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Equivalence Relations

SECTION 8.3
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The Relation Induced by a 
Partition
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The Relation Induced by a Partition

A partition of a set A is a finite or infinite collection of 
nonempty, mutually disjoint subsets whose union is A. The 
diagram of Figure 8.3.1 illustrates a partition of a set A by 
subsets A1, A2, . . . , A6.

Figure  8.3.1

A Partition of a Set
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The Relation Induced by a Partition
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Example 1 – Relation Induced by a Partition

Let A = {0, 1, 2, 3, 4} and consider the following partition of 
A:

{0, 3, 4}, {1}, {2}.

Find the relation R induced by this partition.

Solution:
Since {0, 3, 4} is a subset of the partition,

0 R 3 because both 0 and 3 are in {0, 3, 4},

3 R 0 because both 3 and 0 are in {0, 3, 4},
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Example 1 – Solution

0 R 4 because both 0 and 4 are in {0, 3, 4},

4 R 0 because both 4 and 0 are in {0, 3, 4},

3 R 4 because both 3 and 4 are in {0, 3, 4},    and

4 R 3 because both 4 and 3 are in {0, 3, 4}.

Also, 0 R 0 because both 0 and 0 are in {0, 3, 4}

3 R 3 because both 3 and 3 are in {0, 3, 4},    and

4 R 4 because both 4 and 4 are in {0, 3, 4}.

cont’d
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Example 1 – Solution

Since {1} is a subset of the partition,

1 R 1 because both 1 and 1 are in {1},

and since {2} is a subset of the partition,

2 R 2 because both 2 and 2 are in {2}.

Hence

R = {(0, 0), (0, 3), (0, 4), (1, 1), (2, 2), (3, 0), (3, 3), (3, 4),    
(4, 0), (4, 3), (4, 4)}.

cont’d
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The Relation Induced by a Partition

The fact is that a relation induced by a partition of a set 
satisfies all three properties: reflexivity, symmetry, and 
transitivity.
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Definition of an Equivalence
Relation
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Definition of an Equivalence Relation

A relation on a set that satisfies the three properties of 
reflexivity, symmetry, and transitivity is called an 
equivalence relation.

Thus, according to Theorem 8.3.1, the relation induced by 
a partition is an equivalence relation.
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Example 2 – An Equivalence Relation on a Set of Subsets

Let X be the set of all nonempty subsets of {1, 2, 3}. Then

X = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

Define a relation R on X as follows: For all A and B in X,

A R B ⇔ the least element of A equals the least 
element of B.

Prove that R is an equivalence relation on X.



13

Example 2 – Solution

R is reflexive: Suppose A is a nonempty subset of {1, 2, 3}. 
[We must show that A R A.] 

It is true to say that the least element of A equals the least 
element of A. Thus, by definition of R, A R A.

R is symmetric: Suppose A and B are nonempty subsets 
of {1, 2, 3} and A R B. [We must show that B R A.]

Since A R B, the least element of A equals the least 
element of B. 

But this implies that the least element of B equals the least 
element of A, and so, by definition of R, B R A.
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Example 2 – Solution

R is transitive: Suppose A, B, and C are nonempty 
subsets of {1, 2, 3}, A R B, and B R C. [We must show that 

A R C.]

Since A R B, the least element of A equals the least 
element of B and since B R C, the least element of B
equals the least element of C. 

Thus the least element of A equals the least element of C, 
and so, by definition of R, A R C.

cont’d
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Equivalence Classes of an 
Equivalence Relation
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Equivalence Classes of an Equivalence Relation

Suppose there is an equivalence relation on a certain set. 
If a is any particular element of the set, then one can ask, 
“What is the subset of all elements that are related to a?” 
This subset is called the equivalence class of a.



17

Equivalence Classes of an Equivalence Relation

When several equivalence relations on a set are under 
discussion, the notation [a]R is often used to denote the 
equivalence class of a under R. 

The procedural version of this definition is
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Example 5 – Equivalence Classes of a Relation Given as a set of Ordered Pairs

Let A = {0, 1, 2, 3, 4} and define a relation R on A as 
follows:

R = {(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), 
(4, 0), (4, 4)}.

The directed graph for R is as shown below. As can be 
seen by inspection, R is an equivalence relation on A. Find 
the distinct equivalence classes of R.
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Example 5 – Solution

First find the equivalence class of every element of A.

Note that [0] = [4] and [1] = [3]. Thus the distinct 

equivalence classes of the relation are

{0, 4}, {1, 3}, and {2}.
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Equivalence Classes of an Equivalence Relation

The first lemma says that if two elements of A are related 
by an equivalence relation R, then their equivalence 
classes are the same.

This lemma says that if a certain condition is satisfied, then 
[a] = [b]. Now [a] and [b] are sets, and two sets are equal if, 
and only if, each is a subset of the other.
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Equivalence Classes of an Equivalence Relation

Hence the proof of the lemma consists of two parts: first, a 
proof that [a] ⊆ [b] and second, a proof that [b] ⊆ [a]. 

To show each subset relation, it is necessary to show that 
every element in the left-hand set is an element of the 
right-hand set.

The second lemma says that any two equivalence classes 
of an equivalence relation are either mutually disjoint or 
identical.
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Equivalence Classes of an Equivalence Relation

The statement of Lemma 8.3.3 has the form

if p then (q or r),

where p is the statement “A is a set, R is an equivalence 
relation on A, and a and b are elements of A,” q is the 
statement “[a] ∩∩∩∩ [b] = Ø,” and r is the statement “[a] = [b].”
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Congruence Modulo n
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Example 10 – Equivalence Classes of Congruence Modulo 3

Let R be the relation of congruence modulo 3 on the set Z
of all integers. That is, for all integers m and n,

Describe the distinct equivalence classes of R.

Solution:
For each integer a,
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Example 10 – Solution

Therefore,

In particular, 

cont’d
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Example 10 – Solution

Now since 3 R 0, then by Lemma 8.3.2,

More generally, by the same reasoning,

Similarly,

cont’d
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Example 10 – Solution

And

Notice that every integer is in class [0], [1], or [2]. Hence 
the distinct equivalence classes are

cont’d
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Example 10 – Solution

In words, the three classes of congruence modulo 3 are (1) 
the set of all integers that are divisible by 3, (2) the set of all 
integers that leave a remainder of 1 when divided by 3, and 
(3) the set of all integers that leave a remainder of 2 when 
divided by 3.

cont’d
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Congruence Modulo n
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Example 11 – Evaluating Congruences

Determine which of the following congruences are true and 
which are false.

a. b. c.

Solution:
a. True. 12 – 7 = 5 = 5 ���� 1. Hence 5 | (12 – 7), and so
12 ≡ 7 (mod 5).

b. False. 6 – (–8) = 14, and          because 14 ≠≠≠≠ 4 ���� k for
any integer k. Consequently,

c. True. 3 – 3 = 0 = 7 ���� 0. Hence 7 | (3 – 3), and so 3 ≡ 3
(mod 7). 
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A Definition for Rational Numbers
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A Definition for Rational Numbers

For a moment, forget what you know about fractional 
arithmetic and look at the numbers

as symbols. Considered as symbolic expressions, these 
appear quite different. In fact, if they were written as 
ordered pairs

(1, 3) and (2, 6)

they would be different. 
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A Definition for Rational Numbers

The fact that we regard them as “the same” is a specific 
instance of our general agreement to regard any two 
numbers

as equal provided the cross products are equal: ad = bc. 
This can be formalized as follows, using the language of 
equivalence relations.
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Example 12 – Rational Numbers Are Really Equivalence Classes

Let A be the set of all ordered pairs of integers for which 
the second element of the pair is nonzero. Symbolically,

Define a relation R on A as follows: For all (a, b), (c, d) ∈ A,

The fact is that R is an equivalence relation.

a. Prove that R is transitive. 

b. Describe the distinct equivalence classes of R.
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Example 12(a) – Solution

Suppose (a, b), (c, d), and (e, f) are particular but arbitrarily 
chosen elements of A such that (a, b) R (c, d) and
(c, d) R (e, f). 

[We must show that for all (a, b), (c, d), (e, f ) ∈ A,
if (a, b) R (c, d) and (c, d) R (e, f), then (a, b) R (e, f).] 

[We must show that (a, b) R (e, f).] By definition of R,

Since the second elements of all ordered pairs in A are 
nonzero, b ≠≠≠≠ 0, d ≠≠≠≠ 0, and f ≠≠≠≠ 0. 
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Example 12(a) – Solution

Multiply both sides of equation (1) by f and both sides of 
equation (2) by b to obtain

Thus

and, since d ≠≠≠≠ 0, it follows from the cancellation law for 
multiplication that

It follows, by definition of R, that (a, b) R (e, f) [as was to be 

shown].

cont’d
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Example 12(b) – Solution

There is one equivalence class for each distinct rational 
number. 

Each equivalence class consists of all ordered pairs (a, b) 
that, if written as fractions a/b, would equal each other. 

The reason for this is that the condition for two rational 
numbers to be equal is the same as the condition for two 
ordered pairs to be related. 

cont’d
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Example 12(b) – Solution

For instance, the class of (1, 2) is

since                                             and so forth. 

cont’d


