[§5.6-5.8] Recurrence Relations

1 Recursive Algorithms

- A recursive algorithm is an algorithm which **invokes itself**.
- A recursive algorithm looks at a problem **backward** -- the solution for the current value *n* is a modification of the solutions for the previous values (e.g. *n-1*).
- Basic structure of recursive algorithms:

```
procedure foo(n)
1. if n satisfy some condition then // base case
2. return (possibly a value)
3. else
4. (possibly do some processing)
5. return (possibly some processing using)
6. foo(n-1) // recursive call
```

- Examples:
 - 1. Factorial (n!)

• Recursive algorithm for factorial:

Input: A positive integer $n \ge 0$

• Trace of procedure calls when n = 3

```
factorial(3)
factorial(2)
factorial(1)
factorial(0)
return 1
return 1 * 1 = 1
return 2 * 1 = 2
return 3 * 2 = 6
```

2. Compound interest

With an initial amount of \$100 and 22 % annual interest, the amount at the end of the nth year, A_n , is expressed recursively as:

$$A_n = \begin{cases} (1.22) \cdot A_{n-1}, & x \ge 1\\ 100.0, & x = 0 \end{cases}$$

• A general <u>recursive algorithm</u> for compound interest after n years (where $n \ge 0$) with initial amount a and interest rate r is

```
procedure compound_interest(n, a, r)
1. if (n == 0) then
2. return a
3. return ((1 + r) * compound_interest(n-1, a, r))
end compound_interest
```

3. Greatest Common Divisor (gcd)

```
gcd(a, b) = gcd(b, a mod b), b > 0
```

Recursive algorithm for gcd:

Proof of Correctness using Induction

- Correctness of a recursive algorithm is often shown using mathematical induction, due to the structural similarity -- base case and recursive/inductive case.
- Example: Factorial

Theorem: The algorithm factorial(n) outputs the value of n!, where n \geq 0.

Proof:

Basic Step (n = 0): In line 2, 0! = 1 is correctly outputted.

Inductive Step: Assume the algorithm correctly computes (n-1)! for factorial(n-1). Then for factorial(n), line 3 computes n * (n-1)! = n!, which is the correct value for factorial(n).

• NOTE: The proof above uses "strong mathematical induction", which is defined as follows.

Principle of Strong Mathematical Induction: Let P(n) be a predicate that is defined for integers n, and let a and b be fixed integers with $a \le b$. Suppose the following two statements are true:

- 1. P(a), P(a+1),...,P(b) are all true.
- 2. For all integers $k \ge b$, if P(i) is true for all integers i with $a \le i \le k$, then P(k) is true.

Then the statement "For all integers $n \ge a$, P(n)" is true.

- Notice here
 - o $k \ge b \ge a$. So when b != a, the inductive step starts from some number bigger than a.
 - o P(k) -- <u>not</u> P(k+1) in this definition P(k) depends on all of P(a), P(a+1),..., P(b), P(b+1),...P(k-1). In other words, the inductive hypothesis assumes PREVIOUS terms.

More examples of recursive algorithms

- Usefulness of recursive algorithms
 - o For some problems, it is difficult to derive explicit formulas directly.
 - o Many computer programs have recursive functions because of the reason above.
- Example 1: Fibonacci sequence

$$f_n = \begin{cases} f_{n-1} + f_{n-2}, & \text{when } n \ge 2\\ 1, & \text{when } n = 1\\ 1, & \text{when } n = 0 \end{cases}$$

fo	1
f_I	1
f_2	$f_1 + f_0 =$
f_3	$f_2 + f_1 =$

Recursive algorithm for Fibonocci:

Input: A positive integer $n \ge 0$ Output: f_n

procedure fibonocci(n)

(will do in the class)

• Example 2: Tower of Hanoi problem

There are 3 pegs, and *n* number of disks of various size are stacked in a peg, from the smallest disk at the top to the largest disk at the bottom. How many moves are required to transfer those disks to another peg, if a disk can only be moved one at a time and a smaller disk can only be placed on a bigger disk???

•• A good web app on Hanoi Puzzle

(http://www.softschools.com/games/logic_games/tower_of_hanoi/)

 C_n , the number of moves required to transfer n disks is expressed by a recursive relation:

$$C_n = \begin{cases} 2 \cdot C_{n-1} + 1, & n > 1 \\ 1, & n = 1 \end{cases}$$

- 1) C_{n-1} moves to transfer the top n-1 disks to the intermediate peg (say peg 2);
- 2) 1 move to transfer the bottom disk to the destination peg (say peg 3);
- 3) C_{n-1} moves to transfer n-1 disks from the intermediate peg to the destination peg.

2 Recurrence Relations

2.1 Intro

• Consider the following sequence of numbers:

$$a_1 = 5$$
, $a_2 = 8$, $a_3 = 11$, $a_4 = 14$, $a_5 = 17$, ...

It seems there is a relation between any two adjacent terms a_n and a_{n+1} , namely $\underline{a_{n+1}} = \underline{a_n} + \underline{3}$, for any n (where n >= 1).

There are two ways to express the relation above:

1. Recursively

$$a_n = \begin{cases} a_{n-1} + 3, & n \ge 2 \\ 5, & n = 1 \end{cases}$$

2. Directly

$$\forall n \geq 1. a_n = 3n + 2$$

- A <u>recurrence relation</u> is defined by expressing the nth term (a_n) in terms of its **predecessor**(s) (a_{n-1}). A recurrence relation also includes <u>initial conditions</u> (as base case(s)) where the sequence starts.
- Example 1: Compound interest

With an initial amount M and r% annual interest, the amount at the end of the nth year, A_n , is expressed recursively as:

$$A_n = (1 + r) * A_{n-1}$$
, for all $n >= 1$

With an initial condition

$$Ao = M$$

• Example 2: Fibonacci numbers

$$f_n = f_{n-1} + f_{n-2}$$
, for all $n >= 2$

with initial conditions

$$f_0 = 1$$
 and $f_1 = 1$

2.2 Solving Recurrence Relations

- <u>Closed form</u> of a recurrence relation
 - We are also interested in knowing a direct form, since the recurrence relation does not show it explicitly.
 - o Direct forms do not involve recurrence -- closed forms.
 - \circ Closed forms allows us to plug in a value for n and get the result immediately.

Example: Sequence 5, 8, 11, 14, 17, ...

Closed form is $a_n = 3n + 2$, for all $n \ge 1$. So,

$$a_1 = 3*1 + 2 = 5$$

 $a_2 = 3*2 + 2 = 8$ etc.

- There are two ways to derive a closed form for a given recurrence relation.
 - 1. Iteration
 - 2. Characteristic functions

(1) Iteration Method

- Steps:
 - 1. Write the recurrence equation for a_n (This equation has terms in a_{n-1} , a_{n-2} , etc.)
 - 2. Replace each of a_{n-1}, a_{n-2} by its recursive expression
 - 3. Continue until you see a **pattern** developing
 - 4. Prove (usually by induction) that the pattern found is correct.
- Example 1:

$$a_n = a_{n-1} + 3$$
, for all $n >= 2$

with initial condition $a_1 = 5$

$$a_n = a_{n-1} + 3$$
 $[a_{n-1} = a_{n-2} + 3 ... a \text{ side note}]$
 $= a_{n-2} + 3 + 3$... substitute $a_{n-2} + 3$ for a_{n-1}
 $= a_{n-3} + 3 + 3 + 3$... substitute $a_{n-3} + 3$ for a_{n-2} ...
 $= a_{n-k} + k*3$... derive a pattern for an arbitrary kth iteration ...
 $= a_1 + (n-1)*3$... $k = (n-1)$ since $n-(n-1) = 1$

Then, we can plug in $a_1 = 5$. We get

$$a_n = 5 + (n-1)*3 = 3n - 3 + 5 = 3n + 2$$
 ... closed form

• *Example 2*:

$$S_n = 2*S_{n-1}$$
, for all $n >= 1$

with initial condition $S_0 = 1$

$$\begin{split} S_n &= 2*S_{n\text{-}1} \\ &[S_{n\text{-}1} = 2*S_{n\text{-}2} \ ... \ a \ side \ note \\ &= \end{split}$$

(will do in the class)

• Example 3: Tower of Hanoi

Number of moves required for n disks is

$$C_n = 2C_{n-1} + 1$$
, for all $n >= 2$

with initial condition $C_1 = 1$.

$$\begin{split} C_n &= 2C_{n\text{-}1} + 1 \\ &\qquad [C_{n\text{-}1} = 2C_{n\text{-}2} + 1 \text{ ... a side note} \\ &= 2(2C_{n\text{-}2} + 1) + 1 \\ &= 4C_{n\text{-}2} + 2 + 1 \\ &= 4(2C_{n\text{-}3} + 1) + 2 + 1 \\ &= 4(2C_{n\text{-}3} + 1) + 2 + 1 \\ &= 8C_{n\text{-}3} + 4 + 2 + 1 \\ &\dots \\ &= 2^{k*}C_{n\text{-}k} + 2^{k\text{-}1} + \dots + 2^1 + 2^0 \\ &\dots \\ &= 2^{(n\text{-}1)*}C_1 + 2^{n\text{-}2} + 2^{n\text{-}3} + \dots + 2^1 + 2^0 \\ &\dots \\ &= 2^{(n\text{-}1)*}C_1 + 2^{n\text{-}2} + 2^{n\text{-}3} + \dots + 2^1 + 2^0 \\ &\dots \\ &= 2^{(n\text{-}1)} \cdot (n\text{-}1) \cdot (n\text{-}1) = 1 \end{split}$$

Then we can plug in $C_1 = 1$ in the above, obtaining

$$C_n = 2^{n-1} + 2^{n-2} + 2^{n-3} + \dots + 2^1 + 2^0$$

= $\frac{2^n - 1}{2 - 1}$... by summation of geometric sequence
= $2^n - 1$

• More examples:

a.
$$T(n) = -3*T(n-1), T(0) = 2$$

b.
$$T(n) = T(n-1) + 1$$
, $T(0) = 0$

c.
$$T(n) = 2*T(n-1) + 3$$
, $T(0) = 0$

d.
$$T(n) = T(n/2) + 1$$
, $T(1) = 0$

Proving the correctness of the derived formula

• Now we know how to apply the iteration method to derive explicit formula (i.e., closed form) for recurrence relations of the form:

$$\circ$$
 $T(n) = T(n-c) + a$

$$\circ \quad T(n) = T(n/c) + a$$

where a is some number (constant or some expression which depends on n), and c is a constant.

• The next order of business is to **prove** the correctness of a formula (to verify that you didn't make any calculation mistake -- hopefully!!).

• Example1: Tower of Hanoi

Let T(n) be the number of moves required for n disks. It can be defined in two ways, by recurrence relation and by closed formula, as:

Recurrence relation

$$T(n) = 2*T(n-1)+ 1$$
, for all $n >= 2$, and $T(1) = 1$.

Closed form

$$T(n) = 2^n - 1$$
, for all $n >= 1$.

So we need to prove that the two formulas are the same, for all $n \ge 1$.

Theorem: Show if T(1), T(2),..., T(n) is the sequence defined by

$$T(n) = 2*T(n-1) + 1$$
, for all $n \ge 2$, and $T(1) = 1$

then,
$$T(n) = 2^n - 1$$
, for all $n >= 1$.

Proof: by strong mathematical induction (with one base case).

Basic Step (n = 1):

o Recurrence:
$$T(1) = 1$$
 ... by definition

o Closed form:
$$T(1) = 2^1 - 1 = 1$$

Therefore, the closed formula holds for n = 1.(A)

<u>Inductive Step:</u>

Assume the closed formula holds for n-1, that is, $T(n-1) = 2^{n-1} - 1$, for all $n \ge 2$. Show the formula also holds for n, that is, $T(n) = 2^n - 1$.

$$T(n) = 2*T(n-1) + 1$$
 ... by recursive definition
= $2*(2^{n-1} - 1) + 1$... by inductive hypothesis
= $2*(2^{n-1}) - 2 + 1$
= $2*(2^{n-1}) - 1$
= $2^n - 1$

Therefore, the closed formula holds for $n \ge 2$(B)

By (A) and (B), the closed formula holds for all $n \ge 1$. QED.

• Example 2: Show if T(1), T(2),..., T(n) is the sequence defined by

$$T(n) = -3*T(n-1)$$
 for all $n >= 1$, and $T(0) = 2$

then,
$$T(n) = 2*(-3)^n$$

Proof:

(will do in the class)

(2) Characteristic Equation

• A recurrence relation that involves only the preceding term can be easily solved by iteration. Unfortunately, things tend to get a little messier if there is more than one preceding terms.

Example: How can we derive a closed form for $f_n = f_{n-1} + f_{n-2}$?

• To solve those kinds of patterns, we need more powerful tools.

Second order, Linear Homogeneous recurrence with Constant Coefficients

• Algebra review

The roots
$$r$$
 of a quadratic equation $ax^2 + bx + c = 0$ are
$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

• **Definition:** A <u>second order linear homogeneous recurrence with constant coefficients</u> is a recurrence relation of the form

 $a_n = c_1 * a_{n-1} + c_2 * a_{n-2}$ for all integers $n \ge$ some fixed integer,

where c_1 , c_2 are fixed real numbers with $c_2 != 0$.

- Notes on terminology:
 - \circ second order -- expressions on the RHS contains the two previous terms (a_{n-1} and a_{n-2})
 - o linear -- each term on the RHS is at the first power (i.e., $(a_{n-1})^1$ and $(a_{n-1})^1$)
 - o homogeneous -- every term on the RHS involves ai
 - o constant coefficients -- c₁, c₂ are fixed constants, not involving n

• Examples:

State whether each of the following is a second order linear homogeneous recurrence with constant coefficients.

$a_n = 3a_{n-1} - 2a_{n-2}$	
$a_n = 3a_{n-1} - 2a_{n-2} + 5a_{n-3}$	
$a_n = (1/3) * a_{n-1} - (1/2) * a_{n-2}$	
$a_n = 3(a_{n-1})^2 + 2a_{n-2}$	
$a_n = 2a_{n-2}$	
$a_n = 3a_{n-1} + 2$	
$a_n = (-1)^n * 3a_{n-1} + 2a_{n-2}$	

• **Definition:** Given a recurrence relation $a_n = A*a_{n-1} + B*a_{n-2}$, the <u>characteristic equation</u> of the relation is

$$t^2 - At - B = 0$$

Theorem: Consider a recurrence relation $a_n = A^*a_{n-1} + B^*a_{n-2}$. Let x and y be the **roots** of the characteristic equation for this relation. Then there are any numbers C, D such that

a) If
$$x != y$$
, then $a_n = C^*x^n + D^*y^n$... Distinct roots case

b) If
$$x = y$$
, then $a_n = C^*x^n + D^*n^*y^n$... Single root case

<u>Proof:</u> See the proof on p. 320 for the distinct root case.

- How can we use this theorem to derive closed forms???
- Example 1 (distinct roots): Find the closed form for a recurrence relation

$$a_n = a_{n-1} + 2a_{n-2}$$
, for all integers $n \ge 2$

with initial conditions $a_0 = 1$ and $a_1 = 8$.

Solution:

The characteristic equation for this relation is $t^2 - t - 2 = 0$. Computing the roots of this equation,

$$t^2 - t - 2 = 0$$
, so $(t - 2)(t + 1) = 0$

we get $t_1 = 2$ and $t_2 = -1$. Then from the theorem above, we know the closed form is written as:

$$a_n = C^*(2)^n + D^*(-1)^n \dots (*)$$

Now, we must solve for C and D (at this point, they are unknown). To do so, we use the initial conditions -- by plugging in n = 0 (for a_0) and n = 1 (for a_1) in (*), and solve the two equations.

$$a_0 = C^*(2)^0 + D^*(-1)^0 = C + D = 1$$
 (1)
 $a_1 = C^*(2)^1 + D^*(-1)^1 = 2C - D = 8$ (2)

To solve those equations, there are several ways. Here is one way using substitution. We know C = 1 - D by (1). Substituting this in (2), we get

$$2(1 - D) - D = 8$$

 $2 - 2D - D = 8$
 $3D = -6$
 $D = -2$, so $C = 1 + 2 = 3$

Then we have completely solved the closed form, which is now

$$a_n = 3*(2)^n + (-2)*(-1)^n \dots (**)$$

• Example 2 (single root): Find the closed form for a recurrence relation

$$a_n = 4a_{n-1} - 4a_{n-2}$$
, for all integers $n \ge 2$

with initial conditions $a_0 = 1$ and $a_1 = 3$.

Solution:

The characteristic equation for this relation is $t^2 - 4t + 4 = 0$. Computing the roots of this equation,

$$t^2 - 4t + 4 = 0$$
, so $(t - 2)^2 = 0$

we get t = 2. Then from the theorem above, we know the closed form is written as:

$$a_n = C^*(2)^n + D^*n^*(2)^n \dots (*)$$

Now, we must solve for C and D (at this point, they are unknown). To do so, we use the initial conditions -- by plugging in n = 0 (for a_0) and n = 1 (for a_1) in (*), and solve the two equations.

$$a_0 = C^*(2)^0 + D^*n^*(2)^0 = C = 1$$
 (1)
 $a_1 = C^*(2)^1 + D^*n^*(2)^1 = 2C + 2D = 3$ (2)

We know C = 1 by (1). Substituting this in (2), we get

$$2(1) + 2 D = 3$$

 $2D = 1$
 $D = 1/2$

Then we have completely solved the closed form, which is now

$$\begin{aligned} a_n &= 1^*(2)^n + (1/2)^*n^*(2)^n \\ &= (1 + (1/2)^*n)^* (2)^n \dots (**) \end{aligned}$$

- More examples: Find a closed form and theta complexity for each of the following recurrence relations.
 - a. $a_n = 4a_{n-2}$, for all integers $n \ge 2$, and $a_0 = 1$, $a_1 = -1$.
 - b. $a_n = 2a_{n-1} + a_{n-2}$, for all integers n >= 2, and $a_0 = 1$, $a_1 = 4$.
 - c. $a_n = 10a_{n-1} 25a_{n-2}$, for all integers $n \ge 2$, and $a_0 = a_1 = 1$.
 - d. $a_n = a_{n-1} + a_{n-2}$, for all integers $n \ge 2$, and $a_0 = 1$, $a_1 = 2$.