Lecture Note #3 (Mathematical Induction)

Exercises

3) Strong form of Mathematical Induction

#1. [Example 5.4.2, p. 270] Define a sequence s_0 , s_1 , s_2 ,.. as follows

$$s_0 = 0$$
, $s_1 = 4$, $s_k = 6s_{k-1} - 5s_{k-2}$ for all integers $k \ge 2$.

Actually the whole proof is shown in the textbook (p. 270-271). You can see it there. But since I went over this in the class, I type what I wrote (or close to it) here.

- a) Find the first four terms
 - s0 = 0
 - s1 = 4
 - s2 = 6*s1 5*s0 = 6*4 5*0 = 24
 - s3 = 6*s2 5*s1 = 6*24 5*4 = 144 20 = 124
- b) We are given that $s_n = 5^n 1$. Prove true.

<u>Proof</u>: By induction on n. Let $P(n) = 5^n - 1$ (for all $n \ge 0$).

1) Basis step (n = 0 and n = 1):

When
$$n = 0$$
, $s_0 = 0$ (as given) and $P(0) = 5^0 - 1 = 1 - 1 = 0$.

When
$$n = 1$$
, $s_0 = 4$ (as given) and $P(1) = 5^1 - 1 = 5 - 1 = 4$.

Therefore, $s_0 = P(0)$ and $s_1 = P(1)$... (A)

2) Inductive step:

[Inductive hypothesis] Assume $\mathbf{s}_i = \mathbf{P(i)}$ for all integer $0 \le i \le k$, where $k \ge 1$, that is,

$$\mathbf{s_i} = 6\mathbf{s_{i-1}} - 5\mathbf{s_{i-2}} = \mathbf{P(i)} = 5^i - 1.$$

[Inductive statement] Show $\mathbf{s_{k+1}} = \mathbf{P(k+1)}$, that is, $\mathbf{s_{k+1}} = 6\mathbf{s_k} - 5\mathbf{s_{k-1}} = \mathbf{P(k+1)} = 5^{k+1} - 1$.

LHS

$$= s_{k+1}$$

$$=6\cdot s_k-5\cdot s_{k-1}$$

$$= 6 \cdot [5^k - 1] - 5 \cdot [5^{k-1} - 1]$$

$$=6\cdot 5^{k}-6-5\cdot 5^{k-1}+5$$

$$=6\cdot 5^k-1-5^k$$

$$=5\cdot5^k-1$$

$$=5^{k+1}-1$$

$$= P(k + 1)$$

$$= RHS$$

Therefore, $e_{k+1} = P(k+1) ... (B)$

By (A) and (B), we can conclude that the statement is true (for all integers $n \ge 0$). QED.

#2. Write the Strong Mathematical Induction version of the problem given earlier, "For all integer $n \ge 4$, n cents can be obtained by using 2-cent and 5-cent coins." Note the basis steps should prove P(4) and P(5).

Proof:

1) Basis step (n = 4 and n = 5):

When n = 4, we can make 4 cents by two 2-cent coins.

When n = 5, we can make 5 cents by one 5-cent coin. ... (A)

2) Inductive step:

[Inductive hypothesis] Assume $n \ge 6$, and k cents can be obtained using 2-cent and 5-cent coins (only), for all k, $4 \le k \le n$.

By the inductive hypothesis, we can make n-2 cents (by taking out one 2-cent coin). So we can add a 2-cent coin to make n cents. ... (B)

By (A) and (B), we can conclude that the statement is true (for all integers $n \ge 1$). QED.

#3. [Section 5.4, Exercise #5, p. 277] Suppose that e_0 , e_1 , e_2 ,... is a sequence defined as follows.

$$e_0 = 12$$
, $e_1 = 29$
 $e_k = 5e_{k-1} - 6e_{k-2}$ for all integers $k >= 2$.

Prove that $e_n = 5*3^n + 7*2^n$ for all integer $n \ge 0$. Use Strong Mathematical Induction.

Actually the whole proof is shown at the back of the textbook (p. A-38). You can see it there. But since I went over this in the class, I type what I wrote (or close to it) here.

<u>Proof</u>: Let P(n) = $5*3^n + 7*2^n$ for all integer n >= 0. We show the equivalency between the sequence e_n and P(n), that is, $e_n = 5e_{n-1} - 6e_{n-2} = P(n) = 5*3^n + 7*2^n$.

3) Basis step (n = 0 and n = 1):

When
$$n = 0$$
, $e_0 = 12$ (as given) and $P(0) = 5*3^0 + 7*2^0 = 5 + 7 = 12$.
When $n = 1$, $e_0 = 29$ (as given) and $P(1) = 5*3^1 + 7*2^1 = 15 + 14 = 29$.
Therefore, $e_0 = P(0)$ and $e_1 = P(1)$... (A)

4) Inductive step:

[Inductive hypothesis] Assume
$$\mathbf{e_i} = \mathbf{P(i)}$$
 for all integer $0 <= i <= k$, where $k >= 1$, that is, $\mathbf{e_i} = 5\mathbf{e_{i-1}} - 6\mathbf{e_{i-2}} = \mathbf{P(i)} = 5*3^i + 7*2^i$. [Inductive statement] Show $\mathbf{e_{k+1}} = \mathbf{P(k+1)}$, that is, $\mathbf{e_{k+1}} = 5\mathbf{e_k} - 6\mathbf{e_{k-1}} = \mathbf{P(k+1)} = 5*3^{k+1} + 7*2^{k+1}$. LHS $= e_{k+1}$ $= 5 \cdot e_k - 6 \cdot e_{k-1}$

```
 = 5 \cdot [5 \cdot 3^k + 7 \cdot 2^k] - 6 \cdot [5 \cdot 3^{k-1} + 7 \cdot 2^{k-1}] \text{ ... by inductive hypothesis} 
 = 5 \cdot 5 \cdot 3^k + 5 \cdot 7 \cdot 2^k - 6 \cdot [5 \cdot 3^{k-1} + 7 \cdot 2^{k-1}] 
 = 5 \cdot 5 \cdot 3^k + 5 \cdot 7 \cdot 2^k - 2 \cdot 3 \cdot 5 \cdot 3^{k-1} - 2 \cdot 3 \cdot 7 \cdot 2^{k-1} 
 = 5 \cdot 5 \cdot 3^k + 5 \cdot 7 \cdot 2^k - 2 \cdot 5 \cdot 3^k - 3 \cdot 7 \cdot 2^k 
 = 3 \cdot 5 \cdot 3^k + 2 \cdot 7 \cdot 2^k 
 = 3 \cdot 5 \cdot 3^{k+1} + 7 \cdot 2^{k+1} 
 = P(k+1) 
 = RHS 
Therefore, e_{k+1} = P(k+1) ... (B)
```

By (A) and (B), we can conclude that the statement is true (for all integers $n \ge 0$). QED.