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One-to-One and Onto, Inverse Functions

In this section we discuss two important properties that 

functions may satisfy: the property of being one-to-one and 

the property of being onto.

Functions that satisfy both properties are called one-to-one 

correspondences or one-to-one onto functions.

When a function is a one-to-one correspondence, the 

elements of its domain and co-domain match up perfectly, 

and we can define an inverse function from the co-domain 
to the domain that “undoes” the action of the function.
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One-to-One Functions
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One-to-One Functions

We have noted earlier that a function may send several 

elements of its domain to the same element of its            

co-domain.

In terms of arrow diagrams, this means that two or more 

arrows that start in the domain can point to the same 
element in the co-domain.

On the other hand, if no two arrows that start in the domain 

point to the same element of the co-domain then the 
function is called one-to-one or injective.
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One-to-One Functions

For a one-to-one function, each element of the range is the 

image of at most one element of the domain.

To obtain a precise statement of what it means for a 

function not to be one-to-one, take the negation of one of 
the equivalent versions of the definition above. 
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One-to-One Functions

Thus:

That is, if elements x1 and x2 can be found that have the 

same function value but are not equal, then F is not      

one-to-one.
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One-to-One Functions

In terms of arrow diagrams, a one-to-one function can be 

thought of as a function that separates points. That is, it 

takes distinct points of the domain to distinct points of the 

co-domain.

A function that is not one-to-one fails to separate points. 
That is, at least two points of the domain are taken to the 

same point of the co-domain.
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One-to-One Functions

This is illustrated in Figure 7.2.1

A One-to-One Function Separates Points

Figure 7.2.1 (a)

A Function That Is Not One-to-One Collapses Points Together

Figure 7.2.1 (b)
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Example 1 – Identifying One-to-One Functions Defined on Finite Sets

a. Do either of the arrow diagrams in Figure 7.2.2 define

one-to-one functions?

b. Let X = {1, 2, 3} and Y = {a, b, c, d}. Define H: X → Y as 
follows: H(1) = c, H(2) = a, and H(3) = d. 

Define K: X → Y as follows: K(1) = d, K(2) = b, and 
K(3) = d. Is either H or K one-to-one?

Figure 7.2.2
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Example 1 – Solution

a. F is one-to-one but G is not. 

F is one-to-one because no two different elements of X
are sent by F to the same element of Y.

G is not one-to-one because the elements a and c are 

both sent by G to the same element of                           
Y: G(a) = G(c) = w but a ≠≠≠≠ c.
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Example 1 – Solution

b. H is one-to-one but K is not.

H is one-to-one because each of the three elements of 
the domain of H is sent by H to a different element of the 

co-domain: H(1) ≠≠≠≠ H(2), H(1) ≠≠≠≠ H(3), and H(2) ≠≠≠≠ H(3). K, 

however, is not one-to-one because K(1) = K(3) = d but 
1 ≠≠≠≠ 3.

cont’d
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One-to-One Functions on 

Infinite Sets



14

One-to-One Functions on Infinite Sets

Now suppose f is a function defined on an infinite set X. By 

definition, f is one-to-one if, and only if, the following 

universal statement is true:

Thus, to prove f is one-to-one, you will generally use the 

method of direct proof:

suppose x1 and x2 are elements of X such that   

f(x1) = f(x2)

and show that x1 = x2.
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One-to-One Functions on Infinite Sets

To show that f is not one-to-one, you will ordinarily

find elements x1 and x2 in X so that f(x1) = f(x2) but    

x1 ≠≠≠≠ x2.
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Example 2 – Proving or Disproving That Functions Are One-to-One

Define f: R → R and g: Z → Z by the rules.

and

a. Is f one-to-one? Prove or give a counterexample.

b. Is g one-to-one? Prove or give a counterexample.
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Example 2 – Solution

It is usually best to start by taking a positive approach to 

answering questions like these. Try to prove the given 

functions are one-to-one and see whether you run into 

difficulty.

If you finish without running into any problems, then you 
have a proof. If you do encounter a problem, then 

analyzing the problem may lead you to discover a 

counterexample.

a. The function f: R → R is defined by the rule
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Example 2 – Solution

To prove that f is one-to-one, you need to prove that

Substituting the definition of f into the outline of a direct 
proof, you

suppose x1 and x2 are any real numbers such that 

4x1 – 1 = 4x2 – 1,

and       show that x1 = x2.

cont’d
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Example 2 – Solution

Can you reach what is to be shown from the supposition? 

Of course. Just add 1 to both sides of the equation in the 
supposition and then divide both sides by 4.

This discussion is summarized in the following formal 

answer.

cont’d
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Example 2 – Solution

Proof:

Suppose x1 and x2 are real numbers such that f(x1) = f(x2).

[We must show that x1 = x2.] 

By definition of f,

Adding 1 to both sides gives

and dividing both sides by 4 gives

which is what was to be shown.

cont’d
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Example 2 – Solution

b. The function g: Z → Z is defined by the rule

As above, you start as though you were going to prove 

that g is one-to-one. 

Substituting the definition of g into the outline of a direct 

proof, you

suppose n1 and n2 are integers such that

and      try to show that n1 = n2.

cont’d
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Example 2 – Solution

Can you reach what is to be shown from the supposition? 

No! It is quite possible for two numbers to have the same 

squares and yet be different. 

For example, 22 = (–2)2 but 2 ≠ –2.

Thus, in trying to prove that g is one-to-one, you run into 
difficulty. 

But analyzing this difficulty leads to the discovery of a 

counterexample, which shows that g is not one-to-one.

cont’d
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Example 2 – Solution

This discussion is summarized as follows:

Counterexample:

Let n1 = 2 and n2 = 2. Then by definition of g,

Hence

and so g is not one-to-one.

cont’d
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Application: Hash Functions
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Application: Hash Functions

Imagine a set of student records, each of which includes 

the student’s social security number, and suppose the 

records are to be stored in a table in which a record can be 

located if the social security number is known.

One way to do this would be to place the record with social 
security number n into position n of the table. However, 

since social security numbers have nine digits, this method 

would require a table with 999,999,999 positions.
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Application: Hash Functions

The problem is that creating such a table for a small set of 

records would be very wasteful of computer memory 

space.

Hash functions are functions defined from larger to 

smaller sets of integers, frequently using the mod function, 
which provide part of the solution to this problem.

We illustrate how to define and use a hash function with a 

very simple example.
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Example 3 – A Hash Function

Suppose there are no more than seven student records. 

Define a function Hash from the set of all social security 

numbers (ignoring hyphens) to the set {0, 1, 2, 3, 4, 5, 6} as 

follows:

To use your calculator to find n mod 7, use the formula 

n mod 7 = n – 7 ���� (n div 7).

In other words, divide n by 7, multiply the integer part of the 

result by 7, and subtract that number from n. For instance, 
since 328343419/7 = 46906202.71 . . . ,
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Example 3 – A Hash Function

As a first approximation to solving the problem of storing 

the records, try to place the record with social security 

number n in position Hash(n).

For instance, if the social 

security numbers are 328-34-3419, 
356-63-3102, 223-79-9061, and 

513-40-8716, the positions of the 

records are as shown in Table 7.2.1.

Table 7.2.1

cont’d
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Example 3 – A Hash Function

The problem with this approach is that Hash may not be 

one-to one; Hash might assign the same position in the 

table to records with different social security numbers. 

Such an assignment is called a collision.

When collisions occur, various collision resolution 
methods are used. One of the simplest is the following: If, 

when the record with social security number n is to be 

placed, position Hash(n) is already occupied, start from that 

position and search downward to place the record in the 
first empty position that occurs, going back up to the 

beginning of the table if necessary.

cont’d
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Example 3 – A Hash Function

To locate a record in the table from its social security 

number, n, you compute Hash(n) and search downward 

from that position to find the record with social security 

number n. If there are not too many collisions, this is a very 

efficient way to store and locate records.

Suppose the social security number 

for another record to be stored is 

908-37-1011. Find the position in 

Table 7.2.1 into which this record 
would be placed.

Table 7.2.1

cont’d
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Example 3 – Solution

When you compute Hash you find that 

Hash(908-37-1011) = 2, which is already occupied by the 

record with social security number 513-40-8716. 

Searching downward from position 2, you find that position 

3 is also occupied but position 4 is free.

Therefore, you place the record with social security number 
n into position 4.
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Onto Functions
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Onto Functions

We have noted that there may be an element of the         

co-domain of a function that is not the image of any 

element in the domain.

On the other hand, every element of a function’s co-domain 
may be the image of some element of its domain. Such a 

function is called onto or surjective. When a function is 

onto, its range is equal to its co-domain.
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Onto Functions

To obtain a precise statement of what it means for a 

function not to be onto, take the negation of the definition of 

onto:

That is, there is some element in Y that is not the image of 

any element in X. In terms of arrow diagrams, a function is 

onto if each element of the co-domain has an arrow 
pointing to it from some element of the domain. 

A function is not onto if at least one element in its 
co-domain does not have an arrow pointing to it. 
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Onto Functions

This is illustrated in Figure 7.2.3.

A Function That Is Onto
Figure 7.2.3 (a)

A Function That Is Not Onto

Figure 7.2.3 (b)
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Example 4 – Identifying Onto Functions Defined on Finite Sets

a. Do either of the arrow diagrams in Figure 7.2.4 define 

onto functions?

b. Let X = {1, 2, 3, 4} and Y = {a, b, c}.

Define H: X → Y as follows: H(1) = c, H(2) = a, H(3) = c, 

H(4) = b. Define K: X → Y as follows: K(1) = c, K(2) = b, 
K(3) = b, and K(4) = c. Is either H or K onto?

Figure 7.2.4
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Example 4 – Solution

a. F is not onto because b ≠≠≠≠ F(x) for any x in X. 

G is onto because each element of Y equals G(x) for 

some x in X: a = G(3), b = G(1), c = G(2) = G(4), and 

d = G(5).

b. H is onto but K is not.

H is onto because each of the three elements of the 

co-domain of H is the image of some element of the 

domain of H: a = H(2), b = H(4), and c = H(1) = H(3). K, 
however, is not onto because a ≠≠≠≠ K(x) for any x in 

{1, 2, 3, 4}.



38

Onto Functions on Infinite Sets
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Onto Functions on Infinite Sets

Now suppose F is a function from a set X to a set Y, and 

suppose Y is infinite. By definition, F is onto if, and only if, 

the following universal statement is true:

Thus to prove F is onto, you will ordinarily use the method 
of generalizing from the generic particular:

suppose that y is any element of Y

and show that there is an element X of X with F(x) = y.

To prove F is not onto, you will usually

find an element y of Y such that y ≠≠≠≠ F(x) for any x    

in X.
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Example 5 – Proving or Disproving That Functions Are Onto

Define f: R → R and h: Z → Z by the rules

And

a. Is f onto? Prove or give a counterexample.

b. Is h onto? Prove or give a counterexample.
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Example 5 – Solution

a. The best approach is to start trying to prove that f is onto 

and be alert for difficulties that might indicate that it is 

not. Now f: R → R is the function defined by the rule

To prove that f is onto, you must prove
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Example 5 – Solution

Substituting the definition of f into the outline of a proof by 

the method of generalizing from the generic particular, you 

suppose y is a real number 

and show that there exists a real number x such that 

y = 4x – 1.

Scratch Work: If such a real number x exists, then

cont’d
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Example 5 – Solution

Thus if such a number x exists, it must equal (y + 1)/4. 

Does such a number exist? Yes. 

To show this, let x = (y + 1)/4, and then made sure that 

(1) x is a real number and that 

(2) f really does send x to y. 

The following formal answer summarizes this process.

cont’d
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Example 5 – Solution

Proof:

Let y ∈ R. [We must show that ∃x in R such that f(x) = y.] 

Let x = (y + 1)/4.

Then x is a real number since sums and quotients (other 
than by 0) of real numbers are real numbers. It follows that

[This is what was to be shown.]

cont’d
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Example 5 – Solution

b. The function h: Z → Z is defined by the rule

To prove that h is onto, it would be necessary to prove

that

Substituting the definition of h into the outline of a proof 

by the method of generalizing from the generic

particular, you
suppose m is any integer                  

and try to show that there is an integer n with 

4n – 1 = m.

cont’d
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Example 5 – Solution

Can you reach what is to be shown from the supposition? 

No! If 4n – 1 = m, then

But n must be an integer. And when, for example, m = 0, 

then

which is not an integer.

Thus, in trying to prove that h is onto, you run into difficulty, 

and this difficulty reveals a counterexample that shows h is 
not onto.

cont’d



47

Example 5 – Solution

This discussion is summarized in the following formal 

answer.

Counterexample:

The co-domain of h is Z and 0 ∈ Z. But h(n) ≠≠≠≠ 0 for any 
integer n.

cont’d
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Example 5 – Solution

For if h(n) = 0, then

which implies that

and so

But 1/4 is not an integer. Hence there is no integer n for 

which f(n) = 0, and thus f is not onto.

cont’d
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Relations between Exponential and 
Logarithmic Functions
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Relations between Exponential and Logarithmic Functions

For positive numbers b ≠≠≠≠ 1, the exponential function with 

base b, denoted expb, is the function from R to R+ defined 

as follows: 

For all real numbers x,

where b0 = 1 and b–x = 1/bx.
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Relations between Exponential and Logarithmic Functions

When working with the exponential function, it is useful to 

recall the laws of exponents from elementary algebra.
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Relations between Exponential and Logarithmic Functions

Equivalently, for each positive real number x and real 

number y,

It can be shown using calculus that both the exponential 

and logarithmic functions are one-to-one and onto. 

Therefore, by definition of one-to-one, the following 

properties hold true:
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Relations between Exponential and Logarithmic Functions

These properties are used to derive many additional facts 

about exponents and logarithms. In particular we have the 

following properties of logarithms.
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Example 7 – Computing Logarithms with Base 2 on a Calculator

In computer science it is often necessary to compute 

logarithms with base 2. 

Most calculators do not have keys to compute logarithms 

with base 2 but do have keys to compute logarithms with 

base 10 (called common logarithms and often denoted 
simply log) and logarithms with base e (called natural 

logarithms and usually denoted ln).

Suppose your calculator shows that ln 5 ≅≅≅≅ 1.609437912 
and ln2 ≅≅≅≅ 0.6931471806. Use Theorem 7.2.1(d) to find an 

approximate value for log25.
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Example 7 – Solution

By Theorem 7.2.1(d),



56

One-to-One Correspondences
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One-to-One Correspondences

Consider a function F: X → Y that is both one-to-one and 

onto. Given any element x in X, there is a unique 

corresponding element y = F(x) in Y (since F is a function).

Also given any element y in Y, there is an element x in X

such that F(x) = y (since F is onto) and there is only one 
such x (since F is one-to-one).
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One-to-One Correspondences

Thus, a function that is one-to-one and onto sets up a 

pairing between the elements of X and the elements of Y

that matches each element of X with exactly one element 

of Y and each element of Y with exactly one element of X.

Such a pairing is called a one-to-one correspondence or 

bijection and is illustrated by the arrow diagram in 

Figure 7.2.5. 

An Arrow Diagram for a One-to-One Correspondence

Figure 7.2.5
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One-to-One Correspondences

One-to-one correspondences are often used as aids to 

counting. The pairing of Figure 7.2.5, for example, shows 

that there are five elements in the set X.
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Example 10 – A Function of Two Variables

Define a function 

F: R ×××× R → R ×××× R as follows: For all (x, y) ∈ R ×××× R,

Is F a one-to-one correspondence from R ×××× R to itself?

Solution:

The answer is yes. To show that F is a one-to-one 

correspondence, you need to show both that F is           
one-to-one and that F is onto.
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Example 10 – Solution

Proof that F is one-to-one: 

Suppose that (x1, y1) and (x2, y2) are any ordered pairs in 
R ×××× R such that

[We must show that (x1, y1) = (x2, y2).] By definition of F,

For two ordered pairs to be equal, both the first and second 

components must be equal. Thus x1, y1, x2, and y2 satisfy 

the following system of equations:

cont’d
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Example 10 – Solution

Adding equations (1) and (2) gives that

Substituting x1 = x2 into equation (1) yields

Thus, by definition of equality of ordered pairs, 

(x1, y1) = (x2, y2). [as was to be shown].

Scratch Work for the Proof that F is onto: To prove that 

F is onto, you suppose you have any ordered pair in the 
co-domain R ×××× R, say (u, v), and then you show that there 

is an ordered pair in the domain that is sent to (u, v) by F. 

cont’d
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Example 10 – Solution

To do this, you suppose temporarily that you have found 

such an ordered pair, say (r, s). Then

and

Equating the right-hand sides gives

By definition of equality of ordered pairs this means that

cont’d
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Example 10 – Solution

Adding equations (1) and (2) gives

Subtracting equation (2) from equation (1) yields

Thus, if F sends (r, s) to (u, v), then r = (u + v)/2 and           

s = (u – v)/2. 

To turn this scratch work into a proof, you need to make 
sure that 

(1)                  is in the domain of F, and 

(2) that F really does send                  to (u, v).

cont’d
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Example 10 – Solution

Proof that F is onto: 

Suppose (u, v) is any ordered pair in the co-domain of F. 
[We will show that there is an ordered pair in the domain of 

F that is sent to (u, v) by F.] 

Let 

Then (r, s) is an ordered pair of real numbers and so is in 

the domain of F. In addition:

cont’d
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Example 10 – Solution

[This is what was to be shown.]

cont’d
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Inverse Functions



68

Inverse Functions

If F is a one-to-one correspondence from a set X to a set Y, 

then there is a function from Y to X that “undoes” the action 

of F; that is, it sends each element of Y back to the element 

of X that it came from. This function is called the inverse 

function for F.
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Inverse Functions

The proof of Theorem 7.2.2 follows immediately from the 

definition of one-to-one and onto. 

Given an element y in Y, there is an element x in X with 

F(x) = y because F is onto; x is unique because F is       

one-to-one.

Note that according to this definition, the logarithmic 

function with base b > 0 is the inverse of the exponential 
function with base b.
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Inverse Functions

The diagram that follows illustrates the fact that an inverse 

function sends each element back to where it came from.
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Example 13 – Finding an Inverse Function for a Function Given by a Formula

The function f: R → R defined by the formula

was shown to be one-to-one in Example 2 and onto in 

Example 5. Find its inverse function.

Solution:

For any [particular but arbitrarily chosen] y in R, by 

definition of f –1,

f –1(y) = that unique real number x such that f(x) = y.



72

Example 13 – Solution

But

Hence

cont’d
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Inverse Functions

The following theorem follows easily from the definitions.
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Example 14 – Finding an Inverse Function for a Function of Two Variables

Define the inverse function F–1 : R ×××× R → R ×××× R for the  

one-to-one correspondence given in Example 10.

Solution:

The solution to Example 10 shows that                        

= (u, v). 

Because F is one-to-one, this means that                  is the 

unique ordered pair in the domain of F that is sent to (u, v) 

by F.

Thus, F–1 is defined as follows: For all (u, v) ∈ R ×××× R,


