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Reflexivity, Symmetry, and 
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Reflexivity, Symmetry, and Transitivity

Let A = {2, 3, 4, 6, 7, 9} and define a relation R on A as 

follows: For all x, y ∈ A,

Then 2 R 2 because 2 – 2 = 0, and 3 | 0. 

Similarly, 3 R 3, 4 R 4, 6 R 6, 7 R 7, and 9 R 9.

Also 6 R 3 because 6 – 3 = 3, and 3 | 3.

And 3 R 6 because 3 – 6 = –(6 – 3) = –3, and 3 | (–3). 

Similarly, 3 R 9, 9 R 3, 6 R 9, 9 R 6, 4 R 7, and 7 R 4. 
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Reflexivity, Symmetry, and Transitivity

Thus the directed graph for R has 

the appearance shown at the right.

This graph has three important 

properties:

1. Each point of the graph has an arrow looping around 

from it back to itself.

2. In each case where there is an arrow going from one 

point to a second, there is an arrow going from the 

second point back to the first.
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Reflexivity, Symmetry, and Transitivity

3. In each case where there is an arrow going from one 

point to a second and from the second point to a third, 

there is an arrow going from the first point to the third. 

That is, there are no “incomplete directed triangles” in 

the graph.

Properties (1), (2), and (3) correspond to properties of 

general relations called reflexivity, symmetry, and 
transitivity.
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Reflexivity, Symmetry, and Transitivity

Because of the equivalence of the expressions x R y and 

(x, y) ∈ R for all x and y in A, the reflexive, symmetric, and 

transitive properties can also be written as follows:
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Reflexivity, Symmetry, and Transitivity

In informal terms, properties (1)–(3) say the following:

1. Reflexive: Each element is related to itself.

2. Symmetric: If any one element is related to any other 

element, then the second element is related to the first.

3. Transitive: If any one element is related to a second 

and that second element is related to a third, then the 
first element is related to the third.

Note that the definitions of reflexivity, symmetry, and 

transitivity are universal statements.
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Reflexivity, Symmetry, and Transitivity

This means that to prove a relation has one of the 

properties, you use either the method of exhaustion or the 

method of generalizing from the generic particular.

Now consider what it means for a relation not to have one 

of the properties defined previously. We have known that 
the negation of a universal statement is existential. 

Hence if R is a relation on a set A, then

1. R is not reflexive    ⇔ there is an element x in A such  
that           [that is, such that 

(x, x) R].
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Reflexivity, Symmetry, and Transitivity

2. R is not symmetric     ⇔ there are elements x and y

in A such that x R y but 

[that is, such that 

(x, y) ∈ R but (y, x)    R].

3. R is not transitive       ⇔ there are elements x, y and 
z in A such that x R y and 

y R z but           [that is, such 

that (x, y) ∈ R and  

(y, z) ∈ R but (x, z) R].

It follows that you can show that a relation does not have 

one of the properties by finding a counterexample.
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Example 1 – Properties of Relations on Finite Sets

Let A = {0, 1, 2, 3} and define relations R, S, and T on A as 

follows:

R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)},

S = {(0, 0), (0, 2), (0, 3), (2, 3)},

T = {(0, 1), (2, 3)}.

a. Is R reflexive? symmetric? transitive?

b. Is S reflexive? symmetric? transitive?

c. Is T reflexive? symmetric? transitive?
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Example 1(a) – Solution

The directed graph of R has the appearance shown below.

R is reflexive: There is a loop at each point of the directed 

graph. This means that each element of A is related to 

itself, so R is reflexive. 
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Example 1(a) – Solution

R is symmetric: In each case where there is an arrow 

going from one point of the graph to a second, there is an 

arrow going from the second point back to the first. 

This means that whenever one element of A is related by R
to a second, then the second is related to the first. Hence R

is symmetric.

R is not transitive: There is an arrow going from 1 to 0 

and an arrow going from 0 to 3, but there is no arrow going 
from 1 to 3. 

This means that there are elements of A—0, 1, and 

3—such that 1 R 0 and 0 R 3 but 1     3. Hence R is not 
transitive.

cont’d
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Example 1(b) – Solution

The directed graph of S has the appearance shown below.

S is not reflexive: There is no loop at 1, for example. 

Thus (1, 1)    S, and so S is not reflexive.

S is not symmetric: There is an arrow from 0 to 2 but not 

from 2 to 0. Hence (0, 2) ∈ S but (2, 0)    S, and so S is not 

symmetric.

cont’d
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Example 1(b) – Solution

S is transitive: There are three cases for which there is an 

arrow going from one point of the graph to a second and 

from the second point to a third: 

Namely, there are arrows going from 0 to 2 and from 2 to 3; 
there are arrows going from 0 to 0 and from 0 to 2; and 

there are arrows going from 0 to 0 and from 0 to 3.

In each case there is an arrow going from the first point to 

the third. (Note again that the “first,” “second,” and “third” 
points need not be distinct.) 

This means that whenever (x, y) ∈ S and (y, z) ∈ S, then 

(x, z) ∈ S, for all x, y, z ∈ {0, 1, 2, 3}, and so S is transitive.

cont’d
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Example 1(c) – Solution

The directed graph of T has 

the appearance shown at right.

T is not reflexive: There is no loop at 0, for example. Thus 

(0, 0)    T, so T is not reflexive.

T is not symmetric: There is an arrow from 0 to 1 but not 
from 1 to 0. Thus (0, 1) ∈ T but (1, 0)    T, and so T is not 

symmetric.

T is transitive: The transitivity condition is vacuously true 

for T. To see this, observe that the transitivity condition 
says that

For all x, y, z ∈ A, if (x, y) ∈ T and (y, z) ∈ T then (x, z) ∈ T.

cont’d
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Example 1(c) – Solution

The only way for this to be false would be for there to exist 

elements of A that make the hypothesis true and the 

conclusion false. 

That is, there would have to be elements x, y, and z in A
such that (x, y) ∈ T and (y, z) ∈ T and (x, z)    T.

In other words, there would have to be two ordered pairs in 

T that have the potential to “link up” by having the second

element of one pair be the first element of the other pair.

But the only elements in T are (0, 1) and (2, 3), and these 

do not have the potential to link up. Hence the hypothesis 
is never true. It follows that it is impossible for T not to be 
transitive, and thus T is transitive.

cont’d
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Properties of Relations on 

Infinite Sets



18

Properties of Relations on Infinite Sets

Suppose a relation R is defined on an infinite set A. To 

prove the relation is reflexive, symmetric, or transitive, first 

write down what is to be proved. For instance, for 

symmetry you need to prove that

∀∀∀∀ x, y ∈ A, if x R y then y R x.

Then use the definitions of A and R to rewrite the statement 

for the particular case in question. For instance, for the 
“equality” relation on the set of real numbers, the rewritten 

statement is

∀∀∀∀ x, y ∈ R, if x = y then y = x.
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Properties of Relations on Infinite Sets

Sometimes the truth of the rewritten statement will be 

immediately obvious (as it is here). 

At other times you will need to prove it using the method of 

generalizing from the generic particular.

We begin with the relation of equality, one of the simplest 

and yet most important relations.
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Example 2 – Properties of Equality

Define a relation R on R (the set of all real numbers) as 

follows: For all real numbers x and y.

a. Is R reflexive? 

b. Is R symmetric? 

c. Is R transitive?
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Example 2(a) – Solution

R is reflexive: R is reflexive if, and only if, the following 

statement is true:

For all x ∈ R, x R x. 

Since x R x just means that x = x, this is the same as 

saying

For all x ∈ R, x = x.

But this statement is certainly true; every real number is 
equal to itself.
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Example 2(b) – Solution

R is symmetric: R is symmetric if, and only if, the following 

statement is true:

For all x, y ∈ R, if x R y then y R x.

By definition of R, x R y means that x = y and y R x means 
that y = x. Hence R is symmetric if, and only if,

For all x, y ∈ R, if x = y then y = x.

But this statement is certainly true; if one number is equal 

to a second, then the second is equal to the first.

cont’d
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Example 2(c) – Solution

R is transitive: R is transitive if, and only if, the following 

statement is true:

For all x, y, z ∈ R, if x R y and y R z then x R z.

By definition of R, x R y means that x = y, y R z means that 
y = z, and x R z means that x = z. Hence R is transitive if, 

and only if, the following statement is true:

For all x, y, z ∈ R, if x = y and y = z then x = z.

But this statement is certainly true: If one real number 
equals a second and the second equals a third, then the 
first equals the third.

cont’d



24

Example 4 – Properties of Congruence Modulo 3

Define a relation T on Z (the set of all integers) as follows: 

For all integers m and n,

This relation is called congruence modulo 3.

a. Is T reflexive? 

b. Is T symmetric? 

c. Is T transitive?
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Example 4(a) – Solution

T is reflexive: To show that T is reflexive, it is necessary to 

show that

For all m ∈ Z,       m T m.

By definition of T, this means that

For all m ∈ Z,        3 | (m – m).

Or, since m – m = 0,       For all m ∈ Z,    3 | 0.

But this is true: 3 | 0 since 0 = 3 ���� 0. Hence T is reflexive. 
This reasoning is formalized in the following proof.
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Example 4(b) – Solution

T is symmetric: To show that T is symmetric, it is 

necessary to show that

For all m, n ∈ Z,  if m T n then n T m.

By definition of T this means that

For all m, n ∈ Z, if 3 | (m – n) then 3 | (n – m).

Is this true? Suppose m and n are particular but arbitrarily 
chosen integers such that 3 | (m – n). 

Must it follow that 3 | (n – m)? [In other words, can we find 

an integer so that n – m = 3 ���� (that integer)?]

cont’d
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Example 4(b) – Solution

By definition of “divides,” since

3 | (m – n),

then                 m – n = 3k for some integer k.

The crucial observation is that n – m = –(m – n). Hence, 
you can multiply both sides of this equation by –1 to obtain

–(m – n) = –3k,

which is equivalent to    n – m = 3(–k).

[Thus we have found an integer, namely –k, so that 

n – m = 3 ���� (that integer).]

cont’d
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Example 4(b) – Solution

Since –k is an integer, this equation shows that

3 | (n – m).

It follows that T is symmetric.

The reasoning is formalized in the following proof.

cont’d
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Example 4(c) – Solution

T is transitive: To show that T is transitive, it is necessary 

to show that

For all m, n, p ∈ Z, if m T n and n T p then m T p.

By definition of T this means that

For all m, n ∈ Z,    

if 3 | (m – n) and 3 | (n – p) then 3 | (m – p).

Is this true? Suppose m, n, and p are particular but 
arbitrarily chosen integers such that 3 | (m – n) and 

3 | (n – p). 

Must it follow that 3 | (m – p)? [In other words, can we find 

an integer so that m – p = 3 ���� (that integer)?]

cont’d
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Example 4(c) – Solution

By definition of “divides,” since

3 | (m – n) and 3 | (n – p),

then          m – n = 3r for some integer r,

and           n – p = 3s for some integer s.

The crucial observation is that (m – n) + (n – p) = m – p.

Add these two equations together to obtain

(m – n) + (n – p) = 3r + 3s,

which is equivalent to m – p = 3(r + s).

[Thus we have found an integer so that m – p = 3 ���� (that 

integer).]

cont’d
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Example 4(c) – Solution

Since r and s are integers, r + s is an integer. So this 

equation shows that

3 | (m – p).

It follows that T is transitive.

The reasoning is formalized in the following proof.   

cont’d
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The Transitive Closure of a 

Relation
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The Transitive Closure of a Relation

Generally speaking, a relation fails to be transitive because 

it fails to contain certain ordered pairs. 

For example, if (1, 3) and (3, 4) are in a relation R, then the 

pair (1, 4) must be in R if R is to be transitive. 

To obtain a transitive relation from one that is not transitive, 

it is necessary to add ordered pairs.

Roughly speaking, the relation obtained by adding the least 

number of ordered pairs to ensure transitivity is called the 

transitive closure of the relation.
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The Transitive Closure of a Relation

In a sense made precise by the formal definition, the 

transitive closure of a relation is the smallest transitive 

relation that contains the relation.
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Example 5 – Transitive Closure of a Relation

Let A = {0, 1, 2, 3} and consider the relation R defined on A

as follows:

R = {(0, 1), (1, 2), (2, 3)}.

Find the transitive closure of R.

Solution:

Every ordered pair in R is in Rt, so

{(0, 1), (1, 2), (2, 3)} ⊆ Rt.

Thus the directed graph of R contains 

the arrows shown at the right.
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Example 5 – Solution

Since there are arrows going from 0 to 1 and from 1 to 2, 

Rt must have an arrow going from 0 to 2. 

Hence (0, 2) ∈ Rt. Then (0, 2) ∈ Rt and (2, 3) ∈ Rt, so 

since Rt is transitive, (0, 3) ∈ Rt. 

Also, since (1, 2) ∈ Rt and (2, 3) ∈ Rt, then (1, 3) ∈ Rt.

Thus Rt contains at least the following ordered pairs:

{(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}.

But this relation is transitive; hence it 

equals Rt. Note that the directed graph 

of Rt is as shown at the right.

cont’d


