1. Basics

- There are various kinds of relations between mathematical objects – e.g. $+$, $/$, x^y (exponent), \equiv, \neq, \geq, \land, \sim, \rightarrow, \equiv, \cap
- Formal definition of (Binary) Relation:

> So, xRy means $(x,y) \in R$.

- [Example 8.1.1, p. 442]: Define a relation L from R (real numbers) to R as follows:

For all real numbers x and y, $x \, L \, y \iff x < y$.

 a. Is 57 L 53?
 b. Is $(-17) \, L \, (-14)$?
 c. Is 143 L 143?
 d. Is $(-35) \, L \, 1$?

- N-ary Relations – A relation defined on several sets.

> Example: A simple database

Define a quaternary relation R on $A_1 \times A_2 \times A_3 \times A_4$ as follows:

$(a_1, a_2, a_3, a_4) \in R \iff$ a patient with patient ID number a_1, named a_2, was admitted on date a_3, with primary diagnosis a_4.

Example instances/tuples:

- (011985, John Schmidt, 020710, asthma)
- (574329, Tak Kurosawa, 0114910, pneumonia)
- (466581, Mary Lazars, 0103910, appendicitis)

2. Reflexivity, Symmetry, Transitivity

- Important properties of general relations:
Informal definitions:

- **Reflexive**: Each element is related to itself.
- **Symmetric**: If any one element is related to any other element, then the second element is related to the first.
- **Transitive**: If any one element is related to a second and that second element is related to a third, then the first element is related to the third.

[Definitions for Non-relation]

1. R is not reflexive ⇔ there is an element x in A such that x R x [that is, such that (x, x) \(\notin \) R].
2. R is not symmetric ⇔ there are elements x and y in A such that x R y but y R x [that is, such that (x, y) \(\in \) R but (y, x) \(\notin \) R].
3. R is not transitive ⇔ there are elements x, y and z in A such that x R y and y R z but x R z [that is, such that (x, y) \(\in \) R and (y, z) \(\in \) R but (x, z) \(\notin \) R].

Examples:

- **[8.2.1, p. 451]** Let A = \{0, 1, 2, 3\} and define relations R, S, and T on A as follows:

 - \(R = \{(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)\}, \)
 - \(S = \{(0, 0), (0, 2), (0, 3), (2, 3)\}, \)
 - \(T = \{(0, 1), (2, 3)\}. \)

 a. Is R reflexive? symmetric? transitive?
 b. Is S reflexive? symmetric? transitive?
 c. Is T reflexive? symmetric? transitive?

- **[8.2.3, p. 454]** Define a relation R on \(\mathbb{R} \) (the set of all real numbers) as follows:

 For all x, y ∈ \(\mathbb{R} \), x R y ⇔ x < y.

- **[8.2.4, p. 455]** Define a relation T on \(\mathbb{Z} \) (the set of all integers) as follows:

 For all integers m and n, m T n ⇔ 3 \mid (m − n).

 This relation is called congruence modulo 3.

 Is T Reflexive? Symmetric? Transitive?

Transitive Closure of a relation
Example [8.2.5, p. 457]: Let $A = \{0, 1, 2, 3\}$ and consider the relation R defined on A as follows:

$$R = \{(0, 1), (1, 2), (2, 3)\}.$$

Find the transitive closure of R.

ANSWER: \{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)\}.

4. Equivalence Relations

- A relation on a set that satisfies the three properties of reflexivity, symmetry, and transitivity is called an **equivalence relation**.

Example:

✓ Consider the relation R on a set $\{1,2,3,4,5\}$.

$$R = \{(1,1), (1,3), (1,5), (2,2), (2,4), (3,1), (3,3), (3,5), (4,2), (4,4), (5,1), (5,3), (5,5)\}$$

is an equivalence relation because:

- R is reflexive because $(1,1), (2,2), (3,3), (4,4), (5,5)$ are in R.
- R is symmetric because whenever (x,y) is in R, (y,x) is in R as well.
- R is transitive because whenever (x,y) and (y,z) are in R, (x,z) is in R as well.

✓ Consider the relation R on a set $\{1,2,3,4\}$.

$$R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}$$

is NOT an equivalence relation because R is not symmetric.

5. Equivalence Classes

- “In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation) defined on them, then one may naturally **split the set S into equivalence classes**. These equivalence classes are constructed so that elements a and b belong to the same equivalence class if and only if a and b are equivalent.” [Wikipedia]
Example [8.3.5, p. 465]: Let \(A = \{0, 1, 2, 3, 4\} \) and define a relation \(R \) on \(A \) as follows:

\[
R = \{(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)\}.
\]

The directed graph for \(R \) is as shown below. As can be seen by inspection, \(R \) is an equivalence relation on \(A \). Find the distinct equivalence classes of \(R \).

ANSWER: First find the equivalence class of every element of \(A \).

- \([0] = \{x \in A \mid x R 0\} = \{0, 4\}\)
- \([1] = \{x \in A \mid x R 1\} = \{1, 3\}\)
- \([2] = \{x \in A \mid x R 2\} = \{2\}\)
- \([3] = \{x \in A \mid x R 3\} = \{1, 3\}\)
- \([4] = \{x \in A \mid x R 4\} = \{0, 4\}\)

Note that \([0] = [4]\) and \([1] = [3]\). Thus the distinct equivalence classes of the relation are \([0, 4]\), \([1, 3]\), and \([2]\).

Exercises:
1. The relation \(R \) on a set \(\{1,2,3,4,5\} \).

\[
R = \{(1,1), (1,3), (1,5), (2,2), (2,4), (3,1), (3,3), (3,5), (4,2), (4,4), (5,1), (5,3), (5,5)\}
\]

is an equivalence relation (as shown in the previous examples). First find the equivalence classes.

2. Let \(X = \{1,2,3,...,10\} \). Define \(xRy \) to mean that 3 divides \(x-y \).

We can readily verify that \(T \) is reflexive, symmetric and transitive (thus \(R \) is an equivalent relation).

Let us determine the members of the equivalence classes. The equivalence class \([1]\) consists of all \(x \) with \(xR1 \), thus

\[
[1] = \{x \in X \mid 3 \text{ divides } x-1\} = \{1,4,7,10\}.
\]

Find all other equivalent classes.

4. **[§8.5] Partial Order Relations**
• **Antisymmetric relation** -- when symmetric elements are NOT in the relation.

A relation R on a set X is called *antisymmetric* if for all $x, y \in X$, if $(x, y) \in R$ then $(y, x) \notin R$.

Example: The relation R on a set $\{1, 2, 3, 4\}$, and a relation R defined over X as $(x, y) \in R$ if $x \leq y$:

$R = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\}$

is antisymmetric because for all x, y, if $(x, y) \in R$ and $x \neq y$, then $(y, x) \notin R$.

• **Partial order relation** – VERY IMPORTANT in Computer Science (related to data structures such as trees, graphs).

Two fundamental partial order relations are the “less than or equal to (\leq)” relation on a set of real numbers and the “subset (\subseteq)” relation on a set of sets.

• **Example** [8.5.4, p. 501] Another useful partial order relation is the “divides” relation.

Let $|$ be the “divides” relation on a set A of positive integers. That is, for all $a, b \in A$,

$$a \mid b \iff b = ka$$

for some integer k.

Prove that $|$ is a partial order relation on A.

ANSWER: is shown on the textbook, but we will work it out in the class.