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Counting Elements of Disjoint Sets: The Addition Rule

The basic rule underlying the calculation of the number of
elements in a union or difference or intersection is the
addition rule.

This rule states that the number of elements in a union of
mutually disjoint finite sets equals the sum of the number of
elements in each of the component sets.

Theorem 9.3.1 The Addition Rule

Suppose a finite set A equals the union of k distinct mutually disjoint subsets Ay,
Ar, ..., Ay. Then
N(A) = N(A1) + N(Az) +--- + N(Ap).




Example 1 — Counting Passwords with Three or Fewer Letters

A computer access password consists of from one to three
letters chosen from the 26 in the alphabet with repetitions
allowed. How many different passwords are possible?

Solution:

The set of all passwords can be partitioned into subsets
consisting of those of length 1, those of length 2, and those
of length 3 as shown in Figure 9.3.1.

passwords passwords passwords
of length 1 of length 2 of length 3

Set of All Passwords of Length < 3
Figure 9.3.1 4



 /
Example 1 — Solution o

By the addition rule, the total number of passwords equals
the number of passwords of length 1, plus the number of
passwords of length 2, plus the number of passwords of
length 3.

Now the

number of passwords of length 1 = 26  because there are 26 letters in the alphabet

number of passwords of length 2 = 26 because forming such a word can be
thought of as a two-step process in which
there are 26 ways to perform each step



Example 1 — Solution

number of passwords of length 3 = 26°  because forming such a word can be thought
of as a three-step process in which
there are 26 ways to perform each step.

Hence the total number of passwords = 26 + 26° + 26°

= 18,278.
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The Difference Rule

An important consequence of the addition rule is the fact
that if the number of elements in a set A and the number In
a subset B of A are both known, then the number of
elements that are in A and not in B can be computed.

Theorem 9.3.2 The Difference Rule
If A is a finite set and B 1s a subset of A, then

N(A—B)=N(A) — N(B).




.
The Difference Rule

The difference rule is illustrated in Figure 9.3.3.

A (n elements)

B (k elements) A - B (n - kelements)

The Difference Rule
Figure 9.3.3



.
The Difference Rule

The difference rule holds for the following reason: If Bis a
subset of A, then the two sets Band A— B have no
elements in common and Bu (A — B) = A. Hence, by the
addition rule,

N(B) + N(A — B) = N(A).

Subtracting N(B) from both sides gives the equation

N(A — B) = N(A) — N(B).
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Example 3 — Counting PINs with Repeated Symbols

A typical PIN (personal identification number) is a
sequence of any four symbols chosen from the 26 letters in
the alphabet and the ten digits, with repetition allowed.

a. How many PINs contain repeated symbols?

b. If all PINs are equally likely, what is the probability that a
randomly chosen PIN contains a repeated symbol?
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Example 3(a) — Solution

There are 36% = 1,679,616 PINs when repetition is allowed,
and there are 36 - 35 - 34 - 33 = 1,413,720 PINs when
repetition is not allowed.

Thus, by the difference rule, there are
1,679,616 — 1,413,720 = 265,896

PINs that contain at least one repeated symbol.
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Example 3(b) — Solution

There are 1,679,616 PINs in all, and by part (a) 265,896 of
these contain at least one repeated symbol.

Thus, by the equally likely probability formula, the
probability that a randomly chosen PIN contains a repeated

symbol is 15o o1 =0.158 = 15.8%.
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The Difference Rule

An alternative solution to Example 3(b) is based on the
observation that if Sis the set of all PINs and A is the set of
all PINs with no repeated symbol, then S — A is the set of
all PINs with at least one repeated symbol.

It follows that

NS —-A
P(§S—A) = NS) ) by definition of probability in the equally likely case
N(S) — N(A)
= by the difference rule
N(S)
N(S) N(A)
= — by the laws of fractions
N(S) N(S)
=1—P(A) by definition of probability in the equally likely case
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The Difference Rule

We know that the probability that a PIN chosen at random

. . 1413720 ~
contains no repeated symbol is P(A) = 126733212 = .8417.

And hence
P(S—A)=1—0.842
= (0.158

= 15.8%
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The Difference Rule

This solution illustrates a more general property of
probabilities: that the probability of the complement of an
event is obtained by subtracting the probability of the event
from the number 1.

Formula for the Probability of the Complement of an Event
If S 1s a finite sample space and A is an event in S, then

P(AS) =1 — P(A).
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The Inclusion/Exclusion Rule

The addition rule says how many elements are in a union
of sets if the sets are mutually disjoint. Now consider the
question of how to determine the number of elements in a
union of sets when some of the sets overlap.

For simplicity, begin by looking at a union of two sets
A and B, as shown in Figure 9.3.5.

v

AUB

Figure 9.3.5 18
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The Inclusion/Exclusion Rule

To get an accurate count of the elementsin Au B, it is
necessary to subtract the number of elements that are in
both A and B. Because these are the elements in An B,

N(AUB) = N(A) + N(B) — N(AN B).

A similar analysis gives a formula for the number of elements
In a union of three sets, as shown in Theorem 9.3.3.

Theorem 9.3.3 The Inclusion/Exclusion Rule for Two or Three Sets
If A, B, and C are any finite sets, then

N(AUB)=N(A)+ N(B)—N(ANB)
and

N(AUBUC)=N(A)+N(B)+N(CC)—-NANB)—N(ANC)
—NBNC)+ NANBNC).
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Example 6 — Counting Elements of a General Union

a. How many integers from 1 through 1,000 are multiples of
3 or multiples of 57

b. How many integers from 1 through 1,000 are neither
multiples of 3 nor multiples of 5?

Solution:
a. Let A = the set of all integers from 1 through 1,000 that

are multiples of 3.

Let B = the set of all integers from 1 through 1,000 that
are multiples of 5.
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Example 6 — Solution o

Then

A U B = the set of all integers from 1 through 1,000 that
are multiples of 3 or multiples of 5

and

A N B = the set of all integers from 1 through 1,000 that
are multiples of both 3 and 5

= the set of all integers from 1 through 1,000 that
are multiples of 15.
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Example 6 — Solution o

Because every third integer from 3 through 999 is a
multiple of 3, each can be represented in the form 3k, for
some integer k from 1 through 333.

Hence there are 333 multiples of 3 from 1 through 1,000,
and so N(A) = 333.

1 2 3 4 5 6 ... 99 997 998 999
¢ ¢ ¢ ¢
3-1 3.2 3-332 3-333
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Example 6 — Solution

Similarly, each multiple of 5 from 1 through 1,000 has the
form 5k, for some integer k from 1 through 200.

1 23 4 5 6 7 8 9 10 ... 995 99 997 998 999 1,000
¢ ¢ ¢ ¢
5-1 5-2 - 199 5-200

Thus there are 200 multiples of 5 from 1 through 1,000 and
N(B) = 200.
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Example 6 — Solution

Finally, each multiple of 15 from 1 through 1,000 has the
form 15k, for some integer k from 1 through 66 (since
990 =66 - 15).

1l 2 s 19 s W ase D s M 0w 999 LOOU

¢ ¢ ¢ ¢
15-1 15-2 15-65 15-66

Hence there are 66 multiples of 15 from 1 through 1,000,
and N(A N B) = 66.
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Example 6 — Solution

It follows by the inclusion/exclusion rule that

N(AU B) = N(A) + N(B) — N(AN B)
— 333 + 200 — 66
— 467,

Thus, 467 integers from 1 through 1,000 are multiples of 3
or multiples of 5.
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Example 6 — Solution o

b. There are 1,000 integers from 1 through 1,000, and by
part (a), 467 of these are multiples of 3 or multiples of 5.

Thus, by the set difference rule, there are
1,000 — 467 = 533 that are neither multiples of 3 nor
multiples of 5.
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The Inclusion/Exclusion Rule

Note that the solution to part (b) of Example 6 hid a use of
De Morgan’s law.

The number of elements that are neither in Anorin Bis
N(Ac N B°), and by De Morgan’s law, A°n B¢ = (A u B)°.

So N((A u B)¢) was then calculated using the set difference
rule: N((A u B)¢) = N(U) — N(A u B), where the universe U
was the set of all integers from 1 through 1,000.
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