
400 lecture note #8

[§5.6-5.8] Recurrence Relations

1 Recursive Algorithms

• A recursive algorithm is an algorithm which invokes itself.
• A recursive algorithm looks at a problem backward -- the solution for the current value n is a

modification of the solutions for the previous values (e.g. n-1).
• Basic structure of recursive algorithms:

procedure foo(n)
1. if n satisfy some condition then // base case
2. return (possibly a value)
3. else
4. (possibly do some processing)
5. return (possibly some processing using)
6. foo(n-1) // recursive call

• Examples:
1. Factorial (n!)

0! = 1
1! = 1
2! = 1 * 2 = 1! * 2
3! = 1 * 2 * 3 = 2! * 3
n! = 1 * 2 * 3 * .. * (n-1) * n = (n-1)! * n

 Recursive algorithm for factorial:

Input: A positive integer n >= 0
Output: n!

procedure factorial(n)
1. if n = 0 then
2. return 1 // base case, 0! = 1
3. return n * factorial(n-1) // recursive call

 Trace of procedure calls when n = 3

factorial(3)
 factorial(2)
 factorial(1)
 factorial(0)
 return 1
 return 1 * 1 = 1
 return 2 * 1 = 2
return 3 * 2 = 6

2. Compound interest

With an initial amount of $100 and 22 % annual interest, the amount at the end of the nth year,
An, is expressed recursively as:

𝐴𝐴𝑛𝑛 = �(1.22) ∙ 𝐴𝐴𝑛𝑛−1, 𝑥𝑥 ≥ 1
100.0, 𝑥𝑥 = 0

 A general recursive algorithm for compound interest after n years (where n >= 0) with
initial amount a and interest rate r is

procedure compound_interest(n, a, r)
1. if (n == 0) then
2. return a
3. return ((1 + r) * compound_interest(n-1, a, r))
end compound_interest

3. Greatest Common Divisor (gcd)

gcd(a, b) = gcd(b, a mod b), b > 0

Recursive algorithm for gcd:

Input: Integers a, b
Output: gcd(a, b)

procedure recursive_gcd(a, b)
1. if a < b then
2. swap(a, b)
3. if b = 0 then // base case
4. return a
5. return recursive_gcd(b, a mod b) // recursive call

 Proof of Correctness using Induction

• Correctness of a recursive algorithm is often shown using mathematical induction, due to the structural
similarity -- base case and recursive/inductive case.

• Example: Factorial

 procedure factorial(n)
 1. if n = 0 then

 2. return 1 // base case, 0! = 1
 2. return n * factorial(n-1) // recursive call

Theorem: The algorithm factorial(n) outputs the value of n!, where n >= 0.

Proof:

Basic Step (n = 0): In line 2, 0! = 1 is correctly outputted.

Inductive Step: Assume the algorithm correctly computes (n-1)! for factorial(n-1). Then for
factorial(n), line 3 computes n * (n-1)! = n!, which is the correct value for factorial(n).

• NOTE: The proof above uses "strong mathematical induction", which is defined as follows.

Principle of Strong Mathematical Induction: Let P(n) be a predicate that is defined for
integers n, and let a and b be fixed integers with a <= b. Suppose the following two statements
are true:

1. P(a), P(a+1),..,P(b) are all true.
2. For all integers k >= b, if P(i) is true for all integers i with a <= i < k, then

P(k) is true.

Then the statement "For all integers n >= a, P(n)" is true.

• Notice here
o k >= b >= a. So when b != a, the inductive step starts from some number bigger

than a.
o P(k) -- not P(k+1) in this definition – P(k) depends on all of P(a), P(a+1),.., P(b),

P(b+1),..P(k-1). In other words, the inductive hypothesis assumes PREVIOUS
terms.

 More examples of recursive algorithms

• Usefulness of recursive algorithms
o For some problems, it is difficult to derive explicit formulas directly.
o Many computer programs have recursive functions because of the reason above.

• Example 1: Fibonacci sequence

𝑓𝑓𝑛𝑛 = �
𝑓𝑓𝑛𝑛−1 + 𝑓𝑓𝑛𝑛−2, when 𝑛𝑛 ≥ 2

1, when 𝑛𝑛 = 1
1, when 𝑛𝑛 = 0

 f0 1
 f1 1

 f2 f1 + f0 =
 f3 f2 + f1 =

Recursive algorithm for Fibonocci:

Input: A positive integer n >= 0
Output: fn

procedure fibonocci(n)

 (will do in the class)

• Example 2: Tower of Hanoi problem

There are 3 pegs, and n number of disks of various size are stacked in a peg, from the smallest disk at
the top to the largest disk at the bottom. How many moves are required to transfer those disks to another
peg, if a disk can only be moved one at a time and a smaller disk can only be placed on a bigger disk???

 A good web app on Hanoi Puzzle
(http://www.softschools.com/games/logic_games/tower_of_hanoi/)

Cn, the number of moves required to transfer n disks is expressed by a recursive relation:

𝐶𝐶𝑛𝑛 = �2 ∙ 𝐶𝐶𝑛𝑛−1 + 1, 𝑛𝑛 > 1
1, 𝑛𝑛 = 1

1) Cn-1 moves to transfer the top n-1 disks to the intermediate peg (say peg 2);
2) 1 move to transfer the bottom disk to the destination peg (say peg 3);
3) Cn-1 moves to transfer n-1 disks from the intermediate peg to the destination peg.

==

2 Recurrence Relations

 2.1 Intro

• Consider the following sequence of numbers:

a1= 5, a2= 8, a3= 11, a4= 14, a5= 17, ...

It seems there is a relation between any two adjacent terms an and an+1, namely an+1= an+ 3, for any n
(where n >= 1).

There are two ways to express the relation above:

1. Recursively

𝑎𝑎𝑛𝑛 = �𝑎𝑎𝑛𝑛−1 + 3, 𝑛𝑛 ≥ 2
5, 𝑛𝑛 = 1

2. Directly

∀𝑛𝑛 ≥ 1.𝑎𝑎𝑛𝑛 = 3𝑛𝑛 + 2

• A recurrence relation is defined by expressing the nth term (an) in terms of its predecessor(s) (an-1). A
recurrence relation also includes initial conditions (as base case(s)) where the sequence starts.

• Example 1: Compound interest

http://www.softschools.com/games/logic_games/tower_of_hanoi/

With an initial amount M and r% annual interest, the amount at the end of the nth year, An, is expressed
recursively as:

An = (1 + r)*An-1, for all n >= 1

With an initial condition

A0 = M

• Example 2: Fibonacci numbers

fn = fn-1 + fn-2, for all n >= 2

with initial conditions

f0 = 1 and f1 = 1

2.2 Solving Recurrence Relations

• Closed form of a recurrence relation
o We are also interested in knowing a direct form, since the recurrence relation does not show it

explicitly.
o Direct forms do not involve recurrence -- closed forms.
o Closed forms allows us to plug in a value for n and get the result immediately.

Example: Sequence 5, 8, 11, 14, 17, ...

Closed form is an = 3n + 2, for all n >= 1. So,

a1 = 3*1 + 2 = 5
a2 = 3*2 + 2 = 8 etc.

• There are two ways to derive a closed form for a given recurrence relation.
1. Iteration
2. Characteristic functions

(1) Iteration Method

• Steps:
1. Write the recurrence equation for an (This equation has terms in an-1, an-2, etc.)
2. Replace each of an-1, an-2 by its recursive expression
3. Continue until you see a pattern developing
4. Prove (usually by induction) that the pattern found is correct.

• Example 1:

an = an-1 + 3, for all n >= 2

with initial condition a1 = 5

an = an-1 + 3
 [an-1 = an-2 + 3 ... a side note
 = an-2 + 3 + 3 ... substitute an-2 + 3 for an-1
 = an-3 + 3 + 3 + 3 ... substitute an-3 + 3 for an-2
 ...
 = an-k + k*3 ... derive a pattern for an arbitrary kth iteration
 ...
 = a1 + (n-1)*3 ... k = (n-1) since n-(n-1) = 1

Then, we can plug in a1 = 5. We get

an = 5 + (n-1)*3 = 3n - 3 + 5 = 3n + 2 ... closed form

• Example 2:

Sn = 2*Sn-1, for all n >= 1

with initial condition S0 = 1

Sn = 2*Sn-1
 [Sn-1 = 2*Sn-2 ... a side note
 =

 (will do in the class)

• Example 3: Tower of Hanoi

Number of moves required for n disks is

Cn = 2Cn-1+ 1, for all n >= 2

with initial condition C1 = 1.

Cn = 2Cn-1+ 1
 [Cn-1 = 2Cn-2 + 1 ... a side note
 = 2(2Cn-2 + 1) + 1 ... substitute 2Cn-2 + 1 for Cn-1
 = 4Cn-2 + 2 + 1
 = 4(2Cn-3 + 1) + 2 + 1 ... substitute 2Cn-3 + 1 for Cn-2
 = 8Cn-3 + 4 + 2 + 1

 = 2k*Cn-k + 2k-1 + ...+ 21 + 20 ... a general pattern!!

 = 2(n-1)*C1 + 2n-2 +2n-3 + ...+ 21 + 20 ... k = (n-1) since n-(n-1) = 1

Then we can plug in C1 = 1 in the above, obtaining

𝐶𝐶𝑛𝑛 = 2𝑛𝑛−1 + 2𝑛𝑛−2 + 2𝑛𝑛−3 + ⋯+ 21 + 20

=
2𝑛𝑛 − 1
2 − 1

 … by summation of geometric sequence
= 2𝑛𝑛 − 1

• More examples:
a. T(n) = -3*T(n-1), T(0) = 2
b. T(n) = T(n-1) + 1, T(0) = 0
c. T(n) = 2*T(n-1) + 3, T(0) = 0
d. T(n) = T(n/2) + 1, T(1) = 0

Proving the correctness of the derived formula

• Now we know how to apply the iteration method to derive explicit formula (i.e., closed form) for
recurrence relations of the form:

o T(n) = T(n-c) + a
o T(n) = T(n/c) + a

where a is some number (constant or some expression which depends on n), and c is a constant.

• The next order of business is to prove the correctness of a formula (to verify that you didn't make any
calculation mistake -- hopefully!!).

• Example1: Tower of Hanoi

Let T(n) be the number of moves required for n disks. It can be defined in two ways, by recurrence
relation and by closed formula, as:

 Recurrence relation

T(n) = 2*T(n-1)+ 1, for all n >= 2, and
T(1) = 1.

o Closed form

T(n) = 2n - 1, for all n >= 1.

So we need to prove that the two formulas are the same, for all n >= 1.

--
Theorem: Show if T(1), T(2),.., T(n) is the sequence defined by

T(n) = 2*T(n-1) + 1, for all n >= 2, and T(1) = 1

then, T(n) = 2n - 1, for all n >= 1.

Proof: by strong mathematical induction (with one base case).

Basic Step (n = 1):

o Recurrence: T(1) = 1 ... by definition
o Closed form: T(1) = 21 - 1 = 1

Therefore, the closed formula holds for n = 1. (A)

Inductive Step:

Assume the closed formula holds for n-1, that is, T(n-1) = 2n-1 - 1, for all n >= 2.
Show the formula also holds for n, that is, T(n) = 2n - 1.

T(n) = 2*T(n-1) + 1 ... by recursive definition
 = 2*(2n-1 - 1) + 1 ... by inductive hypothesis
 = 2*(2n-1) - 2 + 1
 = 2*(2n-1) - 1
 = 2n - 1

Therefore, the closed formula holds for n >= 2. (B)

By (A) and (B), the closed formula holds for all n >= 1. QED.

• Example 2: Show if T(1), T(2),.., T(n) is the sequence defined by

T(n) = -3*T(n-1) for all n >= 1, and T(0) = 2

then, T(n) = 2*(-3)n

Proof:

 (will do in the class)

 (2) Characteristic Equation

• A recurrence relation that involves only the preceding term can be easily solved by iteration.
Unfortunately, things tend to get a little messier if there is more than one preceding terms.

Example: How can we derive a closed form for fn = fn-1 + fn-2 ?

• To solve those kinds of patterns, we need more powerful tools.

Second order, Linear Homogeneous recurrence with Constant Coefficients

• Algebra review

The roots 𝑟𝑟 of a quadratic equation 𝑎𝑎𝑎𝑎2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0 are

𝑟𝑟 =
−𝑏𝑏 ± √𝑏𝑏2 − 4𝑎𝑎𝑎𝑎

2𝑎𝑎

• Definition: A second order linear homogeneous recurrence with constant coefficients is a recurrence
relation of the form

an = c1*an-1 + c2*an-2 for all integers n >= some fixed integer,

where c1, c2 are fixed real numbers with c2 != 0.

• Notes on terminology:
o second order -- expressions on the RHS contains the two previous terms (an-1 and an-2)
o linear -- each term on the RHS is at the first power (i.e., (an-1)1 and (an-1)1)
o homogeneous -- every term on the RHS involves ai
o constant coefficients -- c1, c2 are fixed constants, not involving n

• Examples:

State whether each of the following is a second order linear homogeneous recurrence with constant
coefficients.

an = 3an-1 - 2an-2
an = 3an-1 - 2an-2 + 5an-3
an = (1/3)*an-1 - (1/2)*an-2
an = 3(an-1)2 + 2an-2
an = 2an-2
an = 3an-1 + 2
an = (-1)n*3an-1 + 2an-2

• Definition: Given a recurrence relation an = A*an-1 + B*an-2, the characteristic equation of the relation
is

t2 - At - B = 0

Theorem: Consider a recurrence relation an = A*an-1 + B*an-2. Let x and y be the roots of the
characteristic equation for this relation. Then there are any numbers C, D such that

a) If x != y, then an = C*xn + D*yn ... Distinct roots case

b) If x = y, then an = C*xn + D*n*yn ... Single root case

Proof: See the proof on p. 320 for the distinct root case.

• How can we use this theorem to derive closed forms???
• Example 1 (distinct roots): Find the closed form for a recurrence relation

an = an-1 + 2an-2, for all integers n >= 2

with initial conditions a0 = 1 and a1 = 8.

Solution:

The characteristic equation for this relation is t2 - t - 2 = 0. Computing the roots of this equation,

t2 - t - 2 = 0, so (t - 2)(t + 1) = 0

we get t1 = 2 and t2 = -1. Then from the theorem above, we know the closed form is written as:

an = C*(2)n + D*(-1)n (*)

Now, we must solve for C and D (at this point, they are unknown). To do so, we use the initial
conditions -- by plugging in n = 0 (for a0) and n = 1 (for a1) in (*), and solve the two equations.

a0 = C*(2)0 + D*(-1)0 = C + D = 1 (1)
a1 = C*(2)1 + D*(-1)1 = 2C - D = 8 (2)

To solve those equations, there are several ways. Here is one way using substitution.
We know C = 1 - D by (1). Substituting this in (2), we get

2(1 - D) - D = 8
2 - 2D - D = 8
3D = -6
D = -2, so C = 1 + 2 = 3

Then we have completely solved the closed form, which is now

an = 3*(2)n + (-2)*(-1)n (**)

• Example 2 (single root): Find the closed form for a recurrence relation

an = 4an-1 - 4an-2, for all integers n >= 2

with initial conditions a0 = 1 and a1 = 3.

Solution:

The characteristic equation for this relation is t2 - 4t + 4 = 0. Computing the roots of this equation,

t2 - 4t + 4 = 0, so (t - 2)2 = 0

we get t = 2. Then from the theorem above, we know the closed form is written as:

an = C*(2)n + D*n*(2)n (*)

Now, we must solve for C and D (at this point, they are unknown). To do so, we use the initial
conditions -- by plugging in n = 0 (for a0) and n = 1 (for a1) in (*), and solve the two equations.

a0 = C*(2)0 + D*n*(2)0 = C = 1 (1)
a1 = C*(2)1 + D*n*(2)1 = 2C + 2D = 3 (2)

We know C = 1 by (1). Substituting this in (2), we get

2(1) + 2 D = 3
2D = 1
D = 1/2

Then we have completely solved the closed form, which is now

an = 1*(2)n + (1/2)*n*(2)n
 = (1 + (1/2)*n) * (2)n (**)

• More examples: Find a closed form and theta complexity for each of the following recurrence relations.
a. an = 4an-2, for all integers n >= 2, and a0 = 1, a1 = -1.
b. an = 2an-1 + an-2, for all integers n >= 2, and a0 = 1, a1 = 4.
c. an = 10an-1 - 25an-2, for all integers n >= 2, and a0 = a1 = 1.
d. an = an-1 + an-2, for all integers n >= 2, and a0 = 1, a1 = 2.

	[§5.6-5.8] Recurrence Relations
	1 Recursive Algorithms
	2 Recurrence Relations
	2.1 Intro
	2.2 Solving Recurrence Relations

