[Ch 4] Sequences and Mathematical Induction

1. Sequences

1) Basics

- A sequence is a function whose domain is either all the integers between two given integers or all the integers greater than or equal to a given integer.
 - o Example: 2,4,6,8,10,...
- A typical notation: a_m , a_{m+1} , a_{m+2} ,..., a_n , where each element a_k is called a term and k is a subscript or index (and m is the subscript for the initial term, and n is the subscript for the last term).
 - o Example: $a_1 = 2$, $a_2 = 4$, $a_3 = 6$, $a_4 = 8$, $a_5 = 10$, ...
- A sequence can be given/defined by an **explicit formula**.
 - Example: $a_k = 2 \cdot k$ for all integers $k \ge 1$. Then we can compute the first couple of terms and get $a_1 = 2 \cdot 1 = 2$, $a_2 = 2 \cdot 2 = 4$, $a_3 = 2 \cdot 3 = 6$
- Conversely, an explicit formula of a sequence can be inferred/derived by finding the pattern.
 - Example: A sequence $1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \dots$ Formula: $a_k = \frac{1}{k^2}$ for all integers $k \ge 1$.

.2) Common sequences

1. Arithmetic series

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

2. Geometric series

$$\sum_{i=0}^{n} x^{i} = x^{0} + x^{1} + x^{2} + \dots + x^{n} = 1 + x^{1} + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1}$$

3. Harmonic series

$$\sum_{i=1}^{\infty} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots$$

4. Factorial

$$n! = 1 * 2 * 3 * ... * (n-1) * n$$

2. Mathematical Induction

1) Proof by Mathematical Induction

- Another proof technique often used to prove theorems on values/objects that are composed of **sequence** (such as [1,2,3,4,..]).
- Suppose we want to show a theorem P(n) is true <u>for all positive integer n (>= n_0)</u>. Then we must show $P(n_0)$, $P(n_0+1)$, $P(n_0+2)$,... are all true. But instead of enumerating all possible (sometimes infinite number of) cases, we can show **2 cases**, and generalize inductively.
 - 1. Show for the initial value of the sequence $P(n_0)$
 - 2. Show for a general case "if P(n) is true, then P(n+1) is true."
- This scheme is analogous to **dominos**.

2) Weak form of Mathematical Induction

• Formal definition (worded slightly differently from the textbook)

Principle of (Ordinary or 'Weak') Mathematical Induction:

Let P(n) be a predicate that is defined for integer n, and let a be a fixed integer. Suppose the following two statements are true:

- 1. [Basis Step] P(a) is true.
- 2. [Inductive Step] For all integers $k \ge a$,
 - [Inductive Hypothesis] Assume P(k) is true.
 - [Inductive statement] Then P(k+1) is true.

Then, the statement "For all integers $n \ge a$, P(n)" is true.

• Example:

Theorem:
$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
 for $n = 1, 2, \dots$

<u>Proof:</u> We show by induction on *n*.

Basis Step: When
$$n = 1$$
, $\sum_{i=1}^{1} i = 1$ and $\frac{n(n+1)}{2} = \frac{2}{2} = 1$ (A)

Inductive Step:

[Inductive Hypothesis] Assume $\sum_{i=1}^{n} i = 1+2+3+\cdots+n = \frac{n(n+1)}{2}$ is true for all integer n >= 1. [Inductive statement] We show that the equation is true for n+1, that is, $\sum_{i=1}^{n+1} i = 1+2+3+\cdots+n+(n+1) = \frac{(n+1)(n+2)}{2}$.

Using the inductive hypothesis, we derive it as follows.

$$1 + 2 + 3 + \dots + n + (n + 1)$$

$$= \frac{n(n+1)}{2} + (n+1) \dots \text{ by inductive hypothesis}$$

$$= \frac{n(n+1) + 2(n+1)}{2}$$

$$= \frac{(n+1)(n+2)}{2}$$

$$= \sum_{i=1}^{n+1} i$$
.... (B)

By (A) and (B), the theorem is true (for all integers $n \ge 1$).

- Exercises:
 - 1. $1 + 3 + 5 + ... + (2n-1) = n^2$
 - 2. $1 + 2 + 2^2 + ... + 2^n = 2^{n+1} 1$
 - 3. $n! >= 2^{n-1}$, where n >= 1
 - 4. 5^n -1 is divisible by 4, for n = 1, 2,...
 - 5. For all integers $n \ge 4$, n cents can be obtained using 2-cent and 5-cent coins.

2) Strong form of Mathematical Induction

- Strong mathematical induction is similar to the ordinary version but more general.
- Difference is that the strong form assumes several cases for the basis step
 - -- Rather than assume that P(k) is true to prove that P(k+1) is true, we assume that P(i) is true for all i where the (basis of induction) $\leq i \leq k$.
- In fact, the Weak version is a special case of the Strong version where the basis step assumes just one case
- Formal definition (worded slightly differently from the textbook)

Principle of Strong Mathematical Induction:

Let P(n) be a predicate that is defined for integer n, and let a and b be a fixed integers with a \leq b. Suppose the following two statements are true:

- 1. [Basis Step] P(a), P(a+1),..., and P(b) are all true.
- 2. [Inductive Step] For all integers $k \ge b$,
 - [Inductive Hypothesis] Assume P(i) is true for all integers i, a \ll $i \ll$ k.
 - [Inductive statement] Then P(k+1) is true.

Then, the statement "For all integers $n \ge a$, P(n)" is true.

• <u>Example (**Updated 1/31/2018**)</u>:

P(n) denotes the following: If b_0 , b_1 , b_2 , b_3 ... is a sequence defined by the following:

 $b_0 = 1$, $b_1 = 2$, $b_2 = 3$ and $b_k = b_{k-3} + b_{k-2} + b_{k-1}$ for all integers $k \ge 3$; then, b_n is $\le 3^n$ for all integers $n \ge 0$.

Proof: We show by induction on *n*. We must show:

i) Basis step: prove that P(0), P(1) and P(2) are true. (Note: in sequence problems, we must prove all given base cases.)

```
b_0 = 1 which is \leq 3^0
```

$$b_1 = 2$$
 which is $\leq 3^1$

$$b_2 = 3$$
 which is $< 3^2$

ii) Inductive Step:

[Inductive Hypothesis] Assume P(i) is true for all integers i, where $0 \le i \le k$ and $k \ge 3$, that is, $b_i \le 3^i$. [Inductive Statement] Show that $b_{k+1} \le 3^{k+1}$.

LHS
$$=b_{k+1}$$

$$=b_{k-2}+b_{k-1}+b_k \quad ... \text{ by definition of the sequence}$$

$$\leq 3^{k-2}+3^{k-1}+3^k \quad ... \text{ by Inductive Hypothesis}$$

$$\leq 3^k+3^k+3^k \quad ... \text{ since } 3^{k-2}\leq 3^k \text{ and } 3^{k-1}\leq 3^k$$

$$=3\cdot 3^k$$

$$=3^{k+1}$$

$$=RHS$$

So we have that LHS \leq RHS.

By steps i) and ii), we proved that $b_k \le 3^k$.

• Exercises:

1. [Example 5.4.2, p. 270] Define a sequence s0, s1, s2,.. as follows

$$S_0 = 0$$
, $s_1 = 4$, $s_k = 6s_{k-1} - 5s_{k-2}$ for all integers $k \ge 2$.

- a. Find the first four terms of this sequence.
- b. It is claimed that for each integer n>=0, the nth term of the sequence has the same value as that given by the formula 5^n-1 . In other words, the claim is that all the terms of the sequence satisfy the equation $s_n=5^n-1$. Prove that this is true.
- 2. Write the Strong Mathematical Induction version of the problem given earlier, "For all integer n >= 4, n cents can be obtained by using 2-cent and 5-cent coins." Note the basis steps should prove P(4) and P(5).
- 3. [Section 5.4, Exercise #5, p. 277] Suppose that e₀, e₁, e₂,... is a sequence defined as follows.

$$e_0 = 12, e_1 = 29$$

 $e_k = 5e_{k-1} - 6e_{k-2}$ for all integers $k >= 2$.

Prove that $e_n = 5*3^n + 7*2^n$ for all integer $n \ge 0$. Use Strong Mathematical Induction.