[Ch 2, 3] Logic and Proofs

1.1 Propositions (Propositional Logic)

• A **proposition** is a statement that can be either true (T) or false (F), (but not both).

Examples:

- o "The earth is flat." -- F
- o "March has 31 days." -- T
- o "Time flies like fruit flies." -- Not a proposition (it's a metaphor)
- o "Take CSC 400." -- Not a proposition (it's a command)
- Notation: Lower case letters are often used to represent propositions.

Examples:

- o p: "The earth is flat."
- o q: "March has 31 days."

Connectives (or operators)

- Connectives are symbols that combine propositions. Propositions separated by connectives make a **compound** proposition.
- Basic connectives:
 - 1. "p and q" is the conjunction, noted " $p \wedge q$ ".
 - e.g. "The earth is flat and March has 31 days."
 - 2. "p or q" is the disjunction, noted " $p \vee q$ ".
 - e.g. "The earth is flat or March has 31 days."

<u>NOTE</u>: The meaning of or here is **inclusive**, that is, if one is true, the truth of the other can be either true or false (i.e., not necessarily false). For example, "I will buy a car, or I will take a vacation."

- 3. "**not** p" is the <u>negation</u>, noted " \overline{p} " (or " $\underline{\neg}p$ " or " $\sim p$ ").
 - e.g. "The earth is not flat." or "It is not the case where the earth is flat."
- **Precedence** and associativity of connectives
 - o **not** has the highest precedence, then **and**, then **or**.
 - o and and or associate to the left -- group two propositions from the left
 - o Parentheses are sometimes placed to force the order.

Examples:

- o $p \wedge \neg q \wedge r$ means $(p \wedge (\neg q)) \wedge r$
- o $p \vee \neg q \wedge r$ means $p \vee ((\neg q) \wedge r)$
- \circ $\overline{p} \wedge \overline{q}$ means $(\neg p) \wedge (\neg q)$

$$\circ \quad \overline{p \wedge q} \text{ means } \neg (p \wedge q)$$

Truth Values & Truth Tables

• Truth values of connectives (and, or, not)

	$p \wedge q$			_	$p \vee q$				_	p
1	p	q	$p \wedge q$		p	q	$p \vee q$		p	$\neg p$
	T	T	T		T	T	T	Ш	T	F
	T	F	F		T	F	T	Ш	F	T
	F	T	F		F	T	T	ľ		
	F	F	F		F	F	F			

- Exclusive-Or (\bigoplus)
 - o The regular Or (V) is inclusive it is true if either literal is true, or BOTH literals are true.
 - o Another, more strict Or, is Exclusive-Or, denoted ⊕. It is true strictly when EITHER literal is true, not both. The truth table is:

$p \oplus q$			
p	q	$p \oplus q$	
T	T	F	
T	F	T	
F	T	T	
F	F	F	

• Truth value of a compound proposition

Examples: Suppose p, r are true and q is false. Evaluate the following propositions.

$\neg (p \land q)$	
$(\neg p) \land (\neg q)$	
$p \vee \neg q \wedge r$	

• Truth table lists truth values for ALL possible assignments of true/false

Examples:

p	q	$\neg (p \land q)$
T	Т	
T	F	
F	T	
F	F	

p	q	$(\neg p) \land (\neg q)$
T	Т	
T	F	
F	T	
F	F	

			T
p	q	r	$p \vee \neg q \wedge r$
T	T	T	
T	T	F	
Т	F	T	
Т	F	F	
F	Т	T	
F	T	F	
F	F	T	
F	F	F	

• Tautologies and Contradictions

- o A tautology is a statement that is always **true** regardless of the truth values of the individual statements.
- o A contradiction a statement that is always **false** regardless of the truth values of the individual statements.

Example: p or $\sim p$ (tautology) and p and $\sim p$ (contradiction)

p	<i>p</i> ∨ ~ <i>p</i>	<i>p</i> ∧ ~ <i>p</i>
T	T	F
F	T	F

1.2 Conditional Propositions and Logical Equivalence

Conditional Propositions

• Conditional operator **if**:

"if p then q" is the conditional proposition, noted " $p \rightarrow q$ ".

- o p is called the **hypothesis** or antecedent.
- \circ q is called the **conclusion** or consequent.

Example:

- o p: "I am rich."
- o q: "I buy a car."
- o $p \rightarrow q$: "If I were rich, then I buy a car." (or "If I am rich, I would buy a car.")

• Truth table for \rightarrow

q	$p \rightarrow q$	
T	T	
F	F	
T	T	D 4-61
F	T	By definition
	T	T

- Precedence and associativity of if
 - \circ \neg , then \wedge , then \vee , then \rightarrow
 - $\circ \rightarrow$ associates to the left

Examples: Parenthesize the following statements

a)
$$p \lor \neg q \to r$$

b) $p \to q \land \neg p \to r$

- Necessary and sufficient conditions
 - o The conclusion expresses a <u>necessary</u> condition.
 - o The hypothesis expresses a <u>sufficient</u> condition.
- Compound statements involving →

Examples:

a. Suppose p, r are true and q is false. Evaluate the following propositions.

$\neg (p \to q)$	
$(\neg p) \to (\neg q)$	
$(p \land q) \rightarrow r$	

o Truth table for $(p \rightarrow q) \rightarrow r$

p	q	r	$(p \to q) \to r$
T	T	T	
T	T	F	
T	F	T	
T	F	F	
F	T	T	
F	T	F	
F	F	T	
F	F	F	

Converse, Inverse and Contrapositive of a conditional statement

For a conditional statement $p \rightarrow q$,

- 1. converse is $q \rightarrow p$.
- 2. inverse is $(\neg p) \rightarrow (\neg q)$.
- 3. contrapositive is $(\neg q) \rightarrow (\neg p)$.

Some properties:

- a. Converse $(q \to p)$ is not logically equivalent to the original conditional statement $p \to q$.
- b. Inverse $(q \to p)$ is not logically equivalent to the original conditional statement $p \to q$.
- c. Contrapositive $((\neg q) \rightarrow (\neg p))$ is **logically equivalent** to $p \rightarrow q$.

p	q	$p \rightarrow q$	converse	inverse	contrapositive
			$q \rightarrow p$	$(\neg p) \to (\neg q).$	$(\neg q) \to (\neg p)$
T	T	T	T	T	T
T	F	F	T	T	F
F	T	T	F	F	Т
F	F	T	T	T	T

Biconditional propositions -- "If and only if"

• When both $p \to q$ and $q \to p$ (converse) are true, it is said that "p if and only if q", denoted $p \leftrightarrow q$.

p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

Logical Equivalence

Two statements P and Q are logically equivalent, denoted $P \equiv Q$, when truth values in ALL rows in the truth tables are the same.

Example: $p \rightarrow q \equiv \sim p \lor q \rightarrow \text{SUPER IMPORTANT!!!}$

p	q	$p \rightarrow q$	$\neg p \lor q$
T	T		
T	F		
F	Т		
F	F		

DeMorgan's Laws

• Logical equivalence for $\overline{p \wedge q} \equiv \overline{p} \vee \overline{q}$, $\overline{p \vee q} \equiv \overline{p} \wedge \overline{q}$.

Proof by truth table (for $\neg (p \land q)$ and $\neg p \lor \neg q$)

p	q	$\neg (p \land q)$	$\neg p \lor \neg q$
Т	T	F	
T	F	T	
F	T	T	
F	F	T	

1.3 Quantifiers (Predicate Logic)

Propositional Function

- Propositions are NOT flexible -- no 'variables' in a statement. For example,
 - o p1: "January has 31 days." -- true
 - o *p2*: "February has 31 days." -- false
 - o p3: "March has 31 days." -- true
 - o *p4*..., etc.
- A **propositional function** is a (logic) statement with variables.

<u>Definition:</u> Let P(x) be a statement involving a variable x, and let D be the set of values for x. If for each $x \in D$, P(x) is a proposition then P(x) is a <u>propositional function</u> with respect to D. D is called the <u>domain of discourse</u>.

Example: P(x): "The x^{th} month of a year has 31 days", where x is an integer $1 \le x \le 12$.

- The variable x in a propositional function P(x) is called a **free variable**.
- NOTE (to be revised later):
 - o A propositional function is NOT a proposition -- it does not have T/F value by itself.
 - o T/F is obtained only after we plug in specific value of x.

Example above:

- \circ P(1) -- true
- \circ P(2) -- false, etc.

Quantified Statements

- Some propositional functions are quantified statements.
 - \circ "For every x, P(x)" -- universally quantified
 - o "For some x, P(x)" -- existentially quantified

1. Universally Quantified Statements (∀)

- **<u>Definition:</u>** Let P(x) be a propositional function over D. The statement "for every x in D, P(x)" is said to be a <u>universally quantified</u> statement, noted $\forall x \in D, P(x)$.
- Different wording of statements
 - o "For every x, P(x)"
 - \circ "For each x, P(x)"
 - \circ "For all x, P(x)"

Example: P(x): "For every real number x, $x^2 \ge 0$ "

- Truth value of $\forall x \in D, P(x)$
 - o **true** -- if for every x in D, P(x) is true.
 - o false -- if there is at least one x in D for which P(x) is false -- a counterexample.

2. Existentially Quantified Statements (∃)

- <u>Definition</u>: Let P(x) be a propositional function over D. The statement "for some x in D, P(x)" is said to be an <u>existentially quantified</u> statement, noted $\exists x \in D, P(x)$.
- Different wording of statements
 - o "For some x, P(x)"
 - o "For at least one x, P(x)"
 - o "There exists x such that P(x)"

Example: "There exists a real number x such that $x^2 = 2$."

- Truth value of $\exists x \in D, P(x)$
 - o **true** -- if there is at least one x in D for which P(x) is true.
 - o **false** -- if for all x in D, P(x) is false.

3. Quantified Statements as Propositions

- The variable x in a quantified statement, $\forall x.P(x)$ or $\exists x.P(x)$, is called a **bound variable**.
- A quantified statement has a truth value -- although it is a propositional function.

NOTE (revised):

- o A propositional function with FREE variables is NOT a proposition.
- A propositional function with BOUND variables (i.e., quantified statements) is a proposition.

4. Generalized DeMorgan's Laws

• Logical equivalency for negated quantified statements

$$\forall x.P(x) \Leftrightarrow \exists x.\overline{P(x)}$$

- $\neg(\forall x.P(x))$ "It is not the case that, for all x, P(x) is true"
- $\exists x.(\neg P(x))$ "There exists x for which P(x) is false."

 $\overline{\exists x.P(x)} \Leftrightarrow \forall x.\overline{P(x)}$

- $\neg(\exists x.P(x))$ "It is not the case that there exists x for which P(x) is true."
- $\forall x.(\neg P(x))$ "For all x, P(x) is false."

5. Proving Quantified Statements

- 1. Proving a universally quantified statement " $\forall x. P(x)$ "
 - \circ True -- by showing P(x) is true for ALL x.
 - <u>IMPORTANT NOTE:</u>
 You can NOT just plug in a few values of x and conclude the statement is true. You must pick a generic particular (but arbitrary chosen) value (x) and generalize.
 - o <u>False</u> -- by showing a **counterexample** x in D for which P(x) is false (i.e., $\exists x.(\neg P(x))$)

Examples: Prove or disprove:

- a. The sum of any two even integers is even.
 - i. <u>Proof:</u> Suppose m and n are even integers. We must show that m + n is even. By definition of even, m = 2*r and n = 2*s for some integers r and s. Then,
 - ii. m + n = 2*r + 2*s ... by substitution = 2(r + s) ... by factoring
 - iii. Let k = r + s. Then, k is an integer because it is a sum of integers. Hence,
 - iv. m + n = 2*k, where k is an integer. It follows by definition of even that m + n is even.
- b. For all real number x, $x^2 1 > 0$.
 - i. <u>Proof:</u> The statement is false. A counterexample is x = 0. Here, 0 is a real number, but $0^2 1 = -1 \le 0$ [NOTE: the **negation** of $x^2 1 > 0$ is $x^2 1 \le 0$].
- c. For all real number x, if x > 1, then $x^2 1 > 0$.

$$\forall x. (x \neq 0) \rightarrow \frac{1}{x^2} > \frac{1}{x^3}$$

2. Proving an existentially quantified statement " $\exists x. P(x)$ "

- \circ True -- by showing there exists at least one x in D such that P(x) is true.
- o False -- by showing for all x, P(x) is false (i.e., $\forall x.(\neg P(x))$)

Examples: Prove or disprove

- a. For some real number x, x > 5 and x < 10
- b. For some real number x, x > 5 and x < 4

Multiple Quantifiers and Variables

- Statement with two quantifiers and variables
 - $\forall x. \forall y. P(x, y)$
 - $\exists x. \exists y. P(x,y)$
 - $\forall x.\exists y.P(x,y)$
 - $\exists x. \forall y. P(x, y)$
- Negations
 - o Derive equivalent forms by applying DeMorgan's law several times.

e.g.
$$\overline{\forall x \forall y. P(x,y)} \equiv \exists x \overline{\forall y. P(x,y)} \equiv \exists x \exists y \overline{P(x,y)}$$

	Negation
$\forall x. \forall y. P(x, y)$	$\exists x. \exists y. \overline{P(x,y)}$
$\exists x. \exists y. P(x,y)$	$\forall x. \forall y. \overline{P(x,y)}$
$\forall x.\exists y.P(x,y)$	$\exists x. \forall y. \overline{P(x,y)}$
$\exists x. \forall y. P(x, y)$	$\forall x. \exists y. \overline{P(x,y)}$

- Examples: Prove or disprove:
 - a. $\forall x. \forall y. x^2 + 2y > 4$
 - b. $\exists x. \exists y. \ x^2 + 2y > 4$
 - c. $\forall x. \exists y. \ x^2 + 2y > 4$
 - d. $\exists x. \forall y. \ x^2 + 2y > 4$
 - e. $\forall x. \forall y. \text{ if } x < y, \text{ then } x^2 + 2y > 4$
 - f. $\exists x.\exists y. \text{ if } x < y, \text{ then } x^2 + 2y > 4$
 - g. $\forall x. \exists y. \text{ if } x < y, \text{ then } x^2 + 2y > 4$
 - h. $\exists x. \forall y. \text{ if } x < y, \text{ then } x^2 + 2y > 4$