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The Pigeonhole Principle

The pigeonhole principle states that if n pigeons fly into m

pigeonholes and n > m, then at least one hole must contain 

two or more pigeons. 

This principle is illustrated in Figure 9.4.1 for n = 5 and 

m = 4.

Figure 9.4.1

(a) (b)
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The Pigeonhole Principle

Illustration (a) shows the pigeons perched next to their

holes, and (b) shows the correspondence from pigeons to 

pigeonholes.

The pigeonhole principle is sometimes called the Dirichlet 

box principle because it was first stated formally by 

J. P. G. L. Dirichlet (1805–1859).

Illustration (b) suggests the following mathematical way to 

phrase the principle.
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Example 1 – Applying the Pigeonhole Principle

a. In a group of six people, must there be at least two who

were born in the same month?

In a group of thirteen people, must there be at least two

who were born in the same month? Why?

b. Among the residents of New York City, must there be at 

least two people with the same number of hairs on their 

heads? Why?



6

Example 1(a) – Solution

A group of six people need not contain two who were born 

in the same month. For instance, the six people could have 

birthdays in each of the six months January through June.

A group of thirteen people, however, must contain at least 

two who were born in the same month, for there are only 
twelve months in a year and 13 > 12. 

To get at the essence of this reasoning, think of the thirteen 
people as the pigeons and the twelve months of the year 

as the pigeonholes.
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Example 1(a) – Solution

Denote the thirteen people by the symbols x1, x2, . . . , x13

and define a function B from the set of people to the set of 

twelve months as shown in the following arrow diagram.

cont’d
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Example 1(a) – Solution

The pigeonhole principle says that no matter what the 

particular assignment of months to people, there must be at 

least two arrows pointing to the same month. 

Thus at least two people must have been born in the same 

month.

cont’d
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Example 1(b) – Solution

The answer is yes. 

In this example the pigeons are the people of New York 
City and the pigeonholes are all possible numbers of hairs 

on any individual’s head. 

Call the population of New York City P. It is known that P is 

at least 5,000,000. 

Also the maximum number of hairs on any person’s head is 

known to be no more than 300,000.

cont’d
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Example 1(b) – Solution

Define a function H from the set of people in New York City 

{x1, x2, . . . , xp} to the set {0, 1, 2, 3, . . . , 300 000}, as 

shown below.

cont’d
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Example 1(b) – Solution

Since the number of people in New York City is larger than 

the number of possible hairs on their heads, the function    

H is not one-to-one; at least two arrows point to the same 

number.

But that means that at least two people have the same 
number of hairs on their heads.

cont’d
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Application to Decimal Expansions of Fractions

One important consequence of the piegonhole principle is 

the fact that 

the decimal expansion of any rational number either 

terminates or repeats.

A terminating decimal is one like

3.625,

and a repeating decimal is one like

2.38246,

where the bar over the digits 246 means that these digits 
are repeated forever.
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Application to Decimal Expansions of Fractions

A rational number is one that can be written as a ratio of 

integers—in other words, as a fraction. 

The decimal expansion of a fraction is obtained by dividing 

its numerator by its denominator using long division. For 
example, the decimal expansion of 4/33 is obtained as 

follows:
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Application to Decimal Expansions of Fractions

Because the number 4 reappears as a remainder in the 

long-division process, the sequence of quotients and 

remainders that give the digits of the decimal expansion 

repeats forever; hence the digits of the decimal expansion 

repeat forever. 

In general, when one integer is divided by another, it is the 

pigeonhole principle (together with the quotient-remainder 

theorem) that guarantees that such a repetition of 
remainders and hence decimal digits must always occur.

This is explained in the next example. 



16

Application to Decimal Expansions of Fractions

The analysis in the example uses an obvious 

generalization of the pigeonhole principle, namely that a 

function from an infinite set to a finite set cannot be       

one-to-one.
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Example 4 – The Decimal Expansion of a Fraction

Consider a fraction a/b, where for simplicity a and b are 

both assumed to be positive.

The decimal expansion of a/b is 

obtained by dividing the a by the 

b as illustrated here for a = 3 
and b = 14.
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Example 4 – The Decimal Expansion of a Fraction

Let r0 = a and let r1, r2, r3, . . . be the successive remainders 

obtained in the long division of a by b. 

By the quotient-remainder theorem, each remainder must 

be between 0 and b – 1. (In this example, a is 3 and b is 

14, and so the remainders are from 0 to 13.) 

If some remainder ri = 0, then the division terminates and 

a/b has a terminating decimal expansion. If no ri = 0, then 
the division process and hence the sequence of 

remainders continues forever.

cont’d
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Example 4 – The Decimal Expansion of a Fraction

By the pigeonhole principle, since there are more 

remainders than values that the remainders can take, some 

remainder value must repeat: rj = rk, for some indices j and 

k with j < k. 

This is illustrated below for a = 3 and b = 14.

cont’d
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Example 4 – The Decimal Expansion of a Fraction

If follows that the decimal digits obtained from the divisions 

between rj and rk – 1 repeat forever. 

In the case of 3/14, the repetition begins with r7 = 2 = r1 and 

the decimal expansion repeats the quotients obtained from 

the divisions from r1 through r6 forever:

3/14 = 0.2142857.

cont’d
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Generalized Pigeonhole Principle
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Generalized Pigeonhole Principle

A generalization of the pigeonhole principle states that if n

pigeons fly into m pigeonholes and, for some positive 

integer k, k < n/m, then at least one pigeonhole contains 

k + 1 or more pigeons.
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Example 5 – Applying the Generalized Pigeonhole Principle

Show how the generalized pigeonhole principle implies that 

in a group of 85 people, at least 4 must have the same last 

initial.

Solution:

In this example the pigeons are the 85 people and the 
pigeonholes are the 26 possible last initials of their names. 

Note that

3 < 85/26 ≅≅≅≅ 3.27.
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Example 5 – Solution

Consider the function L from people to initials defined by 

the following arrow diagram.

Since 3 < 85/26, the generalized pigeonhole principle 

states that some initial must be the image of at least four 

(3 + 1) people. 

Thus at least four people have the same last initial.

cont’d
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Generalized Pigeonhole Principle

Consider the following contrapositive form of the 

generalized pigeonhole principle.

You may find it natural to use the contrapositive form of the 
generalized pigeonhole principle in certain situations.
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Generalized Pigeonhole Principle

For instance, the result of Example 5 can be explained

as follows:

Suppose no 4 people out of the 85 had the same last initial. 

Then at most 3 would share any particular one. 

By the generalized pigeonhole principle (contrapositive 

form), this would imply that the total number of people is at 

most 3 ���� 26 = 78. But this contradicts the fact that there are 
85 people in all. 

Hence at least 4 people share a last initial.
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Example 6 – Using the Contrapositive Form of the Generalized Pigeonhole Principle

There are 42 students who are to share 12 computers. 

Each student uses exactly 1 computer, and no computer is 

used by more than 6 students. Show that at least 5 

computers are used by 3 or more students.
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Example 6(a) – Solution

Using an Argument by Contradiction: Suppose not. 

Suppose that 4 or fewer computers are used by 3 or more 

students. [A contradiction will be derived.] Then 8 or more 

computers are used by 2 or fewer students.

Divide the set of computers into two subsets: C1 and C2.

cont’d
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Example 6(a) – Solution

Into C1 place 8 of the computers used by 2 or fewer 

students; into C2 place the computers used by 3 or more 

students plus any remaining computers (to make a total of 

4 computers in C2). (See Figure 9.4.3.)

cont’d

Figure 9.4.3

The set of 12 computers
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Example 6(a) – Solution

Since at most 6 students are served by any one computer, 

by the contrapositive form of the generalized pigeonhole 

principle, the computers in set C2 serve at most

6 ���� 4 = 24 students. 

Since at most 2 students are served by any one computer 
in C1, by the generalized pigeonhole principle 

(contrapositive form), the computers in set C1 serve at most 

2 ���� 8 = 16 students.

cont’d
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Example 6(a) – Solution

Hence the total number of students served by the 

computers is 24 + 16 = 40.

But this contradicts the fact that each of the 42 students is 

served by a computer.

Therefore, the supposition is false: At least 5 computers 

are used by 3 or more students.

cont’d
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Example 6(b) – Solution

Using a Direct Argument: Let k be the number of 

computers used by 3 or more students. [We must show that 

k ≥≥≥≥ 5.]

Because each computer is used by at most 6 students, 

these computers are used by at most 6k students (by the 
contrapositive form of the generalized pigeonhole 

principle). 

Each of the remaining 12 – k computers is used by at most 

2 students.

cont’d
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Example 6(b) – Solution

Hence, taken together, they are used by at most 

2(12 – k) = 24 – 2k students (again, by the contrapositive 

form of the generalized pigeonhole principle). 

Thus the maximum number of students served by the 

computers is 6k + (24 – 2k) = 4k + 24. 

Because 42 students are served by the computers, 

4k + 24 ≥≥≥≥ 42. 

Solving for k gives that k ≥≥≥≥ 4.5, and since k is an integer, 

this implies that k ≥≥≥≥ 5 [as was to be shown].

cont’d
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Proof of the Pigeonhole Principle
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Proof of the Pigeonhole Principle

The truth of the pigeonhole principle depends essentially 

on the sets involved being finite.

We have known that a set is called finite if, and only if, it is 

the empty set or there is a one-to-one correspondence 

from {1, 2, . . . , n} to it, where n is a positive integer. 

In the first case the number of elements in the set is said 

to be 0, and in the second case it is said to be n. A set that 
is not finite is called infinite.

Thus any finite set is either empty or can be written in the 

form {x1, x2, . . . , xn} where n is a positive integer.
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Proof of the Pigeonhole Principle

Proof:

Suppose f is any function from a finite set X with                 
n elements to a finite set Y with m elements where n > m. 

Denote the elements of Y by y1, y2, . . . , ym.

We have known that for each yi in Y, the inverse image set 
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Proof of the Pigeonhole Principle

Now consider the collection of all the inverse image sets for 

all the elements of Y:

By definition of function, each element of X is sent by f to 

some element of Y. Hence each element of X is in one of 
the inverse image sets, and so the union of all these sets 

equals X. 

But also, by definition of function, no element of X is sent 

by f to more than one element of Y. 

Thus each element of X is in only one of the inverse image 

sets, and so the inverse image sets are mutually disjoint.
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Proof of the Pigeonhole Principle

By the addition rule, therefore,

Now suppose that f is one-to-one [which is the opposite of 

what we want to prove].

Then each set              has at most one element, and so
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Proof of the Pigeonhole Principle

Putting equations (9.4.1) and (9.4.2) together gives that

n = N(X) ≤≤≤≤ m = N(Y).

This contradicts the fact that n > m, and so the supposition 

that f is one-to-one must be false. 

Hence f is not one-to-one [as was to be shown].
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Proof of the Pigeonhole Principle

An important theorem that follows from the pigeonhole 

principle states that a function from one finite set to another 

finite set of the same size is one-to-one if, and only if, it is

onto.

As we have known, this result does not hold for infinite 
sets.
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Proof of the Pigeonhole Principle

Note that Theorem 9.4.2 applies in particular to the case 

X = Y. 

Thus a one-to-one function from a finite set to itself is onto, 

and an onto function from a finite set to itself is one-to-one. 

Such functions are permutations of the sets on which they 

are defined. 
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Proof of the Pigeonhole Principle

For instance, the function defined by the diagram below, is 

another representation for the permutation cdba obtained 

by listing the images of a, b, c, and d in order.


