Lecture Note #8 (Recurrence Relations) Exercises

(1) Iteration Method

More Examples:

a.
$$T(n) = -3*T(n-1)$$
, $T(0) = 2$

Solution: By iteration.

$$T(n) = (-3) \cdot T(n-1)$$
= $(-3) \cdot [(-3) \cdot T(n-2)]$
= $(-3)^2 \cdot T(n-2)$
= $(-3)^2 \cdot [(-3) \cdot T(n-3)]$
= $(-3)^3 \cdot T(n-3)$
= ...
= $(-3)^k \cdot T(n-k)$
= ...
= $(-3)^n \cdot T(0)$... because $n-k=0$, which gives $k=n$
= $(-3)^n \cdot (2)$

So the closed form is $C(n) = (-3)^n \cdot (2)$ for all integer $n \ge 0$.

b.
$$T(n) = T(n-1) + 1$$
, $T(0) = 0$

Solution: By iteration.

$$T(n) = T(n-1) + 1$$
= $[T(n-1) + 1] + 1$
= $T(n-1) + 2$
= ...
= $T(n-k) + k$
= ...
= $T(0) + n$
= n

So the closed form is C(n) = n for all integer $n \ge 0$.

c.
$$T(n) = 2*T(n-1) + 3$$
, $T(0) = 0$

Solution: By iteration.

$$T(n) = 2 \cdot T(n-1) + 3$$

$$= 2 \cdot [2 \cdot T(n-2) + 3] + 3$$

$$= 2^{2} \cdot T(n-2) + (2) \cdot 3 + 3$$

$$= 2^{2} \cdot [2 \cdot T(n-3) + 3] + (2) \cdot 3 + 3$$

$$= 2^{3} \cdot T(n-3) + 2^{2} \cdot 3 + 2^{1} \cdot 3 + 2^{0} \cdot 3$$

$$= \cdots$$

$$= 2^{k} \cdot T(n-k) + \sum_{i=0}^{k-1} 3 \cdot 2^{i}$$

$$= 2^{k} \cdot T(n-k) + 3 \cdot \sum_{i=0}^{k-1} 2^{i}$$

$$= \cdots$$

$$= 2^{n} \cdot T(0) + 3 \cdot \sum_{i=0}^{n-1} 2^{i}$$

$$= 2^{n} \cdot T(0) + 3 \cdot \frac{2^{n-1}}{2-1}$$

$$= 2^{n} \cdot 0 + 3 \cdot (2^{n} - 1)$$

$$= 3 \cdot (2^{n} - 1)$$

So the closed form is $C(n) = 3 \cdot (2^n - 1)$ for all integer $n \ge 0$.

d.
$$T(n) = T(n/2) + 1$$
, $T(1) = 0$

Solution: By iteration.

$$T(n) = T\left(\frac{n}{2}\right) + 1$$

$$= \left[T\left(\frac{n}{2^2}\right) + 1\right] + 1$$

$$= T\left(\frac{n}{2^2}\right) + 2$$

$$= \left[T\left(\frac{n}{2^3}\right) + 1\right] + 2$$

$$= T\left(\frac{n}{2^3}\right) + 3$$

$$= \cdots$$

$$= T\left(\frac{n}{2^k}\right) + k$$

$$= \cdots$$

$$= T(1) + \log_2 n \dots \operatorname{because} 2^k = n, \text{ which gives } k = \log_2 n$$

$$= \log_2 n$$

So the closed form is $C(n) = \log_2 n$ for all integers $n \ge 1$.

Proving the correctness of the derived formula

* Example 2: Show if T(1), T(2),..., T(n) is the sequence defined by

$$T(n) = -3*T(n-1)$$
 for all integers $n >= 1$, and $T(0) = 2$

Then the closed form is $T(n) = 2*(-3)^n$, for all n >= 0

Proof: By induction.

Basis step (n = 0):

- Recurrence: T(0) = 2, as given.
- Closed form: $T(0) = 2*(-3)^0 = 2*1 = 2$.

Therefore, the closed form holds for n = 0....(A)

<u>Inductive step</u>:

Assume the closed form holds for n-1, that is, $T(n-1) = 2*(-3)^{n-1}$, for all integers n >= 1. Show the closed form holds for n as well, that is, $T(n) = 2*(-3)^n$

$$T(n) = (-3) \cdot T(n-1)$$
... by recurrence relation $= (-3) \cdot [2 \cdot (-3)^{n-1}]$... by inductive hypothesis $= 2 \cdot (-3)^n$... as to be shown ... (B)

By (A) and (B), we can conclude that the closed form holds for all integers $n \ge 0$. QED.