
The .NET Remoting Layer

Developers who are new to the .NET platform often assume that .NET is all about building Internet-
centric applications (given that the term “.NET” often conjures the notion of “interNET” software).
As you have already seen, however, this is simply not the case. In fact, the construction of web-centric
programs is simply one tiny (but quite well-touted) aspect of the .NET platform. In this same vein of
misinformation, many new .NET developers tend to assume that XML web services are the only way
to interact with remote objects. Again, this is not true. Using the .NET remoting layer, you are able
to build peer-to-peer distributed applications that have nothing to do with HTTP or XML (if you so
choose).

The first goal of this chapter is to examine the low-level grunge used by the CLR to move infor-
mation between application boundaries. Along the way, you will come to understand the numerous
terms used when discussing .NET remoting, such as proxies, channels, marshaling by reference (as
opposed to by value), server-activated (versus client-activated) objects, and so forth. After these
background elements are covered, the remainder of the chapter offers numerous code examples
that illustrate the process of building distributed systems using the .NET platform.

Defining .NET Remoting
As you recall from your reading in Chapter 13, an application domain (AppDomain) is a logical
boundary for a .NET assembly, which is itself housed within a Win32 process. Understanding this
concept is critical when discussing distributed computing under .NET, given that remoting is noth-
ing more than the act of two objects communicating across application domains. The two application
domains in question could be physically configured in any of the following manners:

• Two application domains in the same process (and thus on the same machine)

• Two application domains in separate processes on the same machine

• Two application domains in separate processes on different machines

Given these three possibilities, you can see that remoting does not necessarily need to involve
two networked computers. In fact, each of the examples presented in this chapter can be success-
fully run on a single, stand-alone machine. Regardless of the distance between two objects, it is
common to refer to each agent using the terms “client” and “server.” Simply put, the client is the
entity that attempts to interact with remote objects. The server is the software agent that houses the
remote objects.

565

C H A P T E R 1 8

■ ■ ■

8237CH18.qxd 12/28/06 6:52 PM Page 565

CHAPTER 18 ■ THE .NET REMOTING LAYER566

The .NET Remoting Namespaces
Before we dive too deep into the details of the .NET remoting layer, we need to check out the func-
tionality provided by the remoting-centric namespaces. The .NET base class libraries provide
numerous namespaces that allow you to build distributed applications. The bulk of the types found
within these namespaces are contained within mscorlib.dll, but the System.Runtime.Remoting.dll
assembly does complement and extend the core namespaces. Table 18-1 briefly describes the role
of the remoting-centric namespaces as of .NET 2.0.

Table 18-1. .NET Remoting-centric Namespaces

Namespace Meaning in Life

System.Runtime.Remoting This is the core namespace you must use
when building any sort of distributed .NET
application.

System.Runtime.Remoting.Activation This relatively small namespace defines
a handful of types that allow you to fine-tune
the process of activating a remote object.

System.Runtime.Remoting.Channels This namespace contains types that
represent channels and channel sinks.

System.Runtime.Remoting.Channels.Http This namespace contains types that use the
HTTP protocol to transport messages and
objects to and from remote locations.

System.Runtime.Remoting.Channels.Ipc This namespace (which is new to .NET 2.0)
contains types that leverage the Win32
interprocess communication (IPC)
architecture. As you may know, IPC proves
fast communications between AppDomains
on the same physical machine.

System.Runtime.Remoting.Channels.Tcp This namespace contains types that use the
TCP protocol to transport messages and
objects to and from remote locations.

System.Runtime.Remoting.Contexts This namespace allows you to configure the
details of an object’s context.

System.Runtime.Remoting.Lifetime This namespace contains types that manage
the lifetime of remote objects.

System.Runtime.Remoting.Messaging This namespace contains types used to create
and transmit message objects.

System.Runtime.Remoting.Metadata This namespace contains types that can be
used to customize the generation and
processing of SOAP formatting.

System.Runtime.Remoting.Metadata.W3cXsd2001 Closely related to the previous namespace,
this namespace contains types that represent
the XML Schema Definition (XSD) defined
by the World Wide Web Consortium (W3C)
in 2001.

System.Runtime.Remoting.MetadataServices This namespace contains the types used by
the soapsuds.exe command-line tool to
convert .NET metadata to and from an XML
schema for the remoting infrastructure.

8237CH18.qxd 12/28/06 6:52 PM Page 566

CHAPTER 18 ■ THE .NET REMOTING LAYER 567

Namespace Meaning in Life

System.Runtime.Remoting.Proxies This namespace contains types that provide
functionality for proxy objects.

System.Runtime.Remoting.Services This namespace defines a number of
common base classes (and interfaces) that
are typically only leveraged by other intrinsic
remoting agents.

Understanding the .NET Remoting Framework
When clients and servers exchange information across application boundaries, the CLR makes use
of several low-level primitives to ensure the entities in question are able to communicate with each
other as transparently as possible. This means that as a .NET programmer, you are not required to
provide reams and reams of grungy networking code to invoke a method on a remote object. Like-
wise, the server process is not required to manually pluck a network packet out of the queue and
reformat the message into terms the remote object can understand. As you would hope, the CLR
takes care of such details automatically using a default set of remoting primitives (although you are
certainly able to get involved with the process if you so choose).

In a nutshell, the .NET remoting layer revolves around a careful orchestration that takes place
between four key players:

• Proxies

• Messages

• Channels

• Formatters

Let’s check out each entity in turn and see how their combined functionality facilitates remote
method invocations.

Understanding Proxies and Messages
Clients and server objects do not communicate via a direct connection, but rather through the use
of an intermediary termed a proxy. The role of a .NET proxy is to fool the client into believing it is
communicating with the requested remote object in the same application domain. To facilitate this
illusion, a proxy has the identical interface (i.e., members, properties, fields, and whatnot) as the
remote type it represents. As far as the client is concerned, a given proxy is the remote object. Under
the hood, however, the proxy is forwarding calls to the remote object.

Formally speaking, the proxy invoked directly by the client is termed the transparent proxy. This
CLR autogenerated entity is in charge of ensuring that the client has provided the correct number of
(and type of) parameters to invoke the remote method. Given this, you can regard the transparent
proxy as a fixed interception layer that cannot be modified or extended programmatically.

Assuming the transparent proxy is able to verify the incoming arguments, this information is
packaged up into another CLR-generated type termed the message object. By definition, all message
objects implement the System.Runtime.Remoting.Messaging.IMessage interface:

public interface IMessage
{

IDictionary Properties { get; }
}

8237CH18.qxd 12/28/06 6:52 PM Page 567

CHAPTER 18 ■ THE .NET REMOTING LAYER568

As you can see, the IMessage interface defines a single property (named Properties) that pro-
vides access to a collection used to hold the client-supplied arguments. Once this message object
has been populated by the CLR, it is then passed into a closely related type termed the real proxy.

The real proxy is the entity that actually passes the message object into the channel (described
momentarily). Unlike the transparent proxy, the real proxy can be extended by the programmer and
is represented by a base class type named (of course) RealProxy. Again, it is worth pointing out that
the CLR will always generate a default implementation of the client-side real proxy, which will serve
your needs most (if not all) of the time. Nevertheless, to gain some insight into the functionality
provided by the abstract RealProxy base class, ponder the formal definition type:

public abstract class RealProxy : object
{

public virtual ObjRef CreateObjRef(Type requestedType);
public virtual bool Equals(object obj);
public virtual IntPtr GetCOMIUnknown(bool fIsMarshalled);
public virtual int GetHashCode();
public virtual void GetObjectData(SerializationInfo info,

StreamingContext context);
public Type GetProxiedType();
public static object GetStubData(RealProxy rp);
public virtual object GetTransparentProxy();
public Type GetType();
public IConstructionReturnMessage InitializeServerObject(

IConstructionCallMessage ctorMsg);
public virtual IMessage Invoke(IMessage msg);
public virtual void SetCOMIUnknown(IntPtr i);
public static void SetStubData(RealProxy rp, object stubData);
public virtual IntPtr SupportsInterface(ref Guid iid);
public virtual string ToString();

}

Unless you are interested in building a custom implementation of the client-side real proxy,
the only member of interest is RealProxy.Invoke(). Under the hood, the CLR-generated transparent
proxy passes the formatted message object into the RealProxy type via its Invoke() method.

Understanding Channels
Once the proxies have validated and formatted the client-supplied arguments into a message object,
this IMessage-compatible type is passed from the real proxy into a channel object. Channels are the
entities in charge of transporting a message to the remote object and, if necessary, ensuring that any
member return value is passed from the remote object back to the client. The .NET 2.0 base class
libraries provide three channel implementations out of the box:

• TCP channel

• HTTP channel

• IPC channel

The TCP channel is represented by the TcpChannel class type and is used to pass messages using
the TCP/IP network protocol. TcpChannel is helpful in that the formatted packets are quite lightweight,
given that the messages are converted into a tight binary format using a related BinaryFormatter
(yes, the same BinaryFormatter you saw in Chapter 17). Use of the TcpChannel type tends to result in
faster remote access. The downside is that TCP channels are not firewall-friendly and may require
the services of a system administrator to allow messages to pass across machine boundaries.

8237CH18.qxd 12/28/06 6:52 PM Page 568

CHAPTER 18 ■ THE .NET REMOTING LAYER 569

In contrast, the HTTP channel is represented by the HttpChannel class type, which converts
message objects into a SOAP format using a related SOAP formatter. As you have seen, SOAP is
XML-based and thus tends to result in beefier payloads than the payloads used by the TcpChannel type.
Given this, using the HttpChannel can result in slightly slower remote access. On the plus side, HTTP
is far more firewall-friendly, given that most firewalls allow textual packets to be passed over port 80.

Finally, as of .NET 2.0, we have access to the IPC channel, represented by the IpcChannel type,
which defines a communication channel for remoting using the IPC system of the Windows operat-
ing system. Because IpcChannel bypasses traditional network communication to cross
AppDomains, the IpcChannel is much faster than the HTTP and TCP channels; however, it can be
used only for communication between application domains on the same physical computer. Given
this, you could never use IpcChannel to build a distributed application that spans multiple physical
computers. IpcChannel can be an ideal option, however, when you wish to have two local programs
share information in the fastest possible manner.

Regardless of which channel type you choose to use, understand that the HttpChannel, TcpChannel,
and IpcChannel types all implement the IChannel, IChannelSender, and IChannelReceiver interfaces.
The IChannel interface (as you will see in just a bit) defines a small set of members that provide
common functionality to all channel types. The role of IChannelSender is to define a common set of
members for channels that are able to send information to a specific receiver. On the other hand,
IChannelReceiver defines a set of members that allow a channel to receive information from a given
sender.

To allow the client and server applications to register their channel of choice, you will make use
of the ChannelServices.RegisterChannel() method, which takes a type implementing IChannel. Just
to preview things to come, the following code snippet illustrates how a server-side application domain
can register an HTTP channel on port 32469 (you’ll see the client’s role shortly):

// Create and register a server-side HttpChannel on port 32469.
HttpChannel c = new HttpChannel(32469);
ChannelServices.RegisterChannel(c);

Revisiting the Role of .NET Formatters
The final piece of the .NET remoting puzzle is the role of formatter objects. The TcpChannel and
HttpChannel types both leverage an internal formatter, whose job it is to translate the message object
into protocol-specific terms. As mentioned, the TcpChannel type makes use of the BinaryFormatter
type, while the HttpChannel type uses the functionality provided by the SoapFormatter type. Given
your work in the previous chapter, you should already have some insights as to how a given channel
will format the incoming messages.

Once the formatted message has been generated, it is passed into the channel, where it will
eventually reach its destination application domain, at which time the message is formatted from
protocol-specific terms back to .NET-specific terms, at which point an entity termed the dispatcher
invokes the correct method on the remote object.

All Together Now!
If your head is spinning from reading the previous sections, fear not! The transparent proxy, real
proxy, message object, and dispatcher can typically be completely ignored, provided you are happy
with the default remoting plumbing. To help solidify the sequence of events, ponder Figure 18-1,
which illustrates the basic process of two objects communicating across distinct application domains.

8237CH18.qxd 12/28/06 6:52 PM Page 569

CHAPTER 18 ■ THE .NET REMOTING LAYER570

Figure 18-1. A high-level view of the default .NET remoting architecture

A Brief Word Regarding Extending the Default Plumbing
A key aspect of the .NET remoting layer is the fact that most of the default remoting layers can be
extended or completely replaced at the whim of the developer. Thus, if you truly want (or possibly
need) to build a custom message dispatcher, custom formatter, or custom real proxy, you are free to
do so. You are also able to inject additional levels of indirection by plugging in custom types that
stand between a given layer (e.g., a custom sink used to perform preprocessing or postprocessing of
a given message). Now, to be sure, you may never need to retrofit the core .NET remoting layer in
such ways. However, the fact remains that the .NET platform does provide the namespaces to allow
you to do so.

■Note This chapter does not address the topic of extending the default .NET remoting layer. If you wish to learn
how to do so, check out Advanced .NET Remoting by Ingo Rammer (Apress, 2002).

Terms of the .NET Remoting Trade
Like any new paradigm, .NET remoting brings a number of TLAs (three-letter acronyms) into the
mix. Thus, before you see your first code example, we do need to define a few terms used when
describing the composition of a .NET remoting application. As you would guess, this terminology is
used to describe a number of details regarding common questions that arise during the construction
of a distributed application: How do we pass a type across application domain boundaries? When
exactly is a remote type activated? How do we manage the lifetime of a remote object (and so forth)?
Once you have an understanding of the related terminology, the act of building a distributed .NET
application will be far less perplexing.

Object Marshaling Choices: MBR or MBV?
Under the .NET platform, you have two options regarding how a remote object is marshaled to the
client. Simply put, marshaling describes how a remote object is passed between application domains.
When you are designing a remotable object, you may choose to employ marshal-by-reference (MBR)
or marshal-by-value (MBV) semantics. The distinction is as follows:

8237CH18.qxd 12/28/06 6:52 PM Page 570

CHAPTER 18 ■ THE .NET REMOTING LAYER 571

• MBR objects: The caller receives a proxy to the remote object.

• MBV objects: The caller receives a full copy of the object in its own application domain.

If you configure an MBR object type, the CLR ensures that the transparent and real proxies are
created in the client’s application domain, while the MBR object itself remains in the server’s appli-
cation domain. As the client invokes methods on the remote type, the .NET remoting plumbing
(examined previously) takes over the show and will package, pass, and return information between
application domain boundaries. To be sure, MBR objects have a number of traits above and beyond
their physical location. As you will see, MBR objects have various configuration options regarding
their activation options and lifetime management.

MBV objects, on the other hand, are local copies of remote objects (which leverage the .NET
serialization protocol examined in Chapter 17). MBV objects have far fewer configuration settings,
given that their lifetime is directly controlled by the client. Like any .NET object, once a client has
released all references to an MBV type, it is a candidate for garbage collection. Given that MBV
types are local copies of remote objects, as a client invokes members on the type, no network activ-
ity occurs during the process.

Now, understand that it will be quite common for a single server to provide access to numerous
MBR and MBV types. As you may also suspect, MBR types tend to support methods that return vari-
ous MBV types, which gives way to the familiar factory pattern (e.g., an object that creates and returns
other related objects). The next question is, how do you configure your custom class types as MBR
or MBV entities?

Configuring an MBV Object
The process of configuring an object as an MBV type is identical to the process of configuring an
object for serialization. Simply annotate the type with the [Serializable] attribute:

[Serializable]
public class SportsCar
{...}

Configuring an MBR Object
MBR objects are not marked as such using a .NET attribute, but rather by deriving (directly or indi-
rectly) from the System.MarshalByRefObject base class:

public class SportsCarFactory : MarshalByRefObject
{...}

Formally, the MarshalByRefObject type is defined as follows:

public abstract class MarshalByRefObject : object
{

public virtual ObjRef CreateObjRef(Type requestedType);
public virtual bool Equals(object obj);
public virtual int GetHashCode();
public virtual object GetLifetimeService();
public Type GetType();
public virtual object InitializeLifetimeService();
public virtual string ToString();

}

Beyond the expected functionality provided by System.Object, Table 18-2 describes the role of
the remaining members.

8237CH18.qxd 12/28/06 6:52 PM Page 571

CHAPTER 18 ■ THE .NET REMOTING LAYER572

Table 18-2. Key Members of System.MarshalByRefObject

Member Meaning in Life

CreateObjRef() Creates an object that contains all the relevant information
required to generate a proxy used to communicate with
a remote object

GetLifetimeServices() Retrieves the current lifetime service object that controls the
lifetime policy for this instance

InitializeLifetimeServices() Obtains a lifetime service object to control the lifetime policy
for this instance

As you can tell, the gist of MarshalByRefObject is to define members that can be overridden to
programmatically control the lifetime of the MBR object (more on lifetime management later in this
chapter).

■Note Just because you have configured a type as an MBV or MBR entity does not mean it is only usable within
a remoting application, just that it may be used in a remoting application. For example, the System.Windows.Forms.
Form type is a descendent of MarshalByRefObject; thus, if accessed remotely it is realized as an MBR type. If
not, it is just another local object in the client’s application domain.

■Note As a corollary to the previous note, understand that if a .NET type is not serializable and does not include
MarshalByRefObject in its inheritance chain, the type in question can only be activated and used in the originat-
ing application domain (meaning, the type is context bound; see Chapter 13 for more details).

Now that you understand the distinct traits of MBR and MBV types, let’s check out some issues
that are specific to MBR types (MBV types need not apply).

Activation Choices for MBR Types: WKO or CAO?
Another remoting-centric choice you face as a .NET programmer has to do with exactly when an
MBR object is activated and when it should be a candidate for garbage collection on the server. This
might seem like a strange choice to make, as you might naturally assume that MBR objects are cre-
ated when the client requests them and die when the client is done with them. While it is true that
the client is the entity in charge of instructing the remoting layer it wishes to communicate with
a remote type, the server application domain may (or may not) create the type at the exact moment
the client’s code base requests it.

The reason for this seemingly strange behavior has to do with the optimization. Specifically,
every MBR type may be configured to be activated using one of two techniques:

• As a well-known object (WKO)

• As a client-activated object (CAO)

■Note A potential point of confusion is that fact that the acronym WKO is also called a server-activated object
(SAO) in the .NET literature. In fact, you may see the SAO acronym in various .NET-centric articles and books. In
keeping with the current terminology, I will use WKO throughout this chapter.

8237CH18.qxd 12/28/06 6:52 PM Page 572

CHAPTER 18 ■ THE .NET REMOTING LAYER 573

WKO objects are MBR types whose lifetimes are directly controlled by the server’s application
domain. The client-side application activates the remote type using a friendly, well-known string
name (hence the term WKO). The server’s application domain allocates WKO types when the client
makes the first method call on the object (via the transparent proxy), not when the client’s code
base makes use of the new keyword or via the static Activator.GetObject() method, for example:

// Get a proxy to remote object. This line does NOT create the WKO type!
object remoteObj = Activator.GetObject(/* params seen later... */);

// Invoke a method on remote WKO type. This WILL create the WKO object
// and invoke the ReturnMessage() method.
RemoteMessageObject simple = (RemoteMessageObject)remoteObj;
Console.WriteLine("Server says: {0}", simple.ReturnMessage());

The rationale for this behavior? This approach saves a network round-trip solely for the pur-
pose of creating the object. As another interesting corollary, WKO types can be created only via the
type’s default constructor. This should make sense, given that the remote type’s constructor is trig-
gered only when the client makes the initial member invocation. Thus, the runtime has no other
option than to invoke the type’s default constructor.

■Note Always remember: All WKO types must support a default constructor!

If you wish to allow the client to create a remote MBR object using a custom constructor, the
server must configure the object as a CAO. CAO objects are entities whose lifetime is controlled by
the client’s application domain. When accessing a CAO type, a round-trip to the server occurs at
the time the client makes use of the new keyword (using any of the type’s constructors) or via the
Activator type.

Stateful Configuration of WKO Types: Singleton or Single Call?
The final .NET design choice to consider with regard to MBR types has to do with how the server
should handle multiple requests to a WKO type. CAO types need not apply, given that there is
always a one-to-one correspondence between a client and a remote CAO type (because they are
stateful).

Your first option is to configure a WKO type to function as a singleton type. The CLR will create
a single instance of the remote type that will take requests from any number of clients, and it is
a natural choice if you need to maintain stateful information among multiple remote callers. Given
the fact that multiple clients could invoke the same method at the same time, the CLR places each
client invocation on a new thread. It is your responsibility, however, to ensure that your objects are
thread-safe using the same techniques described in Chapter 14.

In contrast, a single call object is a WKO type that exists only during the context of a single method
invocation. Thus, if there are 20 clients making use of a WKO type configured with single call semantics,
the server will create 20 distinct objects (one for each client), all of which are candidates for garbage
collection directly after the method invocation. As you can guess, single call objects are far more scala-
ble than singleton types, given that they are invariably stateless entities.

The server is the entity in charge of determining the stateful configuration of a given WKO type.
Programmatically, these options are expressed via the System.Runtime.Remoting.WellKnownObjectMode
enumeration:

public enum WellKnownObjectMode
{

SingleCall,
Singleton

}

8237CH18.qxd 12/28/06 6:52 PM Page 573

CHAPTER 18 ■ THE .NET REMOTING LAYER574

Summarizing the Traits of MBR Object Types
As you have seen, configuring an MBV object is a no-brainer: Apply the [Serializable] attribute to
allow copies of the type to be returned to the client’s application domain. At this point, all interac-
tion with the MBV type takes place in the client’s locale. When the client is finished using the MBV
type, it is a candidate for garbage collection, and all is well with the world.

With MBR types, however, you have a number of possible configuration choices. As you have
seen, a given MBR type can be configured with regard to its time of activation, statefulness, and life-
time management. To summarize the array of possibilities, Table 18-3 documents how WKO and
CAO types stack up against the traits you have just examined.

Table 18-3. Configuration Options for MBR Types

MBR Object Trait WKO Behavior CAO Behavior

Instantiation options WKO types can only be activated CAO types can be activated
using the default constructor of using any constructor of the
the type, which is triggered when type. The remote object is
the client makes the first method created at the point the caller
invocation. makes use of constructor

semantics (or via the Activator
type).

State management WKO types can be configured as The lifetime of a CAO type is
singleton or single call entities. dictated by the caller; therefore,
Singleton types can service CAO types are stateful entities.
multiple clients and are therefore
stateful.
Single call types are alive only
during a specific client-side
invocation and are therefore
stateless.

Lifetime management Singleton WKO types make use of CAO types make use of a lease-
a lease-based management based management scheme
scheme (described later in (described later in this
this chapter). chapter).
Single call WKO types are
candidates for garbage collection
after the current method
invocation.

Basic Deployment of a .NET Remoting Project
Enough acronyms! At this point you are almost ready to build your first .NET remoting application.
Before you do, however, I need to discuss one final detail: deployment. When you are building
a .NET remoting application, you are almost certain to end up with three (yes, three, not two) dis-
tinct .NET assemblies that will constitute the entirety of your remote application. I am sure you can
already account for the first two assemblies:

• The client: This assembly is the entity that is interested in obtaining access to a remote object
(such as a Windows Forms or console application).

• The server: This assembly is the entity that receives channel requests from the remote client
and hosts the remote objects.

So then, where does the third assembly fit in? In many cases, the server application is typically
a host to a third assembly that defines and implements the remote objects. For convenience, I’ll call

8237CH18.qxd 12/28/06 6:52 PM Page 574

CHAPTER 18 ■ THE .NET REMOTING LAYER 575

this assembly the general assembly. This decoupling of the assembly containing the remote objects
and server host is quite important, in that both the client and the server assemblies typically set
a reference to the general assembly to obtain the metadata definitions of the remotable types.

In the simplest case, the general assembly is placed into the application directory of the client
and server. The only possible drawback to this approach is the fact that the client has a reference to
an assembly that contains CIL code that is never used (which may be a problem if you wish to
ensure that the end user cannot view proprietary code). Specifically, the only reason the client
requires a reference to the general assembly is to obtain the metadata descriptions of the remotable
types. You can overcome this glitch in several ways, for example:

• Construct your remote objects to make use of interface-based programming techniques.
Given this, the client is able to set a reference to a .NET binary that contains nothing but
interface definitions.

• Make use of the soapsuds.exe command-line application. Using this tool, you are able to
generate an assembly that contains nothing but metadata descriptions of the remote types.

• Manually build an assembly that contains nothing but metadata descriptions of the remote
types.

To keep things simple over the course of this chapter, you will build and deploy general assem-
blies that contain the required metadata as well as the CIL implementation.

■Note If you wish to examine how to implement general assemblies using each of these alternatives, check out
Distributed .NET Programming in C# by Tom Barnaby (Apress, 2002).

Building Your First Distributed Application
There is nothing more satisfying than building a distributed application using a new platform. To
illustrate how quickly you’re able to get up and running with the .NET remoting layer, let’s build
a simple example. As mentioned, the entirety of this example consists of three .NET assemblies:

• A general assembly named SimpleRemotingAsm.dll

• A client assembly named SimpleRemoteObjectClient.exe

• A server assembly named SimpleRemoteObjectServer.exe

Building the General Assembly
First, let’s create the general assembly, SimpleRemotingAsm.dll, which will be referenced by both
the server and client applications. SimpleRemotingAsm.dll defines a single MBR type named
RemoteMessageObject, which supports two public members. The DisplayMessage() method prints
a client-supplied message on the server’s console window, while ReturnMessage() returns a message
to the client. Here is the complete code of this new C# class library:

namespace SimpleRemotingAsm
{

// This is a type that will be
// marshaled by reference (MBR) if accessed remotely.
public class RemoteMessageObject: MarshalByRefObject
{

public RemoteMessageObject()
{ Console.WriteLine("Constructing RemoteMessageObject!"); }

8237CH18.qxd 12/28/06 6:52 PM Page 575

CHAPTER 18 ■ THE .NET REMOTING LAYER576

// This method takes an input string
// from the caller.
public void DisplayMessage(string msg)
{ Console.WriteLine("Message is: {0}", msg);}

// This method returns a value to the caller.
public string ReturnMessage()
{ return "Hello from the server!"; }

}
}

The major point of interest is the fact that the type derives from the System.MarshalByRefObject
base class, which ensures that the derived class will be accessible via a client-side proxy. Also note
the custom default constructor that will print out a message when an instance of the type comes to
life. That’s it. Go ahead and build your new SimpleRemotingAsm.dll assembly.

Building the Server Assembly
Recall that server assemblies are essentially hosts for general assemblies that contain the remotable
objects. Create a console program named SimpleRemoteObjectServer. The role of this assembly is to
open a channel for the incoming requests and register RemoteMessageObject as a WKO. To begin, ref-
erence the System.Runtime.Remoting.dll and SimpleRemotingAsm.dll assemblies, and update Main()
as follows:

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using SimpleRemotingAsm;

namespace SimpleRemoteObjectServer
{

class SimpleObjServer
{

static void Main(string[] args)
{

Console.WriteLine("***** SimpleRemoteObjectServer started! *****");
Console.WriteLine("Hit enter to end.");

// Register a new HttpChannel
HttpChannel c = new HttpChannel(32469);
ChannelServices.RegisterChannel(c);

// Register a WKO type, using singleton activation.
RemotingConfiguration.RegisterWellKnownServiceType(

typeof(SimpleRemotingAsm.RemoteMessageObject),
"RemoteMsgObj.soap",
WellKnownObjectMode.Singleton);

Console.ReadLine();
}

}
}

Main() begins by creating a new HttpChannel type using an arbitrary port ID. This port is
opened on registering the channel via the static ChannelServices.RegisterChannel() method. Once
the channel as been registered, the remote server assembly is now equipped to process incoming
messages via port number 32469.

8237CH18.qxd 12/28/06 6:52 PM Page 576

CHAPTER 18 ■ THE .NET REMOTING LAYER 577

■Note The number you assign to a port is typically up to you (or your system administrator). Do be aware, how-
ever, that port IDs below 1024 are reserved for system use.

Next, to register the SimpleRemotingAsm.RemoteMessageObject type as a WKO requires the
use of the RemotingConfiguration.RegisterWellKnownServiceType() method. The first argument
to this method is the type information of the type to be registered. The second parameter to
RegisterWellKnownServiceType() is a simple string (of your choosing) that will be used to identify
the object across application domain boundaries. Here, you are informing the CLR that this object
is to be realized by the client using the name RemoteMsgObj.soap.

The final parameter is a member of the WellKnownObjectMode enumeration, which you have
specified as WellKnownObjectMode.Singleton. Recall that singleton WKO types ensure that a single
instance of the RemoteMessageObject will service all incoming requests. Build your server assembly
and let’s move on to the client-side code.

Building the SimpleRemoteObjectClient.exe Assembly
Now that you have a listener that is hosting your remotable object, the final step is to build an assem-
bly that will request access to its services. Again, let’s use a simple console application. Set a reference
to System.Runtime.Remoting.dll and SimpleRemotingAsm.dll. Implement Main() as follows:

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using SimpleRemotingAsm;

namespace SimpleRemoteObjectClient
{

class SimpleObjClient
{

static void Main(string[] args)
{

Console.WriteLine("***** SimpleRemoteObjectClient started! *****");
Console.WriteLine("Hit enter to end.");

// Create a new HttpChannel.
HttpChannel c = new HttpChannel();
ChannelServices.RegisterChannel(c);

// Get a proxy to remote WKO type.
object remoteObj = Activator.GetObject(

typeof(SimpleRemotingAsm.RemoteMessageObject),
"http://localhost:32469/RemoteMsgObj.soap");

// Now use the remote object.
RemoteMessageObject simple = (RemoteMessageObject)remoteObj;
simple.DisplayMessage("Hello from the client!");
Console.WriteLine("Server says: {0}", simple.ReturnMessage());
Console.ReadLine();

}
}

}

8237CH18.qxd 12/28/06 6:52 PM Page 577

CHAPTER 18 ■ THE .NET REMOTING LAYER578

Figure 18-2. The server’s output

Figure 18-3. The client’s output

A few notes about this client application. First, notice that the client is also required to register
an HTTP channel, but the client does not specify a port ID, as the end point is specified by the client-
supplied activation URL. Given that the client is interacting with a registered WKO type, you are limited
to triggering the type’s default constructor. To do so, make use of the Activator.GetObject() method,
specifying two parameters. The first is the type information that describes the remote object you are
interested in interacting with. Read that last sentence again. Given that the Activator.GetObject()
method requires the object’s metadata description, it should make more sense as to why the client
is also required to reference the general assembly! Again, at the end of the chapter you’ll examine
various ways to clean up this aspect of your client-side assembly.

The second parameter to Activator.GetObject() is termed the activation URL. Activation
URLs that describe a WKO type can be generalized into the following format:

ProtocolScheme://ComputerName:Port/ObjectUri

Finally, note that the Activator.GetObject() method returns a generic System.Object type, and
thus you must make use of an explicit cast to gain access to the members of the RemoteMessageObject.

Testing the Remoting Application
To test your application, begin by launching the server application, which will open an HTTP chan-
nel and register RemoteMessageObject for remote for access. Next, launch an instance of the client
application. If all is well, your server window should appear as shown in Figure 18-2, while the client
application displays what you see in Figure 18-3.

Understanding the ChannelServices Type
As you have seen, when a server application wishes to advertise the existence of a remote type, it
makes use of the System.Runtime.Remoting.Channels.ChannelServices type. ChannelServices pro-
vides a small set of static methods that aid in the process of remoting channel registration, resolution,
and URL discovery. Table 18-4 documents some of the core members.

8237CH18.qxd 12/28/06 6:52 PM Page 578

CHAPTER 18 ■ THE .NET REMOTING LAYER 579

Figure 18-4. Enumerating client-side channels

Table 18-4. Select Members of the ChannelServices Type

Member Meaning in Life

RegisteredChannels This property gets or sets a list of currently registered channels, each of
which is represented by the IChannel interface.

DispatchMessage() This method dispatches incoming remote calls.

GetChannel() This method returns a registered channel with the specified name.

GetUrlsForObject() This method returns an array of all the URLs that can be used to reach
the specified object.

RegisterChannel() This method registers a channel with the channel services.

UnregisterChannel() This method unregisters a particular channel from the registered
channels list.

In addition to the aptly named RegisterChannel() and UnregisterChannel() methods,
ChannelServices defines the RegisteredChannels property. This member returns an array of
IChannel interfaces, each representing a handle to each channel registered in a given application
domain. The definition of the IChannel interface is quite straightforward:

public interface IChannel
{

string ChannelName { get; }
int ChannelPriority { get; }
string Parse(string url, ref String objectURI);

}

As you can see, each channel is given a friendly string name as well as a priority level. To illustrate,
if you were to update the Main() method of the SimpleRemoteObjectClient application with the fol-
lowing logic:

// List all registered channels.
IChannel[] channelObjs = ChannelServices.RegisteredChannels;
foreach(IChannel i in channelObjs)
{

Console.WriteLine("Channel name: {0}", i.ChannelName);
Console.WriteLine("Channel Priority: {0}", i.ChannelPriority);

}

you would find the client-side console now looks like Figure 18-4.

8237CH18.qxd 12/28/06 6:52 PM Page 579

CHAPTER 18 ■ THE .NET REMOTING LAYER580

Understanding the RemotingConfiguration Type
Another key remoting-centric type is RemotingConfiguration, which as its name suggests is used to
configure various aspects of a remoting application. Currently, you have seen this type in use on the
server side (via the call to the RegisterWellKnownServiceType() method). Table 18-5 lists additional
static members of interest, some of which you’ll see in action over the remainder of this chapter.

Table 18-5. Members of the RemotingConfiguration Type

Member Meaning in Life

ApplicationId Gets the ID of the currently executing application

ApplicationName Gets or sets the name of a remoting application

ProcessId Gets the ID of the currently executing process

Configure() Reads the configuration file and configures the
remoting infrastructure

GetRegisteredActivatedClientTypes() Retrieves an array of object types registered on the
client as types that will be activated remotely

GetRegisteredActivatedServiceTypes() Retrieves an array of object types registered on the
service end that can be activated on request from
a client

GetRegisteredWellKnownClientTypes() Retrieves an array of object types registered on the
client end as well-known types

GetRegisteredWellKnownServiceTypes() Retrieves an array of object types registered on the
service end as well-known types

IsWellKnownClientType() Checks whether the specified object type is registered
as a well-known client type

RegisterActivatedClientType() Registers an object on the client end as a type that can
be activated on the server

RegisterWellKnownClientType() Registers an object on the client end as a well-known
type (single call or singleton)

RegisterWellKnownServiceType() Registers an object on the service end as a well-
known type (single call or singleton)

Recall that the .NET remoting layer distinguishes between two types of MBR objects: WKO
(server-activated) and CAO (client-activated). Furthermore, WKO types can be configured to make
use of singleton or single call activations. Using the functionality of the RemotingConfiguration type,
you are able to dynamically obtain such information at runtime. For example, if you update the Main()
method of your SimpleRemoteObjectServer application with the following:

static void Main(string[] args)
{
...

// Set a friendly name for this server app.
RemotingConfiguration.ApplicationName = "First server app!";
Console.WriteLine("App Name: {0}",

RemotingConfiguration.ApplicationName);

// Get an array of WellKnownServiceTypeEntry types
// that represent all the registered WKOs.
WellKnownServiceTypeEntry[] WKOs =

RemotingConfiguration.GetRegisteredWellKnownServiceTypes();
// Now print their statistics.

8237CH18.qxd 12/28/06 6:52 PM Page 580

CHAPTER 18 ■ THE .NET REMOTING LAYER 581

Figure 18-5. Server-side statistics

foreach(WellKnownServiceTypeEntry wko in WKOs)
{

Console.WriteLine("Asm name containing WKO: {0}", wko.AssemblyName);
Console.WriteLine("URL to WKO: {0}", wko.ObjectUri);
Console.WriteLine("Type of WKO: {0}", wko.ObjectType);
Console.WriteLine("Mode of WKO: {0}", wko.Mode);

}
}

you would find a list of all WKO types registered by this server application domain. As you iterate
over the array of WellKnownServiceTypeEntry types, you are able to print out various points of
interest regarding each WKO. Given that your server’s application registered only a single type
(SimpleRemotingAsm.RemoteMessageObject), you’ll receive the output shown in Figure 18-5.

The other major method of the RemotingConfiguration type is Configure(). As you’ll see in just
a bit, this static member allows the client- and server-side application domains to make use of remot-
ing configuration files.

Revisiting the Activation Mode of WKO Types
Recall that WKO types can be configured to function under singleton or single call activation.
Currently, your server application has registered your WKO to employ singleton activation semantics:

// Singletons can service multiple clients.
RemotingConfiguration.RegisterWellKnownServiceType(

typeof(SimpleRemotingAsm.RemoteMessageObject),
"RemoteMsgObj.soap",
WellKnownObjectMode.Singleton);

Again, singleton WKOs are capable of receiving requests from multiple clients. Thus, singleton
objects maintain a one-to-many relationship between themselves and the remote clients. To test
this behavior for yourself, run the server application (if it is not currently running) and launch three
separate client applications. If you look at the output for the server, you will find a single call to the
RemoteMessageObject’s default constructor.

Now to test the behavior of single call objects, modify the server to register the WKO to support
single call activation:

// Single call types maintain a 1-to-1 relationship
// between client and WKO.
RemotingConfiguration.RegisterWellKnownServiceType(

typeof(SimpleRemotingAsm.RemoteMessageObject),
"RemoteMsgObj.soap",
WellKnownObjectMode.SingleCall);

8237CH18.qxd 12/28/06 6:52 PM Page 581

Once you have recompiled and run the server application, again launch three clients. This time
you can see that a new RemoteMessageObject is created for each client request. As you might be able
to gather, if you wish to share stateful data between multiple remote clients, singleton activation
provides one possible alternative, as all clients are communicating with a single instance of the
remote object.

■Source Code The SimpleRemotingAsm, SimpleRemoteObjectServer, and SimpleRemoteObjectClient projects
are located under the Chapter 18 directory.

Deploying the Server to a Remote Machine
At this point, you have just crossed an application and process boundary on a single machine. If
you’re connected to an additional machine, let’s extend this example to allow the client to interact
with the RemoteMessageObject type across a machine boundary. To do so, follow these steps:

1. On your server machine, create and share a folder to hold your server-side assemblies.

2. Copy the SimpleRemoteObjectServer.exe and SimpleRemotingAsm.dll assemblies to this
server-side share point.

3. Open your SimpleRemoteObjectClient project workspace and retrofit the activation URL to
specify the name of the remote machine, for example:

// Get a proxy to remote object.
object remoteObj = Activator.GetObject(

typeof(SimpleRemotingAsm.RemoteMessageObject),
"http://YourRemoteBoxName:32469/RemoteMsgObj.soap");

4. Execute the SimpleRemoteObjectServer.exe application on the server machine.

5. Execute the SimpleRemoteObjectClient.exe application on the client machine.

6. Sit back and grin.

■Note Activation URLs may specify a machine’s IP address in place of its friendly name.

Leveraging the TCP Channel
Currently, your remote object is accessible via the HTTP network protocol. As mentioned, this pro-
tocol is quite firewall-friendly, but the resulting SOAP packets are a bit on the bloated side (given the
nature of XML data representation). To lighten the payload, you can update the client and server
assemblies to make use of the TCP channel, and therefore make use of the BinaryFormatter type
behind the scenes. Here are the relevant updates to the server assembly:

■Note When you are defining an object to be URI-accessible via a TCP endpoint, it is common (but not required)
to make use of the *.rem (i.e., remote) extension.

// Server adjustments!
using System.Runtime.Remoting.Channels.Tcp;
...
static void Main(string[] args)

CHAPTER 18 ■ THE .NET REMOTING LAYER582

8237CH18.qxd 12/28/06 6:52 PM Page 582

CHAPTER 18 ■ THE .NET REMOTING LAYER 583

{
...

// Create a new TcpChannel
TcpChannel c = new TcpChannel(32469);
ChannelServices.RegisterChannel(c);

// Register a 'well-known' object in single call mode.
RemotingConfiguration.RegisterWellKnownServiceType(

typeof(SimpleRemotingAsm.RemoteMessageObject),
"RemoteMsgObj.rem",
WellKnownObjectMode.SingleCall);

Console.ReadLine();
}

Notice that you are now registering a System.Runtime.Remoting.Channels.Tcp.TcpChannel type
to the .NET remoting layer. Also note that the object URI has been altered to support a more generic
name (RemoteMsgObj.rem) rather than the SOAP-centric *.soap extension. The client-side updates
are equally as simple:

// Client adjustments!
using System.Runtime.Remoting.Channels.Tcp;
...
static void Main(string[] args)
{
...

// Create a new TcpChannel
TcpChannel c = new TcpChannel();
ChannelServices.RegisterChannel(c);
// Get a proxy to remote object.
object remoteObj = Activator.GetObject(

typeof(SimpleRemotingAsm.RemoteMessageObject),
"tcp://localhost:32469/RemoteMsgObj.rem");

// Use object.
RemoteMessageObject simple = (RemoteMessageObject)remoteObj;
simple.DisplayMessage("Hello from the client!");
Console.WriteLine("Server says: {0}", simple.ReturnMessage());
Console.ReadLine();

}

The only point to be aware of here is that the client’s activation URL now must specify the
tcp:// channel qualifier rather than http://. Beyond that, the bulk of the code base is identical to
the previous HttpChannel logic.

■Source Code The TCPSimpleRemoteObjectServer and TCPSimpleRemoteObjectClient projects are located
under the Chapter 18 directory (both projects use the SimpleRemotingAsm.dll created previously).

A Brief Word Regarding the IpcChannel
Before moving on to an examination of remoting configuration files, recall that .NET 2.0 also pro-
vides the IpcChannel type, which provides the fastest possible manner in which two applications on
the same machine can exchange information. Given that this chapter is geared toward covering dis-
tributed programs that involve two or more computers, interested readers should look up IpcChannel
in the .NET Framework 2.0 SDK documentation (as you might guess, the code is just about identical
to working with HttpChannel and TcpChannel).

8237CH18.qxd 12/28/06 6:52 PM Page 583

Remoting Configuration Files
At this point you have successfully built a distributed application using the .NET remoting layer.
One issue you may have noticed in these first examples is the fact that the client and the server
applications have a good deal of hard-coded logic within their respective binaries. For example, the
server specifies a fixed port ID, fixed activation mode, and fixed channel type. The client, on the other
hand, hard-codes the name of the remote object it is attempting to interact with.

As you might agree, it is wishful thinking to assume that initial design notes remain unchanged
once an application is deployed. Ideally, details such as port ID and object activation mode (and what-
not) could be altered on the fly without needing to recompile and redistribute the client or server code
bases. Under the .NET remoting scheme, all the aforementioned issues can be circumvented using
the remoting configuration file.

As you will recall from Chapter 11, *.config can be used to provide hints to the CLR regarding
the loading of externally referenced assemblies. The same *.config files can be used to inform the
CLR of a number of remoting-related details, on both the client side and the server side.

When you build a remoting *.config file, the <system.runtime.remoting> element is used to
hold various remoting-centric details. Do be aware that if you’re building an application that already
has a *.config file that specifies assembly resolution details, you’re free to add remoting elements
within the same file. Thus, a single *.config file that contains remoting and binding information
would look something like this:

<configuration>
<system.runtime.remoting>

<! -- configure client/server remoting settings here -- >
</system.runtime.remoting>
<runtime>

<! -- binding assembly settings here -- >
</runtime>

</configuration>

If your configuration file has no need to specify assembly binding logic, you can omit the
<runtime> element and make use of the following skeleton *.config file:

<configuration>
<system.runtime.remoting>

<! -- configure client/server remoting settings here -- >
</system.runtime.remoting>

</configuration>

Building Server-Side *.config Files
Server-side configuration files allow you to declare the objects that are to be reached via remote
invocations as well as channel and port information. Basically, using the <service>, <wellknown>,
and <channels> elements, you are able to replace the following server-side logic:

// Hard-coded HTTP server logic.
HttpChannel c = new HttpChannel(32469);
ChannelServices.RegisterChannel(c);
RemotingConfiguration.RegisterWellKnownServiceType(

typeof(SimpleRemotingAsm.RemoteMessageObject),
"RemoteMsgObj.soap",
WellKnownObjectMode.Singleton);

with the following *.config file:

CHAPTER 18 ■ THE .NET REMOTING LAYER584

8237CH18.qxd 12/28/06 6:52 PM Page 584

CHAPTER 18 ■ THE .NET REMOTING LAYER 585

<configuration>
<system.runtime.remoting>
<application>
<service>
<wellknown
mode="Singleton"
type="SimpleRemotingAsm.RemoteMessageObject, SimpleRemotingAsm"
objectUri="RemoteMsgObj.soap"/>

</service>
<channels>

<channel ref="http" port="32469"/>
</channels>

</application>
</system.runtime.remoting>

</configuration>

Notice that much of the relevant server-side remoting information is wrapped within the scope
of the <service> (not server) element. The child <wellknown> element makes use of three attributes
(mode, type, and objectUri) to specify the well-known object to register with the .NET remoting
layer. The child <channels> element contains any number of <channel> elements that allow you to
define the type of channel (in this case, HTTP) to open on the server. TCP channels would simply
make use of the tcp string token in place of http.

As the SimpleRemoteObjectServer.exe.config file contains all the necessary information, the
server-side Main() method cleans up considerably. All you are required to do is make a single call to
RemotingConfiguration.Configure() and specify the name of your configuration file.

static void Main(string[] args)
{

// Register a 'well-known' object using a *.config file.
RemotingConfiguration.Configure("SimpleRemoteObjectServer.exe.config");
Console.WriteLine("Server started! Hit enter to end");
Console.ReadLine();

}

Building Client-Side *.config Files
Clients are also able to leverage remoting-centric *.config files. Unlike a server-side configuration
file, client-side configuration files make use of the <client> element to identify the name of the
well-known object the caller wishes to interact with. In addition to providing the ability to dynami-
cally change the remoting information without the need to recompile the code base, client-side
*.config files allow you to create the proxy type directly using the C# new keyword, rather than the
Activator.GetObject() method. Thus, if you have the following client-side *.config file:

<configuration>
<system.runtime.remoting>

<application>
<client displayName = "SimpleRemoteObjectClient">

<wellknown
type="SimpleRemotingAsm.RemoteMessageObject, SimpleRemotingAsm"
url="http://localhost:32469/RemoteMsgObj.soap"/>

</client>
<channels>

<channel ref="http"/>
</channels>

</application>
</system.runtime.remoting>

</configuration>

8237CH18.qxd 12/28/06 6:52 PM Page 585

you are able to update the client’s Main() method as follows:

static void Main(string[] args)
{

RemotingConfiguration.Configure("SimpleRemoteObjectClient.exe.config");
// Using *.config file, the client is able to directly 'new' the type.
RemoteMessageObject simple = new RemoteMessageObject();
simple.DisplayMessage("Hello from the client!");
Console.WriteLine("Server says: {0}", simple.ReturnMessage());
Console.WriteLine("Client started! Hit enter to end");
Console.ReadLine();

}

Of course, when you run the application, the output is identical. If the client wishes to make
use of the TCP channel, the url property of the <wellknown> element and <channel> ref property
must make use of the tcp token in place of http.

■Source Code The SimpleRemoteObjectServerWithConfig and SimpleRemoteObjectClientWithConfig projects
are located under the Chapter 18 subdirectory (both of which make use of the SimpleRemotingAsm.dll created
previously).

Working with MBV Objects
Our first remoting applications allowed client-side access to a single WKO type. Recall that WKO
types are (by definition) MBR types, and therefore client access takes place via an intervening proxy.
In contrast, MBV types are local copies of a server-side object, which are typically returned from
a public member of an MBR type. Although you already know how to configure an MBV type (mark
a class with the [Serializable] attribute), you have not yet seen an example of MBV types in action
(beyond passing string data between the two parties). To illustrate the interplay of MBR and MBV
types, let’s see another example involving three assemblies:

• The general assembly named CarGeneralAsm.dll

• The client assembly named CarProviderClient.exe

• The server assembly named CarProviderServer.exe

As you might assume, the code behind the client and server applications is more or less identi-
cal to the previous example, especially since these applications will again make use of *.config
files. Nevertheless, let’s step through the process of building each assembly one at a time.

Building the General Assembly
During our examination of object serialization in Chapter 17, you created a type named JamesBondCar
(in addition to the dependent Radio and Car classes). The CarGeneralAsm.dll code library will reuse
these types, so begin by using the Project ➤ Add Existing Item menu command and include these *.cs
files into this new Class Library project (the automatically provided Class1.cs file can be deleted).
Given that each of these types has already been marked with the [Serializable] attribute, they are
ready to be marshaled by value to a remote client.

All you need now is an MBR type that provides access to the JamesBondCar type. To make things
a bit more interesting, however, your MBR object (CarProvider) will maintain a generic List<> of
JamesBondCar types. CarProvider will also define two members that allow the caller to obtain a spe-
cific JamesBondCar as well as receive the entire List<> of types. Here is the complete code for the
new class type:

CHAPTER 18 ■ THE .NET REMOTING LAYER586

8237CH18.qxd 12/28/06 6:52 PM Page 586

CHAPTER 18 ■ THE .NET REMOTING LAYER 587

namespace CarGeneralAsm
{

// This type is an MBR object that provides
// access to related MBV types.
public class CarProvider : MarshalByRefObject
{

private List<JamesBondCar> theJBCars =
new List<JamesBondCar>();

// Add some cars to the list.
public CarProvider()
{

Console.WriteLine("Car provider created");
theJBCars.Add(new JamesBondCar("QMobile", 140, true, true));
theJBCars.Add(new JamesBondCar("Flyer", 140, true, false));
theJBCars.Add(new JamesBondCar("Swimmer", 140, false, true));
theJBCars.Add(new JamesBondCar("BasicJBC", 140, false, false));

}
// Get all the JamesBondCars.
public List<JamesBondCar> GetAllAutos()
{ return theJBCars; }
// Get one JamesBondCar.
public JamesBondCar GetJBCByIndex(int i)
{ return (JamesBondCar)theJBCars[i]; }

}
}

Notice that the GetAllAutos() method returns the internal List<> type. The obvious question is
how this member of the System.Collections.Generic namespace is marshaled back to the caller. If
you look up this type using the .NET Framework 2.0 SDK documentation, you will find that List<>
has been decorated with the [Serializable] attribute:

[SerializableAttribute()]
public class List<T> : IList, ICollection, IEnumerable

Therefore, the entire contents of the List<> type will be marshaled by value to the caller (pro-
vided the contained types are also serializable)! This brings up a very good point regarding .NET
remoting and members of the base class libraries. In addition to the custom MBV and MBR types
you may create yourself, understand that any type in the base class libraries that is decorated with
the [Serializable] attribute is able to function as an MBV type in the .NET remoting architecture.
Likewise, any type that derives (directly or indirectly) from MarshalByRefObject will function as an
MBR type.

■Note Be aware that the SoapFormatter does not support serialization of generic types. If you build methods
that receive or return generic types (such as the List<>), you must make use of the BinaryFormatter and the
TcpChannel object.

Building the Server Assembly
The server host assembly (CarProviderServer.exe) has the following logic within Main():

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using CarGeneralAsm;

8237CH18.qxd 12/28/06 6:52 PM Page 587

namespace CarProviderServer
{

class CarServer
{

static void Main(string[] args)
{

RemotingConfiguration.Configure("CarProviderServer.exe.config");
Console.WriteLine("Car server started! Hit enter to end");
Console.ReadLine();

}
}

}

The related *.config file is just about identical to the server-side *.config file you created in
the previous example. The only point of interest is to define an object URI value that makes sense
for the CarProvider type:

<configuration>
<system.runtime.remoting>

<application>
<service>

<wellknown mode="Singleton"
type="CarGeneralAsm.CarProvider, CarGeneralAsm"
objectUri="carprovider.rem" />

</service>
<channels>

<channel ref="tcp" port="32469" />
</channels>

</application>
</system.runtime.remoting>

</configuration>

Building the Client Assembly
Last but not least, we have the client application that will make use of the MBR CarProvider type in
order to obtain discrete JamesBondCars types as well as the List<> type. Once you obtain a type from
the CarProvider, you’ll send it into the UseCar() helper function from processing:

using System;
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels;
using System.Runtime.Remoting.Channels.Http;
using CarGeneralAsm;
using System.Collections.Generic;

namespace CarProviderClient
{

class CarClient
{

private static void UseCar(JamesBondCar c)
{

Console.WriteLine("-> Name: {0}", c.PetName);
Console.WriteLine("-> Max speed: {0}", c.MaxSpeed);
Console.WriteLine("-> Seaworthy? : {0}", c.isSeaWorthy);
Console.WriteLine("-> Flight worthy? : {0}", c.isFlightWorthy);
Console.WriteLine();

}

CHAPTER 18 ■ THE .NET REMOTING LAYER588

8237CH18.qxd 12/28/06 6:52 PM Page 588

CHAPTER 18 ■ THE .NET REMOTING LAYER 589

static void Main(string[] args)
{

RemotingConfiguration.Configure("CarProviderClient.exe.config");
// Make the car provider.
CarProvider cp = new CarProvider();
// Get first JBC.
JamesBondCar qCar = cp.GetJBCByIndex(0);
// Get all JBCs.
List<JamesBondCar> allJBCs = cp.GetAllAutos();
// Use first car.
UseCar(qCar);
// Use all cars in List<>.
foreach(JamesBondCar j in allJBCs)

UseCar(j);
Console.WriteLine("Client started! Hit enter to end");
Console.ReadLine();

}
}

}

The client side *.config file is also what you would expect. Simply update the activation URL:

<configuration>
<system.runtime.remoting>

<application>
<client displayName = "CarClient">

<wellknown
type="CarGeneralAsm.CarProvider, CarGeneralAsm"
url="tcp://localhost:32469/carprovider.rem"/>

</client>
<channels>

<channel ref="tcp"/>
</channels>

</application>
</system.runtime.remoting>

</configuration>

Now, run your server and client applications (in that order, of course) and observe the output.
Your client-side console window will whirl through the JamesBondCars and print out the statistics of
each type. Recall that as you interact with the List<> and JamesBondCar types, you are operating on
their members within the client’s application domain, as they have both been marked with the
[Serializable] attribute.

To prove that point, update the UseCar() helper function to call the TurnOnRadio() method on
the incoming JamesBondCar. Now, run the server and client applications once again. Notice that the
message box appears on the client machine! Had the Car, Radio, and JamesBondCar types been con-
figured as MBR types, the server would be the machine displaying the message box prompts. If you
wish to verify this, derive each type from MarshalByRefObject and recompile all three assemblies (to
ensure Visual Studio 2005 copies the latest CarGeneralAsm.dll into the client’s and server’s applica-
tion directory). When you run the application once again, the message boxes appear on the remote
machine.

■Source Code The CarGeneralAsm, CarProviderServer, and CarProviderClient projects are located under the
Chapter 18 subdirectory.

8237CH18.qxd 12/28/06 6:52 PM Page 589

Understanding Client-Activated Objects
All of these current remoting examples have made use of WKOs. Recall that WKOs have the follow-
ing characteristics:

• WKOs can be configured either as singleton or single call.

• WKOs can only be activated using the type’s default constructor.

• WKOs are instantiated on the server on the first client-side member invocation.

CAO types on the other hand, can be instantiated using any constructor on the type and are
created at the point the client makes use of the C# new keyword or Activator type. Furthermore, the
lifetime of CAO types is monitored by the .NET leasing mechanism. Do be aware that when you
configure a CAO type, the .NET remoting layer will generate a specific CAO remote object to service
each client. Again, the big distinction is the fact that CAOs are always alive (and therefore stateful)
beyond a single method invocation.

To illustrate the construction, hosting, and consumption of CAO types, let’s retrofit the previ-
ous automobile-centric general assembly. Assume that your MBR CarProvider class has defined an
additional constructor that allows the client to pass in an array of JamesBondCar types that will be
used to populate the generic List<>:

public class CarProvider : MarshalByRefObject
{

private List<JamesBondCar> theJBCars
= new List<JamesBondCar>();

public CarProvider(JamesBondCar[] theCars)
{

Console.WriteLine("Car provider created with custom ctor");
theJBCars.AddRange(theCars);

}
...
}

To allow the caller to activate the CarProvider using your new constructor syntax, you need to
build a server application that registers CarProvider as a CAO type rather than a WKO type. This
may be done programmatically (à la the RemotingConfiguration.RegisterActivatedServiceType()
method) or using a server-side *.config file. If you wish to hard-code the name of the CAO object
within the host server’s code base, all you need to do is pass in the type information of the type(s)
(after creating and registering a channel) as follows:

// Hard-code the fact that CarProvider is a CAO type.
RemotingConfiguration.RegisterActivatedServiceType(

typeof(CAOCarGeneralAsm.CarProvider));

If you would rather leverage the *.config file, replace the <wellknown> element with the
<activated> element as follows:

<configuration>
<system.runtime.remoting>

<application>
<service>

<activated type = "CAOCarGeneralAsm.CarProvider,
CAOCarGeneralAsm"/>

</service>
<channels>

<channel ref="tcp" port="32469" />
</channels>

CHAPTER 18 ■ THE .NET REMOTING LAYER590

8237CH18.qxd 12/28/06 6:52 PM Page 590

CHAPTER 18 ■ THE .NET REMOTING LAYER 591

</application>
</system.runtime.remoting>

</configuration>

Finally, you need to update the client application, not only by way of the *.config file (or pro-
grammatically in the code base) to request access to the remote CAO, but also to indeed trigger the
custom constructor of the CarProvider type. Here are the relevant updates to the client-side Main()
method:

static void Main(string[] args)
{

// Read updated *.config file.
RemotingConfiguration.Configure("CAOCarProviderClient.exe.config");
// Create array of types to pass to provider.
JamesBondCar[] cars =
{

new JamesBondCar("Viper", 100, true, false),
new JamesBondCar("Shaken", 100, false, true),
new JamesBondCar("Stirred", 100, true, true)

};
// Now trigger the custom ctor.
CarProvider cp = new CarProvider(cars);

...
}

The updated client-side *.config file also makes use of the <activated> element, as opposed to
<wellknown>. In addition, the <client> element now requires the url property to define the location
of the registered CAO. Recall that when the server registered the CarProvider as a WKO, the client
specified such information within the <wellknown> element.

<configuration>
<system.runtime.remoting>

<application>
<client displayName = "CarClient"

url = "tcp://localhost:32469">
<activated type = "CAOCarGeneralAsm.CarProvider, CAOCarGeneralAsm" />

</client>
<channels>

<channel ref="tcp"/>
</channels>

</application>
</system.runtime.remoting>

</configuration>

If you would rather hard-code the client’s request to the CAO type, you can make use of the
RegistrationServices.RegisterActivatedClientType() method as follows:

static void Main(string[] args)
{

// Use hard-coded values.
RemotingConfiguration.RegisterActivatedClientType(

typeof(CAOCarGeneralAsm.CarProvider),
"tcp://localhost:32469");

...
}

If you now execute the updated server and client assemblies, you will be pleased to find that
you are able to pass your custom array of JamesBondCar types to the remote CarProvider via the
overloaded constructor.

8237CH18.qxd 12/28/06 6:52 PM Page 591

■Source Code The CAOCarGeneralAsm, CAOCarProviderServer, and CAOCarProviderClient projects are located
under the Chapter 18 subdirectory.

The Lease-Based Lifetime of CAO/WKO-Singleton
Objects
As you have seen, WKO types configured with single call activation are alive only for the duration of
the current method call. Given this fact, WKO single call types are stateless entities. As soon as the
current invocation has completed, the WKO single call type is a candidate for garbage collection.

On the other hand, CAO types and WKO types that have been configured to use singleton acti-
vation are both, by their nature, stateful entities. Given these two object configuration settings, the
question that must be asked is, how does the server process know when to destroy these MBR
objects? Clearly, it would be a huge problem if the server machine garbage-collected MBR objects
that were currently in use by a remote client. If the server machine waits too long to release its set of
MBR types, this may place undo stress on the system, especially if the MBR object(s) in question
maintain valuable system resources (database connections, unmanaged types, and whatnot).

The lifetime of a CAO or WKO-singleton MBR type is governed by a “lease time” that is tightly
integrated with the .NET garbage collector. If the lease time of a CAO or WKO-singleton MBR type
expires, the object is ready to be garbage-collected on the next collection cycle. Like any .NET type,
if the remote object has overridden System.Object.Finalize() (via the C# destructor syntax), the
.NET runtime will indeed trigger the finalization logic.

The Default Leasing Behavior
CAO and WKO-singleton MBR types have what is known as a default lease, which lasts for five min-
utes. If the runtime detects five minutes of inactivity have passed for a CAO or WKO-singleton MBR
type, the assumption is that the client is no longer making use of the object and therefore the remote
object may be garbage-collected. However, when the default lease expires, this does not imply that
the object is immediately marked for garbage collection. In reality, there are many ways to influence
the behavior of the default lease.

First and foremost, anytime the remote client invokes a member of the remote CAO or WKO-
singleton MBR type, the lease is renewed back to its five-minute limit. In addition to the automatic
client-invocation-centric renew policy, the .NET runtime provides three additional alternatives:

• *.config files can be authored that override the default lease settings for remote objects.

• Server-side lease sponsors can be used to act on behalf of a remote object whose lease time
has expired.

• Client-side lease sponsors can be used to act on behalf of a remote object whose lease time
has expired.

We will check out these options over the next several sections, but for the time being let’s exam-
ine the default lease settings of a remote type. Recall that the MarshalByRefObject base class defines
a member named GetLifetimeService(). This method returns a reference to an internally implemented
object that supports the System.Runtime.Remoting.Lifetime.ILease interface. As you would guess,
the ILease interface can be used to interact with the leasing behavior of a given CAO or WKO-singleton
type. Here is the formal definition:

public interface ILease
{

TimeSpan CurrentLeaseTime { get; }

CHAPTER 18 ■ THE .NET REMOTING LAYER592

8237CH18.qxd 12/28/06 6:52 PM Page 592

CHAPTER 18 ■ THE .NET REMOTING LAYER 593

LeaseState CurrentState { get; }
TimeSpan InitialLeaseTime { get; set; }
TimeSpan RenewOnCallTime { get; set; }
TimeSpan SponsorshipTimeout { get; set; }
void Register(System.Runtime.Remoting.Lifetime.ISponsor obj);
void Register(System.Runtime.Remoting.Lifetime.ISponsor obj,

TimeSpan renewalTime);
TimeSpan Renew(TimeSpan renewalTime);
void Unregister(System.Runtime.Remoting.Lifetime.ISponsor obj);

}

The ILease interface not only allows you to obtain information regarding the current lease (via
CurrentLeaseTime, CurrentState, and InitialLeaseTime), but also provides the ability to build lease
“sponsors” (more details on this later). Table 18-6 documents role of each ILease member.

Table 18-6. Members of the ILease Interface

Member Meaning in Life

CurrentLeaseTime Gets the amount of time remaining before the object deactivates, if it
does not receive further method invocations.

CurrentState Gets the current state of the lease, represented by the LeaseState
enumeration.

InitialLeaseTime Gets or sets the initial amount of time for a given lease.
The initial lease time of an object is the amount of time following the
initial activation before the lease expires if no other method calls occur.

RenewOnCallTime Gets or sets the amount of time by which a call to the remote object
increases the CurrentLeaseTime.

SponsorshipTimeout Gets or sets the amount of time to wait for a sponsor to return with
a lease renewal time.

Register() Overloaded. Registers a sponsor for the lease.

Renew() Renews a lease for the specified time.

Unregister() Removes a sponsor from the sponsor list.

To illustrate the characteristics of the default lease of a CAO or WKO-singleton remote object,
assume that your current CAOCarGeneralAsm project has defined a new internal class named
LeaseInfo. LeaseInfo supports a static member named LeaseStats(), which dumps select statistics
regarding the current lease for the CarProvider type to the server-side console window (be sure to
specify a using directive for the System.Runtime.Remoting.Lifetime namespace to inform the com-
piler where the ILease type is defined):

internal class LeaseInfo
{

public static void LeaseStats(ILease itfLease)
{

Console.WriteLine("***** Lease Stats *****");
Console.WriteLine("Lease state: {0}", itfLease.CurrentState);
Console.WriteLine("Initial lease time: {0}:{1}",

itfLease.InitialLeaseTime.Minutes,
itfLease.InitialLeaseTime.Seconds);

Console.WriteLine("Current lease time: {0}:{1}",
itfLease.CurrentLeaseTime.Minutes,
itfLease.CurrentLeaseTime.Seconds);

Console.WriteLine("Renew on call time: {0}:{1}",
itfLease.RenewOnCallTime.Minutes,

8237CH18.qxd 12/28/06 6:52 PM Page 593

Figure 18-6. The default lease information for CarProvider

itfLease.RenewOnCallTime.Seconds);
Console.WriteLine();

}
}

Now that you have this helper type in place, assume LeaseInfo.LeaseStats() is called within
the GetJBCByIndex() and GetAllAutos() methods of the CarProvider type. Once you recompile the
server and client assemblies (again, simply to ensure Visual Studio 2005 copies the latest and greatest
version of the CarGeneralAsm.dll to the client and server application directories), run the application
once again. Your server’s console window should now look something like Figure 18-6.

CHAPTER 18 ■ THE .NET REMOTING LAYER594

Altering the Default Lease Characteristics
Obviously, the default lease characteristics of a CAO/WKO-singleton type may not be appropriate
for each and every CAO or WKO-singleton remote object. If you wish to alter these default settings,
you have two approaches:

• You can adjust the default lease settings using a server-side *.config file.

• You can programmatically alter the settings of a type’s default lease by overriding members
of the MarshalByRefObject base class.

While each of these options will indeed alter the default lease settings, there is a key difference.
When you make use of a server-side *.config file, the lease settings affect all objects hosted by the
server process. In contrast, when you override select members of the MarshalByRefObject type, you
are able to change lease settings on an object-by-object basis.

To illustrate changing the default lease settings via a remoting *.config file, assume you have
updated the server-side XML data with the following additional <lifetime> element:

<configuration>
<system.runtime.remoting>

<application>
<lifetime leaseTime = "15M" renewOnCallTime = "5M"/>
<service>

<activated type = "CarGeneralAsm.CarProvider, CarGeneralAsm"/>
</service>
<channels>

<channel ref="tcp" port="32469" />
</channels>

</application>
</system.runtime.remoting>

</configuration>

8237CH18.qxd 12/28/06 6:52 PM Page 594

CHAPTER 18 ■ THE .NET REMOTING LAYER 595

Notice how the leaseTime and renewOnCallTime properties have been marked with the M suffix,
which as you might guess stands for the number of minutes to set for each lease-centric unit of
time. If you wish, your <lifetime> element may also suffix the numerical values with MS (millisec-
onds), S (seconds), H (hours), or even D (days).

Now recall that when you update the server’s *.config file, you have effectively changed the
leasing characteristics for each CAO/WKO-singleton object hosted by the server. As an alternative,
you may choose to programmatically override the InitializeLifetime() method in a specific
remote type:

public class CarProvider : MarshalByRefObject
{

public override object InitializeLifetimeService()
{

// Obtain the current lease info.
ILease itfLeaseInfo =

(ILease) base.InitializeLifetimeService();
// Adjust settings.
itfLeaseInfo.InitialLeaseTime = TimeSpan.FromMinutes(50);
itfLeaseInfo.RenewOnCallTime = TimeSpan.FromMinutes(10);
return itfLeaseInfo;

}
...
}

Here, the CarProvider has altered its InitialLeaseTime value to 50 minutes and its RenewOn-
CallTime value to 10. Again, the benefit of overriding InitializeLifetimeServices() is the fact that
you can configure each remote type individually.

Finally, on an odd note, if you wish to disable lease-based lifetime for a given CAO/WKO-sin-
gleton object type, you may override InitializeLifetimeServices() and simply return null. If you
do so, you have basically configured an MBR type that will never die as long as the hosting server
application is alive and kicking.

Server-Side Lease Adjustment
As you have just seen, when an MBR type overrides InitializeLifetimeServices(), it is able to
change its default leasing behavior at the time of activation. However, for the sake of argument,
what if a remote type desires to change its current lease after its activation cycle? For example,
assume the CarProvider has a new method whose implementation requires a lengthy operation
(such as connecting to a remote database and reading a large set of records). Before beginning
the task, you may programmatically adjust your lease such that if you have less than one
minute, you renew the lease time to ten minutes. To do so, you can make use of the inherited
MarshalByRefObject.GetLifetimeService() and ILease.Renew() methods as follows:

// Server-side lease adjustment.
// Assume this new method is of the CarProvider type.
public void DoLengthyOperation()
{

ILease itfLeaseInfo = (ILease)this.GetLifetimeService();
if(itfLeaseInfo.CurrentLeaseTime.TotalMinutes < 1.0)

itfLeaseInfo.Renew(TimeSpan.FromMinutes(10));

// Do lengthy task...
}

8237CH18.qxd 12/28/06 6:52 PM Page 595

CHAPTER 18 ■ THE .NET REMOTING LAYER596

Client-Side Lease Adjustment
On an additional ILease-related note, it is possible for the client’s application domain to adjust the
current lease properties for a CAO/WKO-singleton type it is communicating with across the wire.
To do so, the client makes use of the static RemotingServices.GetLifetimeService() method. As
a parameter to this member, the client passes in the reference to the remote type as follows:

// Client-side lease adjustment.
CarProvider cp = new CarProvider(cars);
ILease itfLeaseInfo = (ILease)RemotingServices.GetLifetimeService(cp);
if(itfLeaseInfo.CurrentLeaseTime.TotalMinutes < 10.0)

itfLeaseInfo.Renew(TimeSpan.FromMinutes(1000));

This approach can be helpful if the client’s application domain is about to enter a lengthy process
on the same thread of execution that is using the remote type. For example, if a single-threaded applica-
tion is about to print out a 100-page document, the chances are quite good that a remote CAO/WKO-
singleton type may time out during the process. The other (more elegant) solution, of course, is to
spawn a secondary thread of execution, but I think you get the general idea.

Server-Side (and Client-Side) Lease Sponsorship
The final topic regarding the lease-based lifetime of a CAO/WKO-singleton object to consider is the
notion of lease sponsorship. As you have just seen, every CAO/WKO-singleton entity has a default
lease, which may be altered in a number of ways on both the server side as well as the client side.
Now, regardless of the type’s lease configuration, eventually an MBR object’s time will be up. At this
point, the runtime will garbage-collect the entity . . . well, almost.

The truth of the matter is that before an expired type is truly marked for garbage collection, the
runtime will check to see if the MBR object in question has any registered lease sponsors. Simply
put, a sponsor is a type that implements the ISponsor interface, which is defined as follows:

public interface System.Runtime.Remoting.Lifetime.ISponsor
{

TimeSpan Renewal(ILease lease);
}

If the runtime detects that an MBR object has a sponsor, it will not garbage-collect the type, but
rather call the Renewal() method of the sponsor object to (once again) add time to the current lease.
On the other hand, if the MBR has no sponsor, the object’s time is truly up.

Assuming that you have created a custom class that implements ISponsor, and thus implements
Renewal() to return a specific unit of time (via the TimeSpan type), the next question is how exactly
to associate the type to a given remote object. Again, this operation may be performed by either the
server’s application domain or the client’s application domain.

To do so, the interested party obtains an ILease reference (via the inherited GetLifetimeService()
method on the server or using the static RemotingServices.GetLifetimeService() method on the
client) and calls Register():

// Server-side sponsor registration.
CarSponsor mySponsor = new CarSponsor();
ILease itfLeaseInfo = (ILease)this.GetLifetimeService();
itfLeaseInfo.Register(mySponsor);

// Client-side sponsor registration.
CarSponsor mySponsor = new CarSponsor();
CarProvider cp = new CarProvider(cars);
ILease itfLeaseInfo = (ILease)RemotingServices.GetLifetimeService(cp);
itfLeaseInfo.Register(mySponsor);

8237CH18.qxd 12/28/06 6:52 PM Page 596

CHAPTER 18 ■ THE .NET REMOTING LAYER 597

In either case, if a client or server wishes to revoke sponsorship, it may do so using the ILease.
Unregister() method, for example:

// Remove the sponsor for a given object.
itfLeaseInfo.Unregister(mySponsor);

■Note Client-side sponsored objects, in addition to implementing ISponsor, must also derive from
MarshalByRefObject, given that the client must pass the sponsor to the remote application domain!

So, as you can see, the lifetime management of stateful MBR types is a bit more complex than
a standard garbage collection. On the plus side, you have a ton of control regarding when a remote
type is destined to meet its maker. However, as you may have gathered, there is the chance that
a remote type may be removed from memory without the client’s knowledge. Should a client attempt
to invoke members on a type that has already been removed from memory, the runtime will throw
a System.Runtime.Remoting.RemotingException, at which point the client may create a brand-new
instance of the remote type or simply take an alternative course of action.

■Source Code The CAOCarGeneralAsmLease, CAOCarProviderServerLease, and CAOCarProviderClientLease
projects are located under the Chapter 18 subdirectory.

Alternative Hosts for Remote Objects
Over the course of this chapter, you have constructed numerous console-based server hosts, which
provide access to some set of remote objects. If you have a background in the classic Distributed
Component Object Model (DCOM), this step may have seemed a bit odd. In the world of DCOM, it
was not unusual to build a single server-side COM server that contained the remote objects and was
also in charge of receiving incoming requests from some remote client. This single *.exe DCOM
application would quietly load in the background without presenting a looming command window.

When you are building a .NET server assembly, the chances are quite good that the remote machine
does not need to display any sort of UI. Rather, all you really wish to do is build a server-side entity that
opens the correct channel(s) and registers the remote object(s) for client-side access. Moreover, when
you build a simple console host, you (or someone) is required to manually run the server-side *.exe
assembly, due to the fact that .NET remoting will not automatically run a server-side *.exe when called
by a remote client.

Given these two issues, the question then becomes, how can you build an invisible listener that
loads automatically? .NET programmers have two major choices at their disposal when they wish to
build a transparent host for various remote objects:

• Build a .NET Windows service application to host the remote objects.

• Allow IIS to host the remote objects.

Hosting Remote Objects Using a Windows Service
Perhaps the ideal host for remote objects is a Windows service, given that it

• Can be configured to load automatically on system startup

• Runs as an invisible background process

• Can be run under specific user accounts

8237CH18.qxd 12/28/06 6:52 PM Page 597

CHAPTER 18 ■ THE .NET REMOTING LAYER598

Figure 18-7. Creating a new Windows Service project workspace

As luck would have it, building a custom Windows service using the .NET platform is extremely
simple when contrasted to the raw Win32 API. To illustrate, let’s create a Windows Service project
named CarWinService (see Figure 18-7) that will be in charge of hosting the remote types contained
within the CarGeneralAsm.dll.

Visual Studio 2005 responds by generating a partial class (named Service1 by default), which
derives from System.ServiceProcess.ServiceBase, and another class (Program), which implements
the service’s Main() method. Given that Service1 is a rather nondescript name for your custom
service, the first order of business is to change the values of the (Name) and ServiceName properties
to CarService using the IDE’s Properties window. The distinction between these two settings is that
the (Name) value is used to define the name used to refer to your type in the code base, while the
ServiceName property marks the name to display to Windows service–centric configuration tools.

Before moving on, be sure you set a reference to the CarGeneralAsm.dll and System.Remoting.
dll assemblies, and specify the following additional using directives to the file containing the
CarService class definition:

using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels.Http;
using System.Runtime.Remoting.Channels;
using System.Diagnostics;

Implementing the Main() Method
The Main() method of the Program class is in charge of running each service defined in the project
by passing an array of ServiceBase types into the static Service.Run() method. Given that you have
renamed your custom service from Service1 to CarService, you should find the following class defi-
nition (comments deleted for clarity):

8237CH18.qxd 12/28/06 6:52 PM Page 598

CHAPTER 18 ■ THE .NET REMOTING LAYER 599

static class Program
{

static void Main()
{

ServiceBase[] ServicesToRun;
ServicesToRun = new ServiceBase[] { new CarService() };
ServiceBase.Run(ServicesToRun);

}
}

Implementing CarService.OnStart()
You can likely already assume what sort of logic should happen when your custom service is started
on a given machine. Recall that the role of CarService is to perform the same tasks as your custom
console-based service. Thus, if you wish to register CarService as a WKO-singleton type that is avail-
able via HTTP, you could add the following code to the OnStart() method (as you would hope, you
may make use of the RemotingConfiguration type to load up a server-side remoting *.config file, rather
than hard-coding your implementation, when hosting remote objects using a Windows service):

protected override void OnStart(string[] args)
{

// Create a new HttpChannel.
HttpChannel c = new HttpChannel(32469);
ChannelServices.RegisterChannel(c);
// Register as single call WKO.
RemotingConfiguration.RegisterWellKnownServiceType(

typeof(CarGeneralAsm.CarProvider),
"CarProvider.soap",
WellKnownObjectMode.SingleCall);

// Log successful startup.
EventLog.WriteEntry("CarWinService",

"CarWinService started successfully!",
EventLogEntryType.Information);

}

Note that once the type has been registered, you log a custom message to the Windows event
log (via the System.Diagnostics.EventLog type) to document that the host machine successfully
started your service.

Implementing OnStop()
Technically speaking, the CarService does not demand any sort of shutdown logic. For illustrative
purposes, let’s post another event to the EventLog to log the termination of the custom Windows
service:

protected override void OnStop()
{

EventLog.WriteEntry("CarWinService",
"CarWinService stopped",
EventLogEntryType.Information);

}

Now that the service is complete, the next task is to install this service on the remote machine.

8237CH18.qxd 12/28/06 6:52 PM Page 599

CHAPTER 18 ■ THE .NET REMOTING LAYER600

Figure 18-8. Including an installer for the custom Windows service

Figure 18-9. Establishing the identity of the CarService

Adding a Service Installer
Before you can install your service on a given machine, you need to add an additional type into your
current CarWinService project. Specifically, any Windows service (written using .NET or the Win32
API) requires a number of registry entries to be made to allow the OS to interact with the service itself.
Rather than making these entries manually, you can simply add an Installer type to a Windows
service project, which will configure your ServiceBase-derived type correctly when installed on the
target machine.

To add an installer for the CarService, open the design-time service editor (by double-clicking
the CarService.cs file from Solution Explorer), right-click anywhere within the designer, and select
Add Installer (see Figure 18-8).

This selection will add a new component that derives from the System.Configuration.Install.
Installer base class. On your designer will be two components. The serviceInstaller1 type repre-
sents a specific service installer for a specific service in your project. If you select this icon and view
the Properties window, you will find that the ServiceName property has been set to the CarService
class type.

The second component (serviceProcessInstaller1) allows you to establish the identity under
which the installed service will execute. By default, the Account property is set to User. Using the
Properties window of Visual Studio 2005, change this value to LocalService (see Figure 18-9).

8237CH18.qxd 12/28/06 6:52 PM Page 600

CHAPTER 18 ■ THE .NET REMOTING LAYER 601

Figure 18-10. The Windows Services applet

That’s it! Now compile your project.

Installing the CarWinService
Installing CarService.exe on a given machine (local or remote) requires two steps:

1. Move the compiled service assembly (and any necessary external assemblies; CarGeneralAsm.
dll in this example) to the remote machine.

2. Run the installutil.exe command-line tool, specifying your service as an argument.

Assuming step 1 is complete, open a Visual Studio 2005 command window, navigate to the
location of the CarWinService.exe assembly, and issue the following command (note that this same
tool can be used to uninstall a service as well):

installutil carwinservice.exe

Once this Windows service has been properly installed, you are now able to start and configure
it using the Services applet, which is located under the Administrative Tools folder of your system’s
Control Panel. Once you have located your CarService (see Figure 18-10), click the Start link to load
and run the binary.

■Source Code The CarWinService project is located under the Chapter 18 subdirectory.

Hosting Remote Objects Using IIS
Hosting a remote assembly under IIS is even simpler than building a Windows service, as IIS is
preprogrammed to allow incoming HTTP requests via port 80. Now, given the fact that IIS is a web
server, it should stand to reason that IIS is only able to host remote objects using the HttpChannel
type (unlike a Windows service, which can also leverage the TcpChannel type). Assuming this is not
perceived as a limitation, follow these steps to leverage the remoting support of IIS:

8237CH18.qxd 12/28/06 6:52 PM Page 601

CHAPTER 18 ■ THE .NET REMOTING LAYER602

1. On your hard drive, create a new folder to hold your CarGeneralAsm.dll. Within this folder,
create a subdirectory named \Bin. Now, copy the CarGeneralAsm.dll to this subdirectory
(e.g., C:\IISCarService\Bin).

2. Open the Internet Information Services applet on the host machine (located under the
Administrative Tools folder in your system’s Control Panel).

3. Right-click the Default Web Site node and select New ➤ Virtual Directory.

4. Create a virtual directory that maps to the root folder you just created (C:\IISCarService).
The remaining default settings presented by the New Virtual Directory Wizard are fine.

5. Finally, create a new configuration file named web.config to control how this virtual direc-
tory should register the remote type (see the following code). Make sure this file is saved
under the root folder (in this example, C:\IISCarService).

<configuration>
<system.runtime.remoting>

<application>
<service>

<wellknown mode="Singleton"
type="CarGeneralAsm.CarProvider, CarGeneralAsm"
objectUri="carprovider.soap" />

</service>
<channels>

<channel ref="http"/>
</channels>

</application>
</system.runtime.remoting>

</configuration>

Now that your CarGeneralAsm.dll has been configured to be reachable via HTTP
requests under IIS, you can update your client-side *.config file as follows (using the name
of your IIS host, of course):

<configuration>
<system.runtime.remoting>

<application>
<client displayName = "CarClient">

<wellknown
type="CarGeneralAsm.CarProvider, CarGeneralAsm"
url="http://NameTheRemoteIISHost/IISCarHost/carprovider.soap"/>

</client>
<channels>

<channel ref="http"/>
</channels>

</application>
</system.runtime.remoting>

</configuration>

At this point, you are able to run your client application as before.

Asynchronous Remoting
To wrap things up, let’s examine how to invoke members of a remote type asynchronously. In
Chapter 14, you were first introduced to the topic of asynchronous method invocations using dele-
gate types. As you would expect, if a client assembly wishes to call a remote object asynchronously,

8237CH18.qxd 12/28/06 6:52 PM Page 602

CHAPTER 18 ■ THE .NET REMOTING LAYER 603

the first step is to define a custom delegate to represent the remote method in question. At this
point, the caller can make use of any of the techniques seen in Chapter 14 to invoke and receive
the method return value.

By way of a simple illustration, create a new console application (AsyncWKOCarProviderClient)
and set a reference to the first iteration of the CarGeneralAsm.dll assembly. Now, update the Program
class as so:

class Program
{

// The delegate for the GetAllAutos() method.
internal delegate List<JamesBondCar> GetAllAutosDelegate();

static void Main(string[] args)
{

Console.WriteLine("Client started! Hit enter to end");
RemotingConfiguration.Configure

("AsyncWKOCarProviderClient.exe.config");
// Make the car provider.
CarProvider cp = new CarProvider();

// Make the delegate.
GetAllAutosDelegate getCarsDel =

new GetAllAutosDelegate(cp.GetAllAutos);
// Call GetAllAutos() asynchronously.
IAsyncResult ar = getCarsDel.BeginInvoke(null, null);

// Simulate client-side activity.
while(!ar.IsCompleted)
{ Console.WriteLine("Client working..."); }

// All done! Get return value from delegate.
List<JamesBondCar> allJBCs = getCarsDel.EndInvoke(ar);

// Use all cars in List.
foreach(JamesBondCar j in allJBCs)

UseCar(j);
Console.ReadLine();

}
}

Notice how the client application first declares a delegate that matches the signature of the
GetAllAutos() method of the remote CarProvider type. When the delegate is created, you pass in
the name of the method to call (GetAllAutos), as always. Next, you trigger the BeginInvoke() method,
cache the resulting IAsyncResult interface, and simulate some work on the client side (recall that
the IAsyncResult.IsCompleted property allows you to monitor if the associated method has com-
pleted processing). Finally, once the client’s work has completed, you obtain the List<> returned
from the CarProvider.GetAllAutos() method by invoking the EndInvoke() member, and pass each
JamesBondCar into a static helper function named UseCar():

public static void UseCar(JamesBondCar j)
{

Console.WriteLine("Can car fly? {0}", j.isFlightWorthy);
Console.WriteLine("Can car swim? {0}", j.isSeaWorthy);

}

Again, the beauty of the .NET delegate type is the fact that the logic used to invoke remote
methods asynchronously is identical to the process of local method invocations.

8237CH18.qxd 12/28/06 6:52 PM Page 603

CHAPTER 18 ■ THE .NET REMOTING LAYER604

■Source Code The AsyncWKOCarProviderClient project is located under the Chapter 18 subdirectory.

The Role of the [OneWay] Attribute
Imagine that your CarProvider has a new method named AddCar(), which takes a JamesBondCar
input parameter and returns nothing. The key point is that it returns nothing. As you might assume
given the name of the System.Runtime.Remoting.Messaging.OneWayAttribute class, the .NET remoting
layer passes the call to the remote one-way method, but does not bother to set up the infrastructure
used to return a given value (hence the name one-way). Here is the update:

// Home of the [OneWay] attribute.
using System.Runtime.Remoting.Messaging;
...
namespace CarGeneralAsm
{

public class CarProvider : MarshalByRefObject
{

...
// The client can 'fire and forget' when calling this method.
[OneWay]
public void AddCar(JamesBondCar newJBC)
{ theJBCars.Add(newJBC);}

}
}

Callers would invoke this method directly as always:

// Make the car provider.
CarProvider cp = new CarProvider();
// Add a new car.
cp.AddCar(new JamesBondCar("Zippy", 200, false, false));

From the client’s point of view, the call to AddCar() is completely asynchronous, as the CLR will
ensure that a background thread is used to remotely trigger the method. Given that AddCar() has
been decorated with the [OneWay] attribute, the client is unable to obtain any return value from the
call. Because AddCar() returns void, this is not an issue.

In addition to this restriction, also be aware that if you have a [OneWay] method that defines
output or reference parameters (via the out or ref keyword), the caller will not be able to obtain the
callee’s modification(s). Furthermore, if the [OneWay] method happens to throw an exception (of
any type), the caller is completely oblivious of this fact. In a nutshell, remote objects can mark select
methods as [OneWay] to allow the caller to employ a fire-and-forget mentality.

Summary
In this chapter, you examined how to configure distinct .NET assemblies to share types between
application boundaries. As you have seen, a remote object may be configured as an MBV or MBR
type. This choice ultimately controls how a remote type is realized in the client’s application domain
(a copy or transparent proxy).

If you have configured a type to function as an MBR entity, you are suddenly faced with a number
of related choices (WKO versus CAO, single call versus singleton, and so forth), each of which was
addressed during this chapter. As well, you examined the process of tracking the lifetime of a remote
object via the use of leases and lease sponsorship. Finally, you revisited of the role of the .NET dele-
gate type to understand how to asynchronously invoke a remote method (which, as luck would have
it, is identical to the process of asynchronously invoking a local type).

8237CH18.qxd 12/28/06 6:52 PM Page 604

