
400 lecture note #7  

 

[§4.8] Algorithms 

3.1 Introduction & Notation 

• An algorithm is a list of step-by-step instructions on how to accomplish a task.  Required properties 

include:  

o Input/Output -- An algorithm takes some input and produces an output. 

o Precision -- Each step is clearly indicated and unambiguous.  

o Finiteness -- The algorithm stops after a finite number of steps. 

Example: Find the maximum of three numbers, a, b, and c  

o Non-algorithm 

"Compare the three (input) numbers and return (or output) the largest one." 

o Algorithm  

� Step 1:  Let x (another number) to have the value of a. 

� Step 2:  If b > x, then set x's value to b. 

� Step 3:  If c > x, then set x's value to c. 

� Step 4:  Return x.  

• Algorithms are often written as pseudocode, which is sort of the middle ground between a formal 

programming language and plain English. 

• Some of the common elements of pseudocode:  

o Each algorithm starts with "procedure name(input values)". 

o There must be at least one "return value" statement. 

NOTE:  A procedure can only return ONE value only. 

o Operators are:  

� +, -, *, /, mod 

� <, <=, >, >= 

� ==, != 

o The assignment operator is := (e.g. "x := 2").  

• The basic constructs are  

o "if cond then action1 else action2" 

o "for var := initial_value to final value do action" 

o "while cond do action" 

o "repeat action until cond" 

o "begin statement1 .. statementn end"  

• Example:  Algorithm max which finds the maximum of three numbers, a, b, and c. 

Input: Three numbers a, b, c 

Output: A number which is the largest of the tree input numbers 

procedure max(a, b, c) 

1. x := a           // x is a local/temporary variable 

2. if b > x then 

3.   x := b         // update x 

4. if c > x then 

5.   x := c         // update x 

6. return x 



3.2 Example Algorithms 

1. Algorithm find_largest which finds the largest number in the sequence s1,..,sn.  

Input:  A list of integers s = {s1,..,sn}, and the length n of the list 

Output: A number which is the largest in s. 

 

2. Algorithm Div which calculate, for a given integer (n) and a positive integer (d),  the quotient (q) and 

remainder (r) where q and r ate integers.  Division is done by repeated subtraction, not by arithmetic 

division.  

Input:  n (an integer), and d (a positive integer) 

Output:  q and r (integers) 

procedure Div(n, d, q, r) 

 

3. Algorithm is_even which tests whether a positive integer m is even  

Input:  A positive integer m 

Output:  true if m is even; false if m is odd 

  

3.3 The Euclidean Algorithm 

• An algorithm which finds the greatest common divisor (gcd) of two integers.  

Example:  gcd(30, 105) = 15 

divisor of 30                                                                                              

divisor of 105    

common   

• "divides"  
o If a, b and q are integers (where b != 0) satisfying a = bq, we say that "b divides a", noted b | a. 

The value q is called the quotient, and b a divisor of a.  

Examples:  15 | 30, and the quotient is 2.  

• Properties of divisors:  

Let m, n and c be integers.  

1. If c | m and c | n, then c | (m + n) 

2. If c | m and c | n, then c | (m - n) 

3. If c | m, then c | mn  

 



• Theorem:  For all integers a, b, q and r, such that a = bq + r, and a >= 0, b > 0 and 0 <= r < b, then 

gcd(a, b) = gcd(b, r).  

First, let's check some cases:  

o 105 = 30 * 3 + 15 -- gcd(105, 30) = gcd(30, 15) = 15 

o 504 = 396 * 1 + 108 -- gcd(504, 396) = gcd(396, 108) = 36 

Proof: 

Let C1 be the set of common divisors of a and b, and C2 be the set of common divisors of b and r.  We 

show C1 ⊇ C2, and C2 ⊇ C1.  Then we can conclude C1 = C2.  

1) Show C1 ⊇ C2 

Let c ∈ C1 be a common divisor of a and b, that is, c | a and c | b.   

From the third property of divisors, we get that c | bq.  

Then  from the second property of divisors, we get that c | (a - bq) = r. ... (A) 

From (A) and hypothesis, we have that c | b and c | r.  Therefore, c is a common divisor of b and r, that 

is, c ∈ C2. 

2) Show C2 ⊇ C1 

Let c ∈ C2 be a common divisor of b and r, that is, c | b and c | r.   

From the third property of divisors, we get that c | bq.  

Then  from the first property of divisors, we get that c | ( bq + r) =a.  ... (B) 

From (B) and hypothesis, c | a and c | b.  Therefore, c is a common divisor of a and b, that is, c ∈ C1. 

From 1) and 2), we showed that all common divisor of a and b are also common divisors of b and r. In 

particular, this is true for the greatest common divisor, i.e., gcd(a, b) = gcd(b, r).  

Algorithm 

procedure gcd(a, b) 

1. if a < b, then 

2.   swap(a, b)     // make a the larger of the two 

3. while b != 0 do 

4.   begin 

5.     r := a mod b 

6.     a := b 

7.     b := r 

8.   end 

9. return a 

 

iteration   a  b  r  

1 gcd(105, 30)  105 30 15 

2         

3         

  



• Example:  gcd(110, 273) -- Section 3.3, question #2  

iteration   a   b  r  

1         

2         

3         

 


