
400 lecture note #2  

 

[Ch 3, 4] Logic and Proofs (2) 

1. Valid and Invalid Arguments (§2.3, §3.4)  

1) Basics 

• An argument is a sequence of statements (e.g. s1, s2, …, sn). 
• All statements in an argument, except for the final one are premises (or assumptions or hypotheses). 
• The final statement is the conclusion. 
• An argument is valid when all premises are true, the conclusion is also true.  In fact, the conclusion is 

‘inferred’ or ‘deduced’ from the truth of the premises. 
• An argument is invalid when all premises are true but the conclusion is false. 

To determine the validity of an argument, we go by these steps: 

1. Construct a truth table for all statements involved. 
2. Identify the rows in which all premises are true – “critical rows”. 
3. If the conclusion for all critical rows are true, the argument is false.  Otherwise the argument is false. 

e.g. 

p → q ˅ ~r 
q → p ˄ r 
Therefore p → r 

 

 

• Exercise: [Section 2.3, Exercise #8, p. 61]  
Use truth table to determine whether the given argument form is valid or invalid. 

p ∨ q 
p →∼q 
p →r 
∴ r 



2) Modus Ponens and Modus Tollens  

• An argument which consists of two premises and a conclusion is called a syllogism.   
• Two forms of syllogisms: 

1. Modus Ponens (“Method of affirmation”) 

If p then q. 
p 
Therefore q 

e.g. All humans are mortal. 
 Socrates is a human. 
 Therefore, Socrates is mortal. 

2. Modus Tollens (“Method of denying”) 

If p then q. 
~q 
Therefore ~p 

e.g. All humans are mortal. 
 Zeus is not moral. 
 Therefore, Zeus is not a human. 

• Exercise: [Section 2.3, #26, 27, p. 62]  
For each problem, write the logical form of each argument, and determine if the argument is valid or 
invalid. 

a) If I go to the movies, I won’t finish my homework. If I don’t finish my homework, I won’t do 
well on the exam tomorrow. 
∴ If I go to the movies, I won’t do well on the exam. 

b) If this number is larger than 2, then its square is larger than 4.  This number is not larger than 2. 
∴ The square of this number is not larger than 4. 

3) Rules of Inference 

• Some general forms of logical inferences (i.e., Rules of Inference). 

Generalization p 
∴ p ˅ q (for any statement of q)  

Specialization p ˄ q    
p    

p ˄ q 
q 

Elimination p ˅ q 
~q 
∴ p 

p ˅ q 
~p 
∴ q 

Transitivity p → q 
q → r 
∴ p → r 

Conjunction p 
q 
∴ p ˄ q 



Contradiction ~p → c (where c means contradiction) 
therefore p 

Proof by 
Division into 
Cases 

p ˅ q 
p → r 
q → r 
∴ r 

• Exercise: [Section 2.3, Exercise #41, p. 63]  
Given a set of premises and a conclusion, use the rules of inferences to deduce the conclusion from the 
premises.  Assume all variables are statement variables. 

a. ∼p ∨ q →r 
b. s ∨ ∼q 
c. ∼t 
d. p → t 
e. ∼p ∧ r →∼s 
f. ∴ ∼q 

4) Formal Proof 

• A formal proof of a conclusion C, given premises p1, p2,…,pn consists of a sequence of steps, each of 
which applies some inference rule to premises or previously-proven statements (antecedents) to yield a 
new true statement (the consequent). 

• A proof demonstrates that if the premises are true, then the conclusion is true. 

Example: Suppose we have the following premises: 

o “It is not sunny and it is cold.” 
o “We will swim if only if it is sunny.” 
o “If we do not swim, then we will canoe.” 
o “If we canoe, then we will be home early.” 

Given these premises, prove the theorem 

 “We will be home early” using inference rules. 

Proof: Let us adopt the following abbreviations: 

sunny = “It is sunny”;  
cold = “It is cold”;  
swim = “We will swim”;  
canoe = “We will canoe”;  
early = “We will be home early”. 

Then, the premises can be written as: 
(1) ~sunny ˄ cold (2) swim ↔ sunny 
(3) ~swim → canoe (4) canoe → early 

Inference steps: 



1. ~sunny ˄ cold  Premise #1. 
2. ~sunny  Simplification of 1. 
3. swim ↔ sunny Premise #2. 
4. ~swim  IFF Truth table on 2,3. 
5. ~swim → canoe  Premise #3. 
6. canoe  Modus ponens on 4,5. 
7. canoe → early Premise #4. 
8. early  Modus ponens on 6,7. 

5) Rules of Inference for Quantifiers 

• Based on the principle of universal instantiation – If some property is true of everything in a set, then it 
is true of any particular thing in the set. 
o e.g. For all real number x, x^2 >= 0. 

• Two forms: 

1. Universal Modus Ponens 

For all x, if P(x), then 
Q(x). 
P(a) for a particular a. 
Therefore, Q(a). 

Example 1: 
All humans are mortal. 
Socrates is human. 
Therefore, Socrates is 
moral. 

Example 2: 
For all even integer x, its square is 
even. 
A particular k is even. 
Therefore, k^2 is even. 

2. Universal Modus Tollens 

For all x, if P(x), then 
Q(x). 
~Q(a) for a particular a. 
Therefore, ~P(a). 

Example: 
All humans are mortal. 
Zeus is not modal. 
Therefore, Zeus is not human. 

• Validity of arguments with quantified statements. 

To say that an argument form is valid means the following: No matter what particular 
predicates are substituted for the predicate symbols in its premises, if the resulting 
premise statements are all true, then the conclusion is also true. An argument is called 
valid if, and only if, its form is valid. 

HOWEVER, be careful in using either form in a proof – Both forms are ONLY proving the 
instantiated value (a).   

• Exercise: [Section 3.4, Exercise #19, p. 143] 
Rewrite the statement “No good cars are cheap” in the form “∀x, if P(x) then ∼Q(x).” Indicate whether 
each of the following arguments is valid or invalid, and justify your answers. 

a) No good car is cheap. 
A Rimbaud is a good car. 
∴ A Rimbaud is not cheap. 

b) No good car is cheap. 
A Simbaru is not cheap. 
∴ A Simbaru is a good car. 



 

2. Methods of Proof (§4.1-§4.7) 

After an argument is determined to be valid, we can construct a proof.  But before we proceed to proofs, we 
must remember that 

• Validity of an argument is only about the form (e.g. Modus Ponens), and NOT about the content. 
e.g.  

If 2 = 3, then I ate my hat.  
I ate my hat.  
∴ 2 = 3. 

• In constructing a proof, we apply reasoning based on the truth/falsity of the domain of the argument. 
 
1) Some terminology  

• Axiom -- a logical sentence/statement. 
• Theorem -- a proposition that has been proved to be true.  e.g. "For all real number x, x2 >= 0". 
• Lemma -- a theorem that is not too interesting by itself but useful in proving other theorems.  e.g. "For 

all real number x, x2 >= x". 
• Corollary -- a theorem which follows from another theorem quickly.  e.g. "For all real number x, x2 + 1 

>= 0". 

2) Various proof techniques 

Example:  
To prove a theorem "If P(x1,..,xn), then Q (x1,..,xn)", where x1 ∈ D1,.., xn ∈ Dn.    

a. Direct proof and counter example   
o Show the theorem is true for all values of x1 ∈ D1,.., xn ∈ Dn, or show a counterexample (x1,..,xn) 

in which the theorem is false.  
o Example:  

Proposition:  If n is any even integer, then (-1)n = 1. 

Proof:  Suppose n is any even integer.  Then n = 2k for some integer k.  Hence, by laws of 
exponents of algebra, 

 (-1)n = (-1)2k = ((-1)2)k = 1k = 1.  Therefore, the proposition is true. 

b. Proof by contradiction  
o To prove the theorem (to be true), show that assuming the negation of the theorem leads to a 

contradiction.   
o Steps:    

1. Start with ¬(P(x1,..,xn) → Q (x1,..,xn)), which is equivalent to P(x1,..,xn) ∧ ¬Q (x1,..,xn).   
2. Then show there are no x1,..,xn which make that negated theorem true. 

o Example1:  

Proposition: For all integers n, if n2 is even, then n is even. 

Proof:  Suppose not.  That is, [Negation of the theorem] suppose there exists an integer n such 
that n2 is even and n is odd.  Since n is odd, n = 2k + 1 for some integer k.  Then, 



n2 = (2k + 1)2 = (2k + 1)(2k + 1) = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 

by the laws of algebra.  Let m = 2k2 + 2k.  Then, m is an integer because 2 and k are integers, 
and sums and products of integers are integers.  It follows by substitution that n2 = 2m + 1 for an 
integer m, and thus n2 is odd.  Thus contradiction. [Hence, the supposition is false and the 
theorem is true.] 

o Example2:  

Proposition: Prove that 21/2 is irrational. 

Proof:  Suppose not.  That is, [Negation of the theorem] suppose 21/2 is rational.  Then 21/2 = p/q 
for some integer p and q with q ≠ 0 and gcd(p,q) = 1. 
Since 21/2 = p/q, we know (p/q) 2 = 2 (i.e., square root of 2, to the power of 2).  Then we get (p/q) 

2 = p2/q2 = 2, and p2 = 2* q2.  So p2 is even. 
Let p = 2k for some integer k.  So p2 = (2k) 2 = 4k2, which is equal to 2* q2.  Dividing both sides 
by 2, we get 2k2 = q2.  Since k2 is an integer, q2 is even, therefore q is even.  But then p and q 
have a common divisor, namely 2, so we have a contradiction. 

c. Proof by contraposition  
o Prove the theorem If P(x1,..,xn), then Q (x1,..,xn) directly by showing (to be true), proving its 

contrapositive, If ~ Q (x1,..,xn), then ~P(x1,..,xn).   
o Example:  

Proposition: For all integers n, if n2 is even, then n is even. 

Proof:  We show if n is odd, n2 is odd.  Suppose n is any odd integer.  By definition of odd, n = 
2k + 1 for some integer k.  By substation and algebra, 

n2 = (2k + 1)2 = (2k + 1)(2k + 1) = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1. 

Let m = 2k2 + 2k.  Then, m is an integer because 2 and k are integers, and sums and products of 
integers are integers.  It follows by substitution that n2 = 2m + 1 for an integer m, and thus n2 is odd. 

d. (Dis)proof by counterexample 

o Prove a universally quantified theorem is false by giving a counterexample.   
o Example:  

Proposition: Every positive integer is the sum of the squares of two integers. 

Proof:  The theorem is false.  For the positive integer 3, there is no way 3 can be expressed as the 
sum of the squares of two integers. 
3 = x2 + y2 => then both x2 < 3 and y2 < 3 => x = 0 or 1 and y = 0 or 1. But for either case, x2 + 
y2 < 3. 

4) Exercises 

a. Give a proof by contradiction of the following statement: 

For all real numbers x and y, if x + y >= 2, then either x >= 1 or y >= 1. 



b. [Section 4.6, Exercise #18, p. 206]  
Fill in the blanks in the following proof by contraposition that for all integers n, if 5 does not divide n2 
then 5 does not divide n. 
 
Proof (by contraposition): [The contrapositive is: For all integers n, if 5 | n then 5 | n2.]  
Suppose n is any integer such that       (a)      . [We must show that      (b)      .] By definition of 
divisibility, n =   (c)   for some integer k. By substitution, n2 =   (d)   = 5(5k2). But 5k2 is an integer 
because it is a product of integers. Hence n2 = 5· (an integer), and so      (e)      [as was to be shown]. 
 

c. [Section 4.1, Exercise #47, p. 162] Determine whether the statement is true or false.  Justify your answer 
with a proof or a counterexample. 

If a sum of two integers is even, then one of the summands is even. 
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