Lecture Note #4 (Set Theory)

Exercises (partial)

Example 6.1.3 [Set Equality, p. 339]

Define sets A and B as follows:

```
A = \{m \in Z \mid m = 2a \text{ for some integer a}\}\
B = \{n \in Z \mid n = 2b - 2 \text{ for some integer b}\}\
```

Is A = B?

Part 1: Show $A \subseteq B$. [This part is in the lecture note.]

Part 2: Show $B \subseteq A$.

We must show that, $\forall x$, if $x \in B$, then $x \in A$.

Since $x \in B$, we can write x as x = 2b - 2, for some integer b.

Here we have x = 2b - 2 = 2 * (b - 1).

Let a = b - 1. Then we have x = 2 * (b - 1) = 2*a.

Since a is an integer (because b is an integer, and adding 1 makes an integer), x is an integer too.

By definition of A, we can conclude that $x \in A$.

By Part 1 and 2, we can conclude that A = B. Q.E.D.

• Exercise [Section 6.1, #31, p. 351]

Suppose $A = \{1, 2\}$ and $B = \{2, 3\}$. Find each of the following:

- o & (A ∩ B)
- o & (A)

Exercise #1 [Section 6.2, #3, p. 365]

The following is a proof that for all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$. Fill in the blanks.

... Will work on this in the class, but you can find an answer at the back of the textbook.

<u>Proof</u>: Suppose A, B, and C are sets and $A \subseteq B$ and $B \subseteq C$. To show that $A \subseteq C$, we must show that every element in __(a) A__ is in __(b) C__. But given any element in A, that element is in __(c) B__ (because A \subseteq B), and so that element is also in __(d) C__ (because __(e) $B \subseteq C$ __). Hence $A \subseteq C$.

• Exercise #2 [Section 6.2, #5, p. 365]

Prove that for all sets A and B, $(B - A) = B \cap A^c$.

Proof:

(1) Show $B - A \subseteq B \cap A^c$.

To show, we must show that, for all x, if x is in (B-A), then x is in B \cap A^c.

By definition of set difference, x is in B but x is not in A. So we know that x is in B and x is in A^c . By definition of set intersection, we get x is in $(B \cap A^c)$.

(2) Show $B \cap A^c \subseteq B - A$.

To show, we must show that, for all x, if x is in B \cap A^c, then x is in (B-A).

By definition of set intersection, x is in B and x is in A^c . And by definition of set complement, x is in B but x is not in A. Then by definition of set difference, we get x is in (B-A).

By (1) and (2), we can conclude that $(B - A) = B \cap A^c$. Q.E.D.