Derivation: E(cx) = Σni=1 (cxi) P(x = xi) = c Σni=1 xi P(x = xi) = c E(x)
Derivation: E(cx) = Σni=1 c P(x = xi) = c Σni=1 P(x = xi) = c 1 = c
Derivation: E(x + y) = Σni=1 Σmj=1 (xi + yj) P(x = xi and y = yj)
= Σni=1 Σmj=1 [xi P(x = xi and y = yj) + yj P(x = xi and y = yj)]
= Σni=1 Σmj=1 xi P(x = xi and y = yj) + Σni=1 Σmj=1 yj P(x = xi and y = yj)
= Σni=1 xi Σmj=1 P(x = xi and y = yj) + Σmj=1 yj Σni=1 P(x = xi and y = yj)
= Σni=1 xi P(x = xi) + Σmj=1 yj P(y = yj) = E(x) + E(y)
Derivation: The derivation is for n = 4. Distribute E over the expression one term at a time.
E(x1 + x2 + x3 + x4) = E(x1) + E(x2 + x3 + x4)
= E(x1) + E(x2) + E(x3 + x4) = E(x1) + E(x2) + E(x3) + E(x4)
Derivation: Var(x) = E[((x - E(x))2] = E[x2 + 2 x E(x) - E(x)2]
= E(x2) - E[2x E(x)] + E[E(x)2] = E(x2) - 2E(x)E(x) + E(x)2 = E(x2) - E(x)2
Derivation: Var(x + y) = E[(x + y)2] - E(x + y)2
= E(x2 + 2xy + y2) - [E(x) + E(y)]2
= E(x2) + 2E(xy) + E(y2) - E(x)2 - 2E(x)E(y) - E(y)2
= E(x2) + 2E(x)E(y) + E(y2) - E(x)2 - 2E(x)E(y) - E(y)2
= E(x2) + E(y2) - E(x)2 - E(y)2
= E(x2) - E(x)2 + E(y2) - E(y)2
= Var(x) + Var(y)