation for the ergodic and weak mixing direc-
tions of a Zd action.

Definition 1.3. Let T be a measurable and measure preserving Zd
action (or T an Rd action).

(1) Let EeT (or EeT ) be the set of L ∈ Ge,d so that T (or T ) is ergodic
in the direction L.

(2) Let We
T (or We

T ) be the set of L ∈ Ge,d so that T (or T ) is weak
mixing in the direction L.

We define the set of rational e-dimensional directions, denoted by
GQ
e,d, to be those L ∈ Ge,d for which there is a choice of basis over

Rd consisting of vectors in Qd. In this case there is a corresponding
subgroup of Zd and we show that Definition 1.2 is equivalent to the
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usual notions of T restricted to the subgroup L of Zd, TL, being a weak
mixing or ergodic action.

Theorem 1.4. Let T be a Zd action on (X,µ) and let T̃ be its unit
suspension. Let L ∈ GQ

e,d be a rational direction. Then T̃L is ergodic (or

weak mixing) if and only if TL is ergodic (or weak mixing).

1.2. Characterizing directional ergodicity and weak mixing spec-
trally for Rd actions. For any Rd action T , it is clear that if T is not
ergodic, then EeT = ∅, for all dimensions e. Similarly, if it is not weak
mixing thenWe

T = ∅, for all 1 ≤ e ≤ d. For suppose, if f is an eigenfunc-
tion for T with eigenvalue α⃗. Then for all v⃗ ∈ Rd the function f is an
eigenfunction for the R action {T tv⃗}t∈R with eigenvalue α⃗ ⋅ v⃗. Therefore,
we see that if T is not weak mixing, then directions in Spec(T )⊥ are
not contained in EeT .

This is a special case of a more general phenomenon and related to
the following result in [9].

Proposition 1.5. Let T0 be an ergodic, measure preserving Rd action.
and let σ0 on Rd be a measure of maximal type for T without the atom
at 0 and L ∈ Ge,d. If TL is not ergodic then σ0(L⊥) > 0.

Now assume T is weak mixing as an Rd action. We show that in this
case if T is not weak mixing in a direction L ∈ Ge,d, then the spectral
measure of T must give positive measure to an e dimensional plane in
Rd, and that in fact the flow must fail to be ergodic in that direction.
The main result is the following.

Theorem 1.6. Let T be a measure preserving, weak mixing Rd action.
There is L ∈ Ge,d so that L ∉We

T , with e < d if and only if there exists
ω⃗ ∈ Rd so that σ̃(L⊥+ ω⃗) > 0, where σ̃ denotes the maximal spectral type
of T . Furthermore We

T = EeT for all 1 ≤ e ≤ d.

1.3. The maximal spectral type of T and of its unit suspension.
The results outlined in the previous section indicate that the absence of
directional ergodicity or weak mixing for a Zd action T can be detected
from the structure of the spectrum of its unit suspension T̃ , restricted
to H. Here we show that the two spectral types are related, and thus
we can define directional ergodicity and weak mixing intrinsically using
the maximal spectral type of T as well.

Recall that the maximal spectral type of T , denoted by σ, is a
(nonzero) finite measure on Td. We denote by σ̃ any measure on Rn

that is finite and equivalent to σ∗δZd , obtained by summing the trans-
lations of σ (viewed as a measure on Td) to each square ∏

d
j=1[nj, nj +1)

for n⃗ = (n1, n2, . . . , nd)t ∈ Zd. Such a measure is given by ρ ⋅ (σ ∗ δZd)
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where ρ(s⃗) > 0 is chosen so that ∫Rd ρd(σ∗δZd) <∞. In particular, this
insures that σ̃ is a finite measure on Rd.

We prove the following structure theorem for the maximal spectral
type of T̃ , the unit suspension of T .

Theorem 1.7. Let T be a Zd action and let T̃ be its unit suspension. If
σ is the maximal spectral type of T then σ̃ is the maximal spectral type
of T̃ . Moreover, if σ0 is σ without its atom at 0⃗, then σ̃0 is the maximal
spectral type of UT̃ ∣H, where UT̃ is the Koopman operator associated to

T̃ .

The proof is an application of the following result, which is of inde-
pendent interest.

Theorem 1.8. Let f ∈ L2(X,p) be a function of maximal spectral type
for T and let σf be the corresponding measure of maximal spectral type.
Let g ∈ L2(Td, λd) be such that for all s⃗, n⃗ ∈ Zd,

ĝ(n⃗) = ∫
Td
g(s⃗)e2πis⃗⋅n⃗dλn /= 0,

i.e. g(s⃗) = ∑n⃗∈Zd ĝ(n⃗)e2πir⋅n⃗ in L2(Td, λn), where ∑n⃗∈Zd ∣ĝ(n⃗)∣2 < ∞

and ĝ(n⃗) /= 0. Then the function F (x, s⃗) = f(x)g(s⃗) is a function of
maximal spectral type for T̃ , and the corresponding measure of maximal
spectral type satisfies

(1) σF = (∑
n⃗∈Zd

ĝ(n⃗)(sinc2d ○R−n⃗)(⋅)) σ̃f .

Combining Theorems 1.6 and 1.8 we have the following.

Theorem 1.9. Let T be a measure preserving, weak mixing Zd action.
There is L ∈ Ge,d so that L ∉We

T , with e < d if and only if there exists
ω⃗ ∈ Td so that σ(L⊥+ ω⃗) > 0, where σ denotes the maximal spectral type
of T . Furthermore We

T = EeT for all 1 ≤ e ≤ d.

1.4. The structure of EeT and We
T .

Theorem 1.9 now allows us to use L2 arguments to deduce some
limitations on the structure of EeT and We

T . Let Gd = ∪de=1Ge,d. We
make the following definition.

Definition 1.10. Let L ∈ Ge,d. The set G(L) ⊂ Gd is defined to be
those directions that are contained within L. In other words,

G(L) = {L′ ∈ Gi,d ∶ i ≤ e and L′ ⊂ L}.

Two directions L,L′ ∈ Gd are said to be independent if L⋂L′ = 0⃗.
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In [9], Theorem 1, the authors use their spectral characterization
of non-ergodic directions to show that an ergodic Rd action can have
at most countably many independent directions that are non-ergodic.
Combining their techniques with Theorem 1.6 and Theorem 1.7 we
have the following result.

Theorem 1.11. Let T be a measurable and measure preserving Zd
action on a Lebesgue probability space (X,µ). If T is not ergodic, then
ET = ∅. If T is ergodic, then there is a set of at most countably many
independent directions {Li} so that ET = Gd∖⋃

∞
i=1G(Li). If T is ergodic

but not weak mixing, then WT = ∅. If T is weak mixing, then there is
a set of at most countably many independent directions {Li} so that
WT = ET = Gd ∖⋃

∞
i=1G(Li).

We note that these structure results for ET and WT are in strong
contrast with directional recurrence and rigidity in the infinite mea-
sure preserving case. In particular, for T a σ-finite infinite measure
preserving and ergodic Zd action, the set of reccurent directions for
T , denoted by RT , has to be a Gδ but there exist examples for which
RT = ∅ [5]. Similarly the set of rigid directions of an infinite measure
preserving Zd action is a Gδ [3].

1.5. Constructing examples: realizing different types of WT

and ET . Let T denote the weak mixing Zd action constructed by
Bergelson and Ward with the property that E1T ⊂ Gd∖Zd. Theorem 1.11
shows that, from the point of view of cardinality, E1T cannot miss too
many more directions. We show, in fact, that for this action T there
are no other directions of non-ergodicity.

Proposition 1.12. Let T denote the Bergelson-Ward weak mixing Zd
action. Then

Ed−1T =Wd−1
T = Gd−1,d ∖GQ

d−1,d.

We realize other types of sets ET andWT using the Gaussian measure
space construction (GMC). In what follows we say T is a Gaussian Zd
action if it is given by a GMC.

Theorem 1.13. Given any countable collection {Li} of directions in
Gd−1,d, there is a measurable, measure preserving, and weak mixing
Gaussian Zd action T with the property that

Wd−1
T = Ed−1T = Gd−1,d ∖ {Li}.

Furthermore, for e < d − 1, L ∉We
T = EeT if and only if L ⊂ Li for some

i.
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Once we choose a direction of non-ergodicity, due to the nature of
the measure of maximal spectral type of a GMC, we are constrained
as to how much freedom remains. We introduce some terminology for
ease of exposition.

Definition 1.14. Let e < d, L ∈ Ge,d, and a⃗ ∈ Rd. A measure µ on Rd

is an e-dimensional wall along L + a⃗ if it is the push forward to L + a⃗
of a Borel measure µe on Re that has no walls of dimension e′ < e.

An e dimensional wall on Rd is then a measure that is supported
along a genuinely e-dimensional subspace of Rd. In other words, lower
dimensional subsets of L + a⃗ have zero measure under a wall on L + a⃗.
We will use such measures to construct our Gaussian example. The
next proposition shows that if d − 1 > e1 > e2, then the convolution of
e1 and e2 dimensional walls will be a wall of dimension greater than e1,
introducing some additional directional non-ergodicity for the Gaussian
action.

Proposition 1.15. Let µ and ν be measures on Rd that are e1 and
e2-dimensional walls along L1+ a⃗1 and L2+ a⃗2 respectively, with e1 ≥ e2.
Let

k = e2 − dim (L1 ∩L2) .

Then L1 + L2 ∈ Ge1+k,d and µ ∗ ν is an e1 + k dimensional wall on
L1 +L2 + a⃗1 + a⃗2.

The next result shows that we can construct a Gaussian Zd action
that corresponds to any directional behavior that is possible under this
constraint.

Theorem 1.16. Given L ∈ Ge,d with e < d, there is a measurable,
measure preserving, and weak mixing Zd action T with the property
that

(1) We
T = EeT = Ge,d ∖L,

(2) We′

T = Ee
′

T = Ge′,d for all d > e′ > e, and
(3) for e′ < e and L ∈ Ge′,d, we have L′ ∉ We′

T = Ee
′

T if and only if
L′ ⊂ L.

1.6. Other ways to define directional properties: embeddings.
Given a Zd action T we say that an Rd action T , acting on the same
space as T , is an embedding of T if T n⃗ = T n⃗ for all n⃗ ∈ Zd. If T has an
embedding T , then we could also define the directional ergodicity and
weak mixing of T in a direction L by the corresponding property of T
restricted to the subgroup L. A natural question to ask is if there is
any relationship between the directional behavior of an embedding T
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and the unit suspension T̃ . We first note that T̃ is in fact a cover of
all embeddings of T .

Proposition 1.17. Let T be a Zd action and T̃ its unit suspension. If
the Rd action T is an embedding of T , then T is a factor of T̃ .

The following result now follows immediately.

Proposition 1.18. Let T be a Zd action and T an embedding of T .
For all L ∈ Ge,d, if T is directionally ergodic (directionally weak mixing)
in the direction L then TL is ergodic (weak mixing).

In this section we show by example that ergodicity of the Zd action is
a necessary condition for the converse statement to hold for directional
ergodicity, while the converse result for directional weak mixing holds
with no mixing assumptions on the Zd action itself.

Theorem 1.19. Let T be a Zd action and the Rd action T be an
embedding of T . Then T is directionally weak mixing in a direction
L ∈ Ge,d if and only if TL is weak mixing. If, in addition T is ergodic
as a Zd action, then T is directionally ergodic in a direction L if and
only if TL is ergodic.

1.7. Genericity results.

Proposition 1.20. There is rigid, weakly mixing action of Z2, as
measure-preserving transformations of a probability space, which is also
weakly mixing in all directions.

Proposition 1.21. The generic measure preserving action of Zd on
a Lebesgue probability space is weak mixing, and weak mixing in all
directions.

We note that Proposition 1.21 follows from Ryzhikov’s work in [12].
Here we provide an alternative approach to proving genericity results
using the GMC construction and Fourier techniques.
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