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Applications to Cryptography
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Modular Arithmetic with Applications to Cryptography

Cryptography is the study of methods for sending secret 

messages.

It involves encryption, in which a message, called 

plaintext, is converted into a form, called ciphertext, that 

may be sent over channels possibly open to view by 
outside parties. The receiver of the ciphertext uses 

decryption to convert the ciphertext back into plaintext.

In the past the primary use of cryptography was for 

government and military intelligence, and this use 

continues to be important. 



4

Modular Arithmetic with Applications to Cryptography

In fact, the National Security Agency, whose main business 

is cryptography, is the largest employer of mathematicians 

in the United States.

With the rise of electronic communication systems, 

however, especially the Internet, an extremely important 
current use of cryptography is to make it possible to send 

private information, such as credit card numbers, banking 

data, medical records, and so forth, over electronic 
channels.

Many systems for sending secret messages require both 
the sender and the receiver to know both the encryption 
and the decryption procedures. 
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Modular Arithmetic with Applications to Cryptography

For instance, an encryption system once used by Julius 

Caesar, and now called the Caesar cipher, encrypts 

messages by changing each letter of the alphabet to the 

one three places farther along, with X wrapping around to 

A, Y to B, and Z to C.

In other words, say each letter of the alphabet is coded by 

its position relative to the others—so that                            

A = 01, B = 02, . . . , Z = 26. If the numerical version of the 
plaintext for a letter is denoted M and the numeric version 

of the ciphertext is denoted C, then
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Modular Arithmetic with Applications to Cryptography

The receiver of such a message can easily decrypt it by 

using the formula

For reference, here are the letters of the alphabet, together 

with their numeric equivalents:
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Example 1 – Encrypting and Decrypting with the Caesar Cipher

a. Use the Caesar cipher to encrypt the message 

HOW ARE YOU.

b. Use the Caesar cipher to decrypt the message 

L DP ILQH.
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Example 1(a) – Solution

First translate the letters of HOW ARE YOU into their             

numeric equivalents:

08     15     23        01     18     05        25     15     21.

Next encrypt the message by adding 3 to each number. 

The result is

11     18     26        04     21     08        02     18     24.

Finally, substitute the letters that correspond to these 

numbers. The encrypted message becomes

KRZ      DUH      BRX.
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Example 1(b) – Solution

First translate the letters of L DP ILQH into their numeric 

equivalents:

12        04     16        09     12     17     08.

Next decrypt the message by subtracting 3 from each 

number:

09        01     13        06     09     14     05.

Then translate back into letters to obtain the original 

message: I AM FINE.

cont’d
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Properties of Congruence 

Modulo n
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Properties of Congruence Modulo n

The first theorem in this section brings together a variety of 

equivalent ways of expressing the same basic arithmetic 

fact. 

Sometimes one way is most convenient; sometimes

another way is best. 

You need to be comfortable moving from one to another, 

depending on the nature of the problem you are trying to 
solve.
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Properties of Congruence Modulo n
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Properties of Congruence Modulo n

Another consequence of the quotient-remainder theorem is 

this: When an integer a is divided by a positive integer n, a 

unique quotient q and remainder r are obtained with the 

property that a = nq + r and 0 ≤≤≤≤ r < n. 

Because there are exactly n integers that satisfy the 

inequality 0 ≤≤≤≤ r < n (the numbers from 0 through n – 1), 
there are exactly n possible remainders that can occur. 

These are called the least nonnegative residues modulo n 

or simply the residues modulo n.
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Properties of Congruence Modulo n
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Modular Arithmetic
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Modular Arithmetic

A fundamental fact about congruence modulo n is that if 

you first perform an addition, subtraction, or multiplication 

on integers and then reduce the result modulo n, you will

obtain the same answer as if you had first reduced each of 

the numbers modulo n, performed the operation, and then 

reduced the result modulo n.

For instance, instead of computing

(5 ���� 8) = 40 ≡ 1 (mod 3)

you will obtain the same answer if you compute

(5 mod 3)(8 mod 3) = 2 ���� 2 = 4 ≡ 1 (mod 3).
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Modular Arithmetic

The fact that this process works is a result of the following 

theorem.
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Example 2 – Getting Started with Modular Arithmetic

The most practical use of modular arithmetic is to reduce 

computations involving large integers to computations 

involving smaller ones. For instance, note that

55 ≡ 3 (mod 4) because 55 – 3 = 52, which is divisible by 4, 

and 26 ≡ 2 (mod 4) because 26 – 2 = 24, which is also 

divisible by 4. Verify the following statements.

a. 55 + 26 ≡ (3 + 2) (mod 4)      b. 55 – 26 ≡ (3 – 2) (mod 4)

c. 55 ���� 26 ≡ (3 ���� 2) (mod 4)        d. 552
≡ 32 (mod 4)
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Example 2 – Solution

a. Compute 55 + 26 = 81 and 3 + 2 = 5. By definition of  

congruence modulo n, to show that 81 ≡ 5 (mod 4), you  

need to show that 4 | (81 – 5). But this is true because

81 – 5 = 76, and 4 | 76 since 76 = 4 ���� 19.

b. Compute 55 – 26 = 29 and 3 – 2 = 1. By definition of    
congruence modulo n, to show that 29 ≡ 1 (mod 4), you  

need to show that 4 | (29 – 1). But this is true because

29 – 1 = 28, and 4 | 28 since 28 = 4 ���� 7.
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Example 2 – Solution

c. Compute 55 ���� 26 = 1430 and 3 ���� 2 = 6. By definition of   

congruence modulo n, to show that 1430 ≡ 6 (mod 4),  

you need to show that 4 | (1430 – 6). But this is true   

because 1430 – 6 = 1424, and 4 | 1424 since

1424 = 4 ���� 356.

d. Compute 552 = 3025 and 32 = 9. By definition of  

congruence modulo n, to show that 3025 ≡ 9 (mod 4),  

you need to show that 4 | (3025 – 9). But this is true  

because 3025 – 9 = 3016, and 4 | 3016 since 
3016 = 4 ���� 754.

cont’d
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Modular Arithmetic
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Example 3 – Computing a Product Modulo n

As in Example 2, note that 55 ≡ 3 (mod 4) and                  

26 ≡ 2 (mod 4). Because both 3 and 2 are less than 4, each 

of these numbers is a least nonnegative residue modulo 4. 

Therefore, 55 mod 4 = 3 and 26 mod 4 = 2. Use the 

notation of Corollary 8.4.4 to find the residue of

55 ���� 26 modulo 4.

Solution:

We know that to use a calculator to compute remainders, 
you can use the formula n mod d = n – d ���� . If you are 

using a hand calculator with an “integer part” feature and 

both n and d are positive, then          is the integer part of 

the division of n by d.
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Example 3 – Solution

When you divide a positive integer n by a positive integer d

with a more basic calculator, you can see          on the 

calculator display by simply ignoring the digits that follow 

the decimal point.

By Corollary 8.4.4,

cont’d



24

Modular Arithmetic

When modular arithmetic is performed with very large 

numbers, as is the case for RSA crytography, computations 

are facilitated by using two properties of exponents.

The first is

8.4.1
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Modular Arithmetic

Thus, for instance, if x is any positive real number, then

Hence you can reduce x4 modulo n by reducing

x2 modulo n and then reducing the square of the result 
modulo n. 



26

Modular Arithmetic

Because all the residues are less than n, this process limits 

the size of the computations to numbers that are less than 

n2, which makes them easier to work with, both for humans 

(when the numbers are relatively small) and for computers 

(when the numbers are very large).

A second useful property of exponents is

8.4.2
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Example 4 – Computing ak mod n When k Is a Power of 2

Find 1444 mod 713.

Solution:

Use property (8.4.1) to write 1444 = (1442)2. Then
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Example 4 – Solution
cont’d
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Extending the Euclidean 

Algorithm
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Extending the Euclidean Algorithm

An extended version of the Euclidean algorithm can be 

used to find a concrete expression for the greatest common 

divisor of integers a and b.
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Example 6 – Expressing a Greatest Common Divisor as a Linear Combination

Use Euclidean algorithm to express gcd(330, 156) as a 

linear combination of 330 and 156.

Solution:

The first four steps of the solution were obtained by 

successive applications of the quotient-remainder theorem.

The fifth step shows how to find the coefficients of the 

linear combination by substituting back through the results 
of the previous steps.
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Example 6 – Solution

Step 1: 330 = 156 ���� 2 + 18, which implies that

18 = 330 – 156 ���� 2.

Step 2: 156 = 18 ���� 8 + 12, which implies that

12 = 156 – 18 ���� 8.

Step 3: 18 = 12 ���� 1 + 6, which implies that 6 = 18 – 12 ���� 1.

Step 4: 12 = 6 ���� 2 + 0, which implies that gcd(330, 156) = 6.

Step 5: By substituting back through steps 3 to 1:

cont’d
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Example 6 – Solution

Thus gcd(330, 156) = 9 ���� 330 + (–19) ���� 156. (It is always a 

good idea to check the result of a calculation like this to be 
sure you did not make a mistake. In this case, you find 

that 9 ���� 330 + (–19) ���� 156 does indeed equal 6.)

cont’d
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Finding an Inverse Modulo n
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Finding an Inverse Modulo n

Suppose you want to solve the following congruence for x:

2x ≡ 3 (mod 5)

Note that 3 ���� 2 = 6 ≡ 1 (mod 5). So you can think of 3 as a 

kind of inverse for 2 modulo 5 and multiply both sides of the 
congruence to be solved by 3 to obtain

6x = 3 ���� 2x ≡ 3 ���� 3 (mod 5) ≡ 9 (mod 5) ≡ 4 (mod 5).

But 6 ≡ 1 (mod 5), and so by Theorem 8.4.3(3),                 

6x ≡ 1x (mod 5) ≡ x (mod 5). 
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Finding an Inverse Modulo n

Thus, by the symmetric and transitive properties of modular 

congruence,

x ≡ 4 (mod 5),

and hence a solution is x = 4. (You can check that
2 ���� 4 = 8 ≡ 3 (mod 5).)

Unfortunately, it is not always possible to find an “inverse” 
modulo an integer n.
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Finding an Inverse Modulo n

For instance, observe that

By Theorem 8.4.3, these calculations suffice for us to 

conclude that the number 2 does not have an inverse 

modulo 4. 

Describing the circumstances in which inverses exist in 

modular arithmetic requires the concept of relative 

primeness.
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Finding an Inverse Modulo n

Given the definition of relatively prime integers, the 
following corollary is an immediate consequence of 

theorem 8.4.5.
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Example 7 – Expressing 1 as a Linear Combination of Relatively Prime Integers

Show that 660 and 43 are relatively prime, and find a linear 

combination of 660 and 43 that equals 1.

Solution:

Step 1: Divide 660 by 43 to obtain 660 = 43 ���� 15 + 15,  

which implies that 15 = 660 – 43 ���� 15.

Step 2: Divide 43 by 15 to obtain 43 = 15 ���� 2 + 13, which

implies that 13 = 43 – 15 ���� 2.

Step 3: Divide 15 by 13 to obtain 15 = 13 ���� 1 + 2, which 

implies that 2 = 15 – 13.
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Example 7 – Solution

Step 4: Divide 13 by 2 to obtain 13 = 2 ���� 6 + 1, which 

implies that 1 = 13 – 2 ���� 6.

Step 5: Divide 2 by 1 to obtain 2 = 1 ���� 2 + 0, which implies

that gcd(660, 43) = 1 and so 660 and 43 are
relatively prime.

Step 6: To express 1 as a linear combination of 660 and  

43, substitute back through steps 4 to 1:

cont’d
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Example 7 – Solution

Thus gcd(660, 43) = 1 = 307 ���� 43 – 20 ���� 660. (And a check 

by direct computation confirms that 307 ���� 43 – 20 ���� 660 
does indeed equal 1.)

cont’d
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Finding an Inverse Modulo n

A consequence of Corollary 8.4.6 is that under certain 

circumstances, it is possible to find an inverse for an 

integer modulo n.
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RSA Cryptography



44

RSA Cryptography

At this point we have developed enough number theory to 

explain how to encrypt and decrypt messages using the 

RSA cipher. 

The effectiveness of the system is based on the fact that 

although modern computer algorithms make it quite easy to 
find two distinct large integers p and q—say on the order of 

several hundred digits each—that are virtually certain to be 

prime, even the fastest computers are not currently able to 
factor their product, an integer with approximately twice 

that many digits. 
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RSA Cryptography

In order to encrypt a message using the RSA cipher, a 

person needs to know the value of pq and of another 

integer e, both of which are made publicly available.

But only a person who knows the individual values of p and 

q can decrypt an encrypted message.

We first give an example to show how the cipher works and 

then discuss some of the theory to explain why it works. 

The example is unrealistic in the sense that because p

and q are so small, it would be easy to figure out what they 

are just by knowing their product. 
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RSA Cryptography

But working with small numbers conveys the idea of the 

system, while keeping the computations in a range that can 

be performed with a hand calculator.

Suppose Alice decides to set up an RSA cipher. She 

chooses two prime numbers, say p = 5 and q = 11, and 
computes pq = 55. 

She then chooses a positive integer e that is relatively 
prime to (p – 1)(q – 1). In this case,

(p – 1)(q – 1) = 4 ���� 10 = 40, so she may take e = 3 because 

3 is relatively prime to 40. 
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RSA Cryptography

In practice, taking e to be small could compromise the 

secrecy of the cipher, so she would take a larger number 

than 3. However, the mathematics of the cipher works as 

well for 3 as for a larger number, and the smaller number 

makes for easier calculations.
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RSA Cryptography

The two numbers pq = 55 and e = 3 are the public key, 

which she may distribute widely. 

Because the RSA cipher works only on numbers, Alice also 

informs people how she will interpret the numbers in the 

messages they send her. 

Let us suppose that she encodes letters of the alphabet the 

same way as was done for the Caesar cipher:
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RSA Cryptography

Let us also assume that the messages Alice receives 

consist of blocks, each of which, for simplicity, is taken to 

be a single, numerically encoded letter of the alphabet.

Someone who wants to send Alice a message breaks the 

message into blocks, each consisting of a single letter, and 
finds the numeric equivalent for each block. 
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RSA Cryptography

The plaintext, M, in a block is converted into ciphertext, C, 

according to the following formula:

Note that because both pq and e are public keys, anyone 
who is given the keys and knows modular arithmetic can 

encrypt a message to send to Alice.

8.4.5
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Example 9 – Encrypting a Message Using RSA Cryptography

Bob wants to send Alice the message HI. What is the 

ciphertext for his message?

Solution:

Bob will send his message in two blocks, one for the H and 

another for the I. Because H is the eighth letter in the 
alphabet, it is encoded as 08, or 8.

The corresponding ciphertext is computed using formula 
(8.4.5) as follows:
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Example 9 – Solution

Because I is the ninth letter in the alphabet, it is encoded 

as 09, or 9. The corresponding ciphertext is

Accordingly, Bob sends Alice the message: 17 14. 

cont’d
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RSA Cryptography

To decrypt the message, Alice needs to compute the 

decryption key, a number d that is a positive inverse to 

e modulo (p – 1)(q – 1). 

She obtains the plaintext M from the ciphertext C by the 

formula

8.4.6
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RSA Cryptography

Note that because M + kpq ≡ M (mod pq), M must be taken 

to be less than pq, as in the Example 9, in order for the 

decryption to be guaranteed to produce the original 

message.

But because p and q are normally taken to be so large, this 
requirement does not cause problems.

Long messages are broken into blocks of symbols to meet 
the restriction and several symbols are included in each 

block to present decryption based on knowledge of letter 

frequencies.
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Example 10 – Decrypting a Message Using RSA Cryptography

Imagine that Alice has hired you to help her decrypt 

messages and has shared with you the values of p and q. 

Decrypt the following ciphertext for her: 17 14.

Solution:

Because p = 5 and q = 11, (p – 1)(q – 1) = 40, and so you 

first need to find the decryption key, which is a positive 
inverse for 3 modulo 40.

Use the technique of Example 7 to find a linear 
combination of 3 and 40 that equals 1.
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Example 10 – Solution

Step 1: Divide 40 by 3 to obtain 40 = 3 ���� 13 + 1. 

This implies that 1 = 40 – 3 ���� 13.

Step 2: Divide 3 by 1 to obtain 3 = 3 ���� 1 + 0. 

This implies that gcd(3, 40) = 1.

Step 3: Use the result of step 1 to write 
3 ���� (–13) = 1 + (–1)40 .

This result implies that –13 is an inverse for 3 modulo 40. 

In symbols, 3 ���� (–13) ≡ 1 (mod 40). 

To find a positive inverse, compute 40 – 13. The result is 

27, and
27 ≡ –13 (mod 40).

cont’d
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Example 10 – Solution

Thus you need to compute M = 1727 mod 55. To do so, 

note that 27 = 16 + 8 + 2 + 1 = 24 + 23 + 2 + 1. 

Thus you will find the residues obtained when 17 is raised 

to successively higher powers of 2, up to 24 = 16.

cont’d
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Example 10 – Solution

Then you will use the fact that

to write

cont’d

by Corollary 8.4.4
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Example 10 – Solution

Hence 1727 mod 55 = 8, and thus the plaintext of the first 
part of Bob’s message is 8, or 08. 

In the last step, you find the letter corresponding to 08, 
which is H. Similarly when you decrypt 14, the result is 9, 

which corresponds to the letter I, so you can tell Alice that 

Bob’s message is HI.

cont’d
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Euclid’s Lemma
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Euclid’s Lemma

Another consequence of Theorem 8.4.5 is known as 

Euclid’s lemma. It is the crucial fact behind the unique 

factorization theorem for the integers and is also of great 

importance in many other parts of number theory.

The unique factorization theorem for the integers states 

that any integer greater than 1 has a unique representation 

as a product of prime numbers, except possibly for the 
order in which the numbers are written.
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Euclid’s Lemma

Another application of Euclid’s lemma is a cancellation 

theorem for congruence modulo n. 

This theorem allows us—under certain circumstances—to 

divide out a common factor in a congruence relation.
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Fermat’s Little Theorem
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Fermat’s Little Theorem

Fermat’s little theorem was given that name to distinguish it 

from Fermat’s last theorem, which we have discussed.

It provides the theoretical underpinning for RSA 

cryptography.
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Why Does the RSA Cipher Work?
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Why Does the RSA Cipher Work?

For the RSA cryptography method, the formula

is supposed to produce the original plaintext message, M, 

when the encrypted message is C. How can we be sure 

that it always does so? We know that we require that         
M < pq, and we know that C = Me mod pq. So, by 

substitution,

By Theorem 8.4.3(4),
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Why Does the RSA Cipher Work?

Thus Cd mod pq ≡ Med (mod pq), and so it suffices to show   

that

We know that d was chosen to be a positive inverse for           

e modulo (p – 1)(q – 1), which exists because
gcd(e, (p – 1)(q – 1)) = 1.

In other words,

or, equivalently,
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Why Does the RSA Cipher Work?

Therefore,

If         , then by Fermat’s little theorem, Mp– 1 
≡ 1 (mod p), 

and so
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Why Does the RSA Cipher Work?

Similarly, if         , then by Fermat’s little theorem,

Mq– 1 
≡ 1 (mod q), and so

Thus, if M is relatively prime to pq,

If M is not relatively prime to pq, then either p | M or q | M. 

Without loss of generality, assume p | M. 
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Why Does the RSA Cipher Work?

It follows that Med
≡ 0 ≡ M (mod p). Moreover, because 

M < pq, q | M, and thus, as above, Med
≡ M (mod q). 

Therefore, in this case also,

By Theorem 8.4.1,

and, by definition of divisibility,
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Why Does the RSA Cipher Work?

By substitution,

and since q and p are distinct prime numbers, Euclid’s 

lemma applies to give

Thus t = qu for some integer u by definition of divisibility. 

By substitution,

where u is an integer, and so,

by definition of divisibility.
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Why Does the RSA Cipher Work?

Thus

by definition of congruence, or, equivalently,

Because M < pq, this last congruence implies that

and thus the RSA cipher gives the correct result.
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Additional Remarks on Number 

Theory and Cryptography
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Additional Remarks on Number Theory and Cryptography

The famous British mathematician

G. H. Hardy (1877–1947) was fond of comparing the 

beauty of pure mathematics, especially number theory, to 

the beauty of art. 

Indeed, the theorems in this section have many beautiful 
and striking consequences beyond those we have had the 

space to describe, and the subject of number theory 

extends far beyond these theorems. 

Hardy also enjoyed describing pure mathematics as 

useless. 
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Additional Remarks on Number Theory and Cryptography

Hence it is ironic that there are now whole books devoted 

to applications of number theory to computer science, RSA 

cryptography being just one such application.

Furthermore, as the need for public-key cryptography has 

developed, techniques from other areas of mathematics, 
such as abstract algebra and algebraic geometry, have 

been used to develop additional cryptosystems.


