[Ch 7] Functions

1. Intro to Relation

- There are various kinds of **relations** between mathematical objects e.g. +, /, x^y (exponent), =, \neq , \geq , \wedge , \sim , \rightarrow , \equiv , \cap
- Formal definition of Relation:

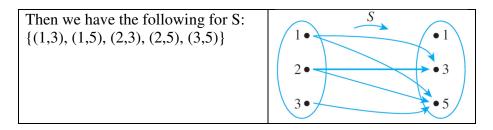
Definition

Let A and B be sets. A **relation** R from A to B is a subset of $A \times B$. Given an ordered pair (x, y) in $A \times B$, x is **related to** y by R, written x R y, if, and only if, (x, y) is in R. The set A is called the domain of R and the set B is called its co-domain.

So, xRy means $(x,y) \in R$.

• [Example 1.1.3, p. 16]: Let $A = \{1, 2, 3\}$ and $B = \{1, 3, 5\}$ and define relations S from A to B as follows:

For all $(x, y) \in A \times B$, $(x, y) \in S$ means that x < y (thus S is a 'less than' relation).



• Exercise [§1.3, #6]:

Define a relation R from R to R as follows:

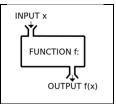
For all
$$(x, y) \in R \times R$$
, $(x, y) \in R$ means that $y = x^2$.

- a. Is $(2, 4) \in \mathbb{R}$? Is $(4, 2) \in \mathbb{R}$? Is $(-3) \mathbb{R}$ 9? Is 9 \mathbb{R} (-3)?
- b. Draw the graph of R in the Cartesian plane.

2. Functions - Basic Concepts and Definitions

• "In mathematics, a **function** is a relation between a set of inputs and a set of permissible outputs with the property that **EACH input** is related to **EXACTLY ONE** output." [Wikipedia].

A function **f** takes an input x, and returns a single output f(x).



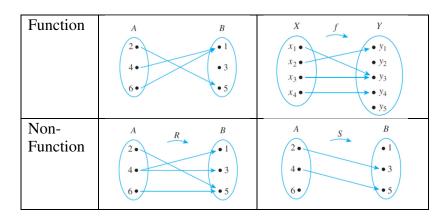
A little more formal definition [§1.3]:

• Definition

A function F from a set A to a set B is a relation with domain A and co-domain Bthat satisfies the following two properties:

- 1. For every element x in A, there is an element y in B such that $(x, y) \in F$.
- 2. For all elements x in A and y and z in B,

if $(x, y) \in F$ and $(x, z) \in F$, then y = z.



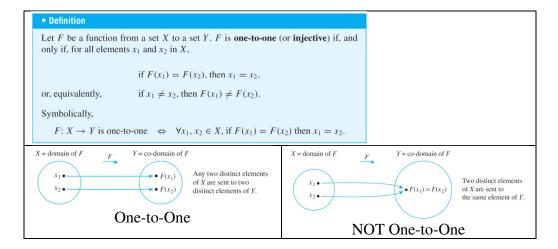
- Notation:
 - 1. $\mathbf{b} = \mathbf{F}(\mathbf{a})$ where $\mathbf{a} \in \mathbf{A}$ and $\mathbf{b} \in \mathbf{B}$.
 - 2. $\mathbf{F}: \mathbf{A} \to \mathbf{B}$
- Example [1.3.5, p. 18]: For all $(x, y) \in R \times R$,

 - (x, y) ∈ L means that y = x 1. Is L a function?
 (x, y) ∈ C means that x² + y² = 1. Is C a function?
- Example functions
 - Square-root function
 - Power function
 - Constant function
 - Successor function (for sequences)
- **Various special functions:**
 - 1. Identity function ... I = f(I)
 - 2. Binary function ... B = f(A) where $B = \{True, False\}$

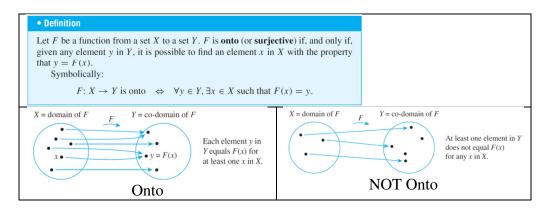
3. One-to-One and Onto, Inverse Functions

Two important properties of functions:

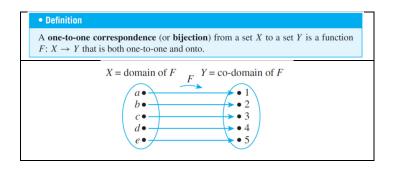
1. **One-to-One** (**Injection**) ... No two elements in the domain are related to the same element in the co-domain.



2. Onto (Surjection) ... Every element in the co-domain has a related element in the domain.



3. One-to-One and Onto (bijection; One-to-One Correspondence) ... Every element in the domain has a unique corresponding element in the co-domain.



- Examples:
 - 1. [7.2.2, p. 399] Define $f: R \to R$ and $g: Z \to Z$ by the rules

$$f(x) = 4x - 1$$
 for all $x \in R$, and $g(n) = n^2$ for all $n \in Z$.

- a. Is f one-to-one? Prove or give a counterexample.
- b. Is g one-to-one? Prove or give a counterexample.
- 2. [7.2.5, p. 403] Define $f: R \to R$ and $h: Z \to Z$ by the rules

f(x) = 4x - 1 for all $x \in R$, and h(n) = 4n - 1 for all $n \in Z$.

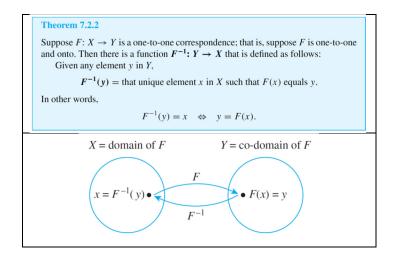
- a. Is f onto? Prove or give a counterexample.
- b. Is h onto? Prove or give a counterexample.
- 3. [7.2.9, p. 409] Let T be the set of all finite strings of x's and y's. Define g: $T \rightarrow T$ by the rule:

For all strings $s \in T$, g(s) = the string obtained by writing the characters of s in reverse order.

a. Is g a one-to-one correspondence from T to itself?

4. Inverse Function

• If a function F is a one-to-one correspondence from a set X to a set Y, there is a function from Y to X that "undoes" the action of F.



• Example [7.2.13, p. 412]: The function $f : R \to R$ defined by the formula

f(x) = 4x - 1 for all real numbers x

was shown to be one-to-one in Example 7.2.2 and onto in Example 7.2.5. Find its inverse function.