
400 lecture note #8  

 

[§5.6-5.8] Recurrence Relations  

1 Recursive Algorithms 

• A recursive algorithm is an algorithm which invokes itself. 
• A recursive algorithm looks at a problem backward -- the solution for the current value n is a 

modification of the solutions for the previous values (e.g. n-1). 
• Basic structure of recursive algorithms:  

procedure foo(n) 
1.  if n satisfy some condition then  // base case 
2.    return (possibly a value) 
3.  else 
4.    (possibly do some processing) 
5.    return (possibly some processing using) 
6.           foo(n-1)                 // recursive call 

• Examples:   
1. Factorial (n!)  

0! = 1 
1! = 1 
2! = 1 * 2                      = 1! * 2 
3! = 1 * 2 * 3                  = 2! * 3 
n! = 1 * 2 * 3 * .. * (n-1) * n = (n-1)! * n 

 Recursive algorithm for factorial: 

Input: A positive integer n >= 0 
Output: n!  

procedure factorial(n) 
1. if n = 0 then 
2.   return 1                 // base case, 0! = 1 
3. return n * factorial(n-1)  // recursive call 

 Trace of procedure calls when n = 3 

factorial(3) 
     factorial(2) 
          factorial(1) 
               factorial(0) 
               return 1 
          return 1 * 1 = 1 
     return 2 * 1 = 2 
return 3 * 2 = 6 

  



2. Compound interest  

With an initial amount of $100 and 22 % annual interest, the amount at the end of the nth year, 
An, is expressed recursively as: 

𝐴𝐴𝑛𝑛 = �(1.22) ∙ 𝐴𝐴𝑛𝑛−1, 𝑥𝑥 ≥ 1
100.0, 𝑥𝑥 = 0 

 A general recursive algorithm for compound interest after n years (where n >= 0) with 
initial amount a and interest rate r is  

procedure compound_interest(n, a, r) 
1. if (n == 0) then 
2.   return a 
3. return ((1 + r) * compound_interest(n-1, a, r)) 
end compound_interest 

3. Greatest Common Divisor (gcd)  

gcd(a, b) = gcd(b, a mod b), b > 0 

Recursive algorithm for gcd: 

Input: Integers a, b 
Output:  gcd(a, b)  

procedure recursive_gcd(a, b) 
1. if a < b then 
2.   swap(a, b) 
3. if b = 0 then                     // base case 
4.   return a 
5. return recursive_gcd(b, a mod b)  // recursive call 

 Proof of Correctness using Induction 

• Correctness of a recursive algorithm is often shown using mathematical induction, due to the structural 
similarity -- base case and recursive/inductive case. 

• Example: Factorial  

 procedure factorial(n) 
 1. if n = 0 then 

 2.   return 1                 // base case, 0! = 1 
  2. return n * factorial(n-1)  // recursive call 

Theorem: The algorithm factorial(n) outputs the value of n!, where n >= 0. 

Proof:  

Basic Step (n = 0):  In line 2, 0! = 1 is correctly outputted. 

Inductive Step:  Assume the algorithm correctly computes (n-1)!  for factorial(n-1).  Then for 
factorial(n), line 3 computes n * (n-1)! = n!, which is the correct value for factorial(n).  

• NOTE:  The proof above uses "strong mathematical induction", which is defined as follows.  



Principle of Strong Mathematical Induction:  Let P(n) be a predicate that is defined for 
integers n, and let a and b be fixed integers with a <= b.  Suppose the following two statements 
are true: 

1. P(a), P(a+1),..,P(b) are all true. 
2. For all integers k >= b, if P(i) is true for all integers i with a <= i < k, then 

P(k) is true. 

Then the statement "For all integers n >= a, P(n)" is true. 

• Notice here 
o k >= b >= a.  So when b != a, the inductive step starts from some number bigger 

than a. 
o P(k) -- not P(k+1) in this definition – P(k) depends on all of P(a), P(a+1),.., P(b), 

P(b+1),..P(k-1).  In other words, the inductive hypothesis assumes PREVIOUS 
terms.   

  More examples of recursive algorithms  

• Usefulness of recursive algorithms  
o For some problems, it is difficult to derive explicit formulas directly. 
o Many computer programs have recursive functions because of the reason above. 

• Example 1:  Fibonacci sequence  

𝑓𝑓𝑛𝑛 = �
𝑓𝑓𝑛𝑛−1 + 𝑓𝑓𝑛𝑛−2, when 𝑛𝑛 ≥ 2

1, when 𝑛𝑛 = 1
1, when 𝑛𝑛 = 0

 

 f0   1 
 f1   1 

 f2    f1 +  f0 =    
 f3    f2 +  f1 =    

Recursive algorithm for Fibonocci: 

Input: A positive integer n >= 0 
Output:  fn 

procedure fibonocci(n) 
 
        (will do in the class) 

   

• Example 2:  Tower of Hanoi problem  



There are 3 pegs, and n number of disks of various size are stacked in a peg, from the smallest disk at 
the top to the largest disk at the bottom.  How many moves are required to transfer those disks to another 
peg, if a disk can only be moved one at a time and a smaller disk can only be placed on a bigger disk??? 

 

     A good web app on Hanoi Puzzle 
(http://www.softschools.com/games/logic_games/tower_of_hanoi/)  

Cn, the number of moves required to transfer n disks is expressed by a recursive relation: 

𝐶𝐶𝑛𝑛 = �2 ∙ 𝐶𝐶𝑛𝑛−1 + 1, 𝑛𝑛 > 1
1, 𝑛𝑛 = 1 

1) Cn-1 moves to transfer the top n-1 disks to the intermediate peg (say peg 2);   
2) 1 move to transfer the bottom disk to the destination peg (say peg 3);  
3) Cn-1 moves to transfer  n-1 disks from the intermediate peg to the destination peg. 

========================================================================== 

2 Recurrence Relations 

 2.1 Intro 

• Consider the following sequence of numbers:  

a1= 5, a2= 8, a3= 11, a4= 14, a5= 17, ... 

It seems there is a relation between any two adjacent terms an and an+1, namely an+1= an+ 3, for any n 
(where n >= 1). 

There are two ways to express the relation above:  

1. Recursively  

𝑎𝑎𝑛𝑛 = �𝑎𝑎𝑛𝑛−1 + 3, 𝑛𝑛 ≥ 2
5, 𝑛𝑛 = 1 

2. Directly  

∀𝑛𝑛 ≥ 1.𝑎𝑎𝑛𝑛 = 3𝑛𝑛 + 2 

• A recurrence relation is defined by expressing the nth term (an) in terms of its predecessor(s) (an-1).  A 
recurrence relation also includes initial conditions (as base case(s)) where the sequence starts.  
   

• Example 1:  Compound interest  

http://www.softschools.com/games/logic_games/tower_of_hanoi/


With an initial amount M and r% annual interest, the amount at the end of the nth year, An, is expressed 
recursively as: 

An = (1 + r)*An-1, for all n >= 1 

With an initial condition 

A0 = M 

• Example 2:  Fibonacci numbers 

fn = fn-1 + fn-2, for all n >= 2 

with initial conditions 

f0 = 1 and f1 = 1   

2.2 Solving Recurrence Relations 

• Closed form of a recurrence relation  
o We are also interested in knowing a direct form, since the recurrence relation does not show it 

explicitly. 
o Direct forms do not involve recurrence -- closed forms. 
o Closed forms allows us to plug in a value for n and get the result immediately.   

Example:  Sequence 5, 8, 11, 14, 17, ... 

Closed form is an = 3n + 2, for all n >= 1.  So, 

a1 = 3*1 + 2 = 5 
a2 = 3*2 + 2 = 8  etc. 

• There are two ways to derive a closed form for a given recurrence relation.  
1. Iteration 
2. Characteristic functions 

(1) Iteration Method 

• Steps:  
1. Write the recurrence equation for an (This equation has terms in an-1, an-2, etc.)  
2. Replace each of an-1, an-2 by its recursive expression  
3. Continue until you see a pattern developing  
4. Prove (usually by induction) that the pattern found is correct.  

  
• Example 1:  

an = an-1 + 3, for all n >= 2 

with initial condition a1 = 5 



an = an-1 + 3 
             [an-1 = an-2 + 3 ... a side note  
    = an-2 + 3 + 3         ... substitute an-2 + 3 for an-1 
    = an-3 + 3 + 3 + 3   ... substitute an-3 + 3 for an-2 
    ... 
    = an-k + k*3            ... derive a pattern for an arbitrary kth iteration 
   ... 
    = a1 + (n-1)*3         ... k = (n-1) since n-(n-1) = 1  

Then, we can plug in a1 = 5.  We get  

an = 5 + (n-1)*3 = 3n - 3 + 5 = 3n + 2  ... closed form  

• Example 2:  

Sn = 2*Sn-1, for all n >= 1 

with initial condition S0 = 1 

Sn = 2*Sn-1  
             [Sn-1 = 2*Sn-2 ... a side note  
     = 

            (will do in the class)  

• Example 3:   Tower of Hanoi  

Number of moves required for n disks is 

Cn = 2Cn-1+ 1, for all n >= 2 

with initial condition C1 = 1. 

Cn = 2Cn-1+ 1 
             [Cn-1 = 2Cn-2 + 1 ... a side note  
      = 2(2Cn-2 + 1) + 1           ... substitute 2Cn-2 + 1 for Cn-1 
      = 4Cn-2 + 2 + 1 
      = 4(2Cn-3 + 1) + 2 + 1     ... substitute 2Cn-3 + 1 for Cn-2 
      = 8Cn-3 + 4 + 2 + 1 
      .... 
      = 2k*Cn-k + 2k-1 + ...+ 21 + 20                ... a general pattern!! 
      .... 
      = 2(n-1)*C1 + 2n-2 +2n-3 + ...+ 21 + 20   ... k = (n-1) since n-(n-1) = 1  

Then we can plug in C1 = 1 in the above, obtaining 

𝐶𝐶𝑛𝑛 = 2𝑛𝑛−1 + 2𝑛𝑛−2 + 2𝑛𝑛−3 + ⋯+ 21 + 20 

=  
2𝑛𝑛 − 1
2 − 1

 … by summation of geometric sequence 
=  2𝑛𝑛 − 1 



• More examples:  
a. T(n) = -3*T(n-1), T(0) = 2 
b. T(n) = T(n-1) + 1, T(0) = 0 
c. T(n) = 2*T(n-1) + 3, T(0) = 0 
d. T(n) = T(n/2) + 1, T(1) = 0 

Proving the correctness of the derived formula 

• Now we know how to apply the iteration method to derive explicit formula (i.e., closed form) for 
recurrence relations of the form:  

o T(n) = T(n-c) + a 
o T(n) = T(n/c) + a 

where a is some number (constant or some expression which depends on n), and c is a constant. 

• The next order of business is to prove the correctness of a formula (to verify that you didn't make any 
calculation mistake -- hopefully!!).  
 

• Example1:   Tower of Hanoi  

Let T(n) be the number of moves required for n disks.  It can be defined in two ways, by recurrence 
relation and by closed formula, as:  

 Recurrence relation 

T(n) = 2*T(n-1)+ 1, for all n >= 2, and 
T(1) = 1. 

o Closed form  

T(n) = 2n - 1, for all n >= 1. 

So we need to prove that the two formulas are the same, for all n >= 1. 

-------------------------------------------------------------------------------- 
Theorem:  Show if T(1), T(2),.., T(n) is the sequence defined by 

T(n) = 2*T(n-1) + 1, for all n >= 2, and T(1) = 1 

then, T(n) = 2n - 1, for all n >= 1. 

Proof:  by strong mathematical induction (with one base case). 

Basic Step (n = 1):  

o Recurrence:   T(1) = 1 ... by definition 
o Closed form:  T(1) = 21 - 1 = 1 

Therefore, the closed formula holds for n = 1. ........... (A) 

Inductive Step: 



Assume the closed formula holds for n-1, that is, T(n-1) = 2n-1 - 1, for all n >= 2. 
Show the formula also holds for n, that is, T(n) = 2n - 1. 

T(n) = 2*T(n-1) + 1       ... by recursive definition  
       = 2*(2n-1 - 1) + 1   ... by inductive hypothesis 
       = 2*(2n-1) - 2 + 1  
       = 2*(2n-1) - 1  
       = 2n - 1  

Therefore, the closed formula holds for n >= 2. ........... (B) 

By (A) and (B), the closed formula holds for all n >= 1.  QED. 
---------------------------------------------------------------------  

• Example 2:  Show if T(1), T(2),.., T(n) is the sequence defined by  

T(n) = -3*T(n-1)  for all n >= 1, and T(0) = 2 

then,  T(n) = 2*(-3)n  

Proof:  

        (will do in the class) 

  

 (2) Characteristic Equation 

• A recurrence relation that involves only the preceding term can be easily solved by iteration. 
Unfortunately, things tend to get a little messier if there is more than one preceding terms.    

Example:  How can we derive a closed form for  fn = fn-1 + fn-2 ? 

• To solve those kinds of patterns, we need more powerful tools. 

Second order, Linear Homogeneous recurrence with Constant Coefficients 

• Algebra review  

The roots 𝑟𝑟 of a quadratic equation 𝑎𝑎𝑎𝑎2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐 = 0 are 

𝑟𝑟 =
−𝑏𝑏 ± √𝑏𝑏2 − 4𝑎𝑎𝑎𝑎

2𝑎𝑎
 

• Definition: A second order linear homogeneous recurrence with constant coefficients is a recurrence 
relation of the form  

an = c1*an-1 + c2*an-2  for all integers n >= some fixed integer, 

where c1, c2 are fixed real numbers with c2 != 0.  



• Notes on terminology:  
o second order -- expressions on the RHS contains the two previous terms (an-1 and an-2) 
o linear -- each term on the RHS is at the first power (i.e., (an-1)1 and (an-1)1) 
o homogeneous -- every term on the RHS involves ai  
o constant coefficients -- c1, c2 are fixed constants, not involving n 

 
• Examples:  

State whether each of the following is a second order linear homogeneous recurrence with constant 
coefficients.   

an = 3an-1 - 2an-2                               
an = 3an-1 - 2an-2  + 5an-3   
an = (1/3)*an-1 - (1/2)*an-2     
an = 3(an-1)2 + 2an-2   
an = 2an-2   
an = 3an-1 + 2   
an = (-1)n*3an-1 + 2an-2   

• Definition:  Given a recurrence relation an = A*an-1 + B*an-2, the characteristic equation of the relation 
is  

t2 - At - B = 0 

Theorem: Consider a recurrence relation an = A*an-1 + B*an-2.  Let x and y be the roots of the 
characteristic equation for this relation.  Then there are any numbers C, D such that  

a) If x != y, then an = C*xn + D*yn       ... Distinct roots case 

b) If x = y, then an = C*xn + D*n*yn     ... Single root case 

Proof:  See the proof on p. 320 for the distinct root case. 

• How can we use this theorem to derive closed forms??? 
• Example 1 (distinct roots):  Find the closed form for a recurrence relation  

an = an-1 + 2an-2,  for all integers n >= 2 

with initial conditions a0 = 1 and a1 = 8. 

Solution: 

The characteristic equation for this relation is t2 - t - 2 = 0.  Computing the roots of this equation,  

t2 - t - 2 = 0, so (t - 2)(t + 1) = 0 

we get  t1 = 2 and  t2 = -1.  Then from the theorem above, we know the closed form is written as: 



an = C*(2)n + D*(-1)n ........... (*) 

Now, we must solve for C and D (at this point, they are unknown).  To do so, we use the initial 
conditions -- by plugging in n = 0 (for a0) and n = 1 (for a1) in (*), and solve the two equations. 

a0 = C*(2)0 + D*(-1)0 = C + D = 1   ..... (1) 
a1 = C*(2)1 + D*(-1)1 = 2C - D = 8  ..... (2) 

To solve those equations, there are several ways.  Here is one way using substitution. 
We know C = 1 - D  by (1).  Substituting this in (2), we get  

2(1 - D) - D = 8  
2 - 2D - D = 8 
3D = -6 
D = -2,  so C = 1 + 2 = 3 

Then we have completely solved the closed form, which is now 

an = 3*(2)n + (-2)*(-1)n ........... (**) 

• Example 2 (single root):  Find the closed form for a recurrence relation  

an = 4an-1 - 4an-2,  for all integers n >= 2 

with initial conditions a0 = 1 and a1 = 3. 

Solution: 

The characteristic equation for this relation is t2 - 4t + 4 = 0.  Computing the roots of this equation,  

t2 - 4t + 4 = 0, so (t - 2)2 = 0 

we get  t = 2.  Then from the theorem above, we know the closed form is written as: 

an = C*(2)n + D*n*(2)n ........... (*) 

Now, we must solve for C and D (at this point, they are unknown).  To do so, we use the initial 
conditions -- by plugging in n = 0 (for a0) and n = 1 (for a1) in (*), and solve the two equations. 

a0 = C*(2)0 + D*n*(2)0 = C  = 1   ..... (1) 
a1 = C*(2)1 + D*n*(2)1 = 2C + 2D = 3  ..... (2) 

We know C = 1 by (1).  Substituting this in (2), we get  

2(1) + 2 D = 3 
2D = 1 
D = 1/2 

Then we have completely solved the closed form, which is now 



an = 1*(2)n + (1/2)*n*(2)n  
     = (1 + (1/2)*n) * (2)n .................. (**) 

• More examples:  Find a closed form and theta complexity for each of the following recurrence relations.  
a. an = 4an-2, for all integers n >= 2, and a0 = 1, a1 = -1. 
b. an = 2an-1 + an-2, for all integers n >= 2, and a0 = 1, a1 = 4. 
c. an = 10an-1 - 25an-2, for all integers n >= 2, and a0 = a1 = 1. 
d. an = an-1 + an-2, for all integers n >= 2, and a0 = 1, a1 = 2. 
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