400 lecture note #8

[85.6-5.8] Recurrence Relations

1 Recursive Algorithms

e Arecursive algorithm is an algorithm which invokes itself.

o Arrecursive algorithm looks at a problem backward -- the solution for the current value n is a
modification of the solutions for the previous values (e.g. n-1).

e Basic structure of recursive algorithms:

procedure foo(n)

1. 1i1f n satisfy some condition then // base case

2. return (possibly a value)

3. else

4. (possibly do some processing)

5. return (possibly some processing using)

6. foo(n-1) // recursive call
o Examples:

1. Factorial (n!)

or =1

11 =1

21 =1 * 2 =11 * 2

31=1*2*3 =21 *3

nt =1*2*>3* __* (n-1) *n=(n-1)! *n

= Recursive algorithm for factorial:

Input: A positive integer n >=0
Output: n!

procedure factorial(n)

1. if n = 0 then

2. return 1 // base case, 0! = 1
3. return n * factorial(n-1) // recursive call

= Trace of procedure calls whenn =3

factorial(3)
factorial(2)
factorial(1)
factorial(0)
return 1
returnl*1=1
return2*1=2
return3*2 =6

2. Compound interest

With an initial amount of $100 and 22 % annual interest, the amount at the end of the nth year,
An, is expressed recursively as:

A= {(1.22) Ay, x>1
n = 1000, x=0

= A general recursive algorithm for compound interest after n years (where n >= 0) with
initial amount a and interest rate r is

procedure compound_interest(n, a, r)

1. if (n == 0) then

2. return a

3. return ((1 + r) * compound_interest(n-1, a, r))
end compound_interest

3. Greatest Common Divisor (gcd)
gcd(a, b) =gcd(b,amod b), b>0

Recursive algorithm for gcd:

Input: Integers a, b
Output: gcd(a, b)

procedure recursive _gcd(a, b)

. if a < b then

swap(a, b)

. if b = 0 then // base case
return a

. return recursive_gcd(b, a mod b) // recursive call

ab_rwN P

Proof of Correctness using Induction

o Correctness of a recursive algorithm is often shown using mathematical induction, due to the structural
similarity -- base case and recursive/inductive case.
o Example: Factorial

procedure factorial(n)

1. if n = 0 then

2. return 1 // base case, 0! =1
2. return n * factorial(n-1) // recursive call

Theorem: The algorithm factorial(n) outputs the value of n!, where n >= 0.
Proof:
Basic Step (n =0): Inline 2, 0! = 1 is correctly outputted.

Inductive Step: Assume the algorithm correctly computes (n-1)! for factorial(n-1). Then for
factorial(n), line 3 computes n * (n-1)! = n!, which is the correct value for factorial(n).

e« NOTE: The proof above uses "strong mathematical induction”, which is defined as follows.

Principle of Strong Mathematical Induction: Let P(n) be a predicate that is defined for
integers n, and let a and b be fixed integers with a <= b. Suppose the following two statements

are true:

1. P(a), P(a+1),..,P(b) are all true.
2. For all integers k >= b, if P(i) is true for all integers i with a <=i <Kk, then

P(K) is true.

Then the statement "For all integers n >=a, P(n)" is true.

« Notice here
o k>=b>=a. Sowhenb I=a, the inductive step starts from some number bigger

than a.
o P(k) -- not P(k+1) in this definition — P(k) depends on all of P(a), P(a+1),.., P(b),
P(b+1),..P(k-1). In other words, the inductive hypothesis assumes PREVIOUS

terms.

More examples of recursive algorithms

o Usefulness of recursive algorithms
o For some problems, it is difficult to derive explicit formulas directly.
o Many computer programs have recursive functions because of the reason above.

o Example 1: Fibonacci sequence

fn-1 + fn—z, whenn > 2
fa = 1, whenn=1
1,whenn =0

fo |l
f11
fo| f1+ fo=

fa | o+ f1=

Recursive algorithm for Fibonocci:

Input: A positive integer n >=0
Output: fn

procedure fibonocci(n)

(will do in the class)

e Example 2: Tower of Hanoi problem

There are 3 pegs, and n number of disks of various size are stacked in a peg, from the smallest disk at
the top to the largest disk at the bottom. How many moves are required to transfer those disks to another
peg, if a disk can only be moved one at a time and a smaller disk can only be placed on a bigger disk???

pegl peg2 peg3

A good web app on Hanoi Puzzle
ttp://www.softschools.com/games/logic games/tower of hanoi/)

Cn, the number of moves required to transfer n disks is expressed by a recursive relation:

c _{z-cn_1+1, n>1
no 1, n=1

1) Cn-1 moves to transfer the top n-1 disks to the intermediate peg (say peg 2);

2) 1 move to transfer the bottom disk to the destination peg (say peg 3);
3) Cn-1 moves to transfer n-1 disks from the intermediate peg to the destination peg.

2 Recurrence Relations
2.1 Intro
o Consider the following sequence of numbers:
ai1= 5, a2= 8, as= 11, as= 14, as= 17, ...

It seems there is a relation between any two adjacent terms an and an+1, namely an+1= ant 3, for any n
(where n >=1).

There are two ways to express the relation above:

1. Recursively

v

a :{an_1+3, n=2
n 5, n=1

2. Directly
vn=>1la,=3n+2

« A recurrence relation is defined by expressing the n term (an) in terms of its predecessor(s) (an-1). A
recurrence relation also includes initial conditions (as base case(s)) where the sequence starts.

o Example 1: Compound interest

http://www.softschools.com/games/logic_games/tower_of_hanoi/

With an initial amount M and r% annual interest, the amount at the end of the nth year, An, is expressed
recursively as:

An=(1+r)*Ang, foralln>=1
With an initial condition
Ac=M
o Example 2: Fibonacci numbers
fo = fa1+ faz, forall n >=2
with initial conditions
fo=landfi=1
2.2 Solving Recurrence Relations
o Closed form of a recurrence relation
o We are also interested in knowing a direct form, since the recurrence relation does not show it
explicitly.
o Direct forms do not involve recurrence -- closed forms.
o Closed forms allows us to plug in a value for n and get the result immediately.
Example: Sequence 5, 8, 11, 14, 17, ...

Closed formisan=3n+ 2, foralln>=1. So,

aa=3*1+2=5
a2=3*2+2=8 etc.

e There are two ways to derive a closed form for a given recurrence relation.
1. Iteration
2. Characteristic functions

(1) lteration Method

o Steps:
1. Write the recurrence equation for an (This equation has terms in an-1, an-2, etc.)
2. Replace each of an-1, an-2 by its recursive expression
3. Continue until you see a pattern developing
4. Prove (usually by induction) that the pattern found is correct.

o Example 1:
an=an1+ 3, foralln>=2

with initial condition a1 =5

an=an1+3
[an1=an2+ 3 ... aside note
=an2+3+3 ... Substitute an-2 + 3 for an-1
=an3+3+3+3 ... substitute an3 + 3 for an-2

= ank + k*3 ... derive a pattern for an arbitrary kth iteration
=a1+(n-1)*3 ... k=(n-1) since n-(n-1) = 1

Then, we can plug in a1 = 5. We get
an=5+(n-1)*3=3n-3+5=3n+2 ... closed form
Example 2:
Sh=2*Sn1, foralln>=1
with initial condition So = 1
Sn=2*Sn1

[Sn-1=2*Sh2 ... aside note

(will do in the class)
Example 3: Tower of Hanoi
Number of moves required for n disks is
Cn=2Cna+ 1, foralln>=2

with initial condition C1 = 1.

Ch=2Chat1
[Ch1=2Ch2+1...aside note
=2(2Cn2+1)+1 ... substitute 2Cn-2 + 1 for Cn1
=4Ch2+2+1

=4(2Cn3+1)+2+1 .. substitute 2Cn-3 + 1 for Cn-2
=8Ch3+4+2+1

= 2%%Cp + 2K+ |+ 21 420 ... a general pattern!!
=20D*Cy + 2024203 4+ |+ 21420 | k=(n-1)since n-(n-1) =1
Then we can plug in C1 = 1 in the above, obtaining

Cp=2""14+2"M2 423 421+ 20

2" -1 , _
= =1 by summation of geometric sequence
= 2" -1

o More examples:
a. T(n)=-3*T(n-1), T(0)=2
b. T(n)=T(n-1)+1, T0)=0
c. T(n)=2*T(n-1)+3, T(0)=0
d T(n)=Tn/2)+1,T(1)=0

Proving the correctness of the derived formula

o Now we know how to apply the iteration method to derive explicit formula (i.e., closed form) for
recurrence relations of the form:
o T(n)=T(n-c)+a
o T(n)=T(nlc)+a
where a is some number (constant or some expression which depends on n), and c is a constant.

e The next order of business is to prove the correctness of a formula (to verify that you didn't make any
calculation mistake -- hopefully!!).

o« Examplel: Tower of Hanoi

Let T(n) be the number of moves required for n disks. It can be defined in two ways, by recurrence
relation and by closed formula, as:

= Recurrence relation

T(n) = 2*T(n-1)+ 1, for all n >= 2, and
T(1) = 1.

o Closed form
T(n)=2"-1,foralln>=1.

So we need to prove that the two formulas are the same, for all n >= 1.

Theorem: Show if T(1), T(2),.., T(n) is the sequence defined by
T(n) =2*T(n-1) + 1, foralln>=2,and T(1) =1

then, T(n) =2"- 1, forall n >= 1.

Proof: by strong mathematical induction (with one base case).

Basic Step (n =1):

o Recurrence: T(1) =1... by definition
o Closed form: T(1)=2'-1=1

Therefore, the closed formula holds forn=1. (A)

Inductive Step:

Assume the closed formula holds for n-1, that is, T(n-1) = 2" - 1, for all n >= 2.
Show the formula also holds for n, that is, T(n) = 2" - 1.

T(n) =2*T(n-1) +1 ... by recursive definition
=2*(2"1-1)+1 ... by inductive hypothesis
=2*(2")-2+1
=2*(2") -1
=2"-1

Therefore, the closed formula holds forn>=2. (B)

By (A) and (B), the closed formula holds for all n >=1. QED.

Example 2: Show if T(1), T(2),.., T(n) is the sequence defined by
T(n) =-3*T(n-1) foralln>=1,and T(0) =2
then, T(n) =2*(-3)"

Proof:

(will do in the class)

(2) Characteristic Equation

A recurrence relation that involves only the preceding term can be easily solved by iteration.
Unfortunately, things tend to get a little messier if there is more than one preceding terms.

Example: How can we derive a closed form for fn =fr1+ fao ?

To solve those kinds of patterns, we need more powerful tools.

Second order, Linear Homogeneous recurrence with Constant Coefficients

Algebra review

The roots r of a quadratic equation ax? + bx + ¢ = 0 are

—b ++Vb?% — 4ac
r =
2a

Definition: A second order linear homogeneous recurrence with constant coefficients is a recurrence
relation of the form

an = C1*an-1 + C2*an-2 for all integers n >= some fixed integer,

where c1, c2 are fixed real numbers with c2 1= 0.

Notes on terminology:
o second order -- expressions on the RHS contains the two previous terms (an-1 and an-2)
o linear -- each term on the RHS is at the first power (i.e., (an-1)* and (an-1)%)
o homogeneous -- every term on the RHS involves ai
o constant coefficients -- c1, c2 are fixed constants, not involving n

Examples:

State whether each of the following is a second order linear homogeneous recurrence with constant
coefficients.

an = 3an-1 - 2an-2

an = 3an-1 - 2an-2 + 5an-3
an = (1/3)*an-1 - (1/2)*an-2
an = 3(an-1)? + 2an-2

an = 2an-2

an=3an1+2

an = (-1)"3an-1 + 2an-2

Definition: Given a recurrence relation an = A*an-1 + B*an-2, the characteristic equation of the relation
is

t2-At-B=0

Theorem: Consider a recurrence relation an = A*an-1 + B*an-2. Let x and y be the roots of the
characteristic equation for this relation. Then there are any numbers C, D such that

a) If x 1=y, thenan = C*x" + D*y" ... Distinct roots case

b) If x =y, then an = C*x" + D*n*y" ... Single root case

Proof: See the proof on p. 320 for the distinct root case.

How can we use this theorem to derive closed forms???
Example 1 (distinct roots): Find the closed form for a recurrence relation

an = an-1 + 2an-2, for all integers n >=2

with initial conditions ao = 1 and a1 = 8.

Solution:

The characteristic equation for this relation is t? - t - 2 = 0. Computing the roots of this equation,
t2-t-2=0,s0(t-2)(t+1)=0

we get t1 =2and t2 =-1. Then from the theorem above, we know the closed form is written as:

an = C*(2)" + D*(-1)" (*)

Now, we must solve for C and D (at this point, they are unknown). To do so, we use the initial
conditions -- by plugging in n = 0 (for ap) and n = 1 (for a1) in (*), and solve the two equations.

a0 =C*(2)° +D*(-1)°=C+D=1 ... (1)
a1 = C*(2)! + D*(-1)!=2C-D =8 (2)

To solve those equations, there are several ways. Here is one way using substitution.
We know C =1-D by (1). Substituting this in (2), we get

2(1-D)-D=8

2-2D-D =?3
3D=-6
D=-2,s0C=1+2=3

Then we have completely solved the closed form, which is now

an=3*2)" + (-2)*(-1)"........... (**)

Example 2 (single root): Find the closed form for a recurrence relation

an = 4an-1 - 4an-2, forall integers n >=2

with initial conditions ao = 1 and a1 = 3.

Solution:

The characteristic equation for this relation is t? - 4t + 4 = 0. Computing the roots of this equation,
t?-4t+4=0,s0(t-2)>=0

we get t=2. Then from the theorem above, we know the closed form is written as:

an = C*(2)" + D*n*(2)"........... *)

Now, we must solve for C and D (at this point, they are unknown). To do so, we use the initial
conditions -- by plugging in n = 0 (for a0) and n =1 (for a1) in (*), and solve the two equations.

2 =C*(2)° +D*n*(22)°=C =1(1)
a1 = C*(2)t + D*n*(2)!=2C+2D =3 ... (2)

We know C =1 by (1). Substituting this in (2), we get
2(1)+2D=3

2D=1

D=1/2

Then we have completely solved the closed form, which is now

an = 1%(2)" + (1/2)*n*(2)"
= (1 + (1/2)*N) *)" e (**)

o More examples: Find a closed form and theta complexity for each of the following recurrence relations.
a. an=4an2, forallintegersn>=2,andao =1, a1 =-1.
b. an=2an1 + anz, for all integersn >=2, and a0 = 1, a1 = 4.
C. an=10an1 - 25an-2, for all integers n >= 2, and a0 = a1 = 1.
d. an=an1+ anz, forall integersn>=2,and a0 =1, a1 = 2.

	[§5.6-5.8] Recurrence Relations
	1 Recursive Algorithms
	2 Recurrence Relations
	2.1 Intro
	2.2 Solving Recurrence Relations

