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Boolean Algebras, Russell’s 
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Boolean Algebras, Russell’s Paradox, and the Halting Problem

Table 6.4.1 summarizes the main features of the logical 
equivalences from Theorem 2.1.1 and the set properties 
from Theorem 6.2.2. Notice how similar the entries in the 
two columns are.

Table 6.4.1
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Table 6.4.1 (continued)
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Boolean Algebras, Russell’s Paradox, and the Halting Problem
cont’d
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If you let ∨ (or) correspond to ∪∪∪∪ (union), ∧ (and) correspond 
to ∩∩∩∩ (intersection), t (a tautology) correspond to U (a 
universal set), c (a contradiction) correspond to Ø (the 
empty set), and ~ (negation) correspond to 
c (complementation), then you can see that the structure of 
the set of statement forms with operations ∨ and ∧ is 
essentially identical to the structure of the set of subsets of 
a universal set with operations ∪∪∪∪ and ∩∩∩∩. 

In fact, both are special cases of the same general 
structure, known as a Boolean algebra.
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In this section we show how to derive the various 
properties associated with a Boolean algebra from a set of 
just five axioms.
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In any Boolean algebra, the complement of each element is 
unique, the quantities 0 and 1 are unique, and identities 
analogous to those in Theorem 2.1.1 and Theorem 6.2.2 
can be deduced.
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Boolean Algebras, Russell’s Paradox, and the Halting Problem
cont’d
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You may notice that all parts of the definition of a Boolean 
algebra and most parts of Theorem 6.4.1 contain paired 
statements. For instance, the distributive laws state that for 
all a, b, and c in B,

(a) a + (b ���� c) = (a + b) ���� (a + c) and
(b) a ���� (b + c) = (a ���� b) + (a ���� c),

and the identity laws state that for all a in B,

(a) a + 0 = a and      (b) a ���� 1 = a.
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Note that each of the paired statements can be obtained 
from the other by interchanging all the + and · signs and 
interchanging 1 and 0. Such interchanges transform any 
Boolean identity into its dual identity. 

It can be proved that the dual of any Boolean identity is 
also an identity. This fact is often called the duality 

principle for a Boolean algebra.
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Example 1 – Proof of the Double Complement Law

Prove that for all elements a in a Boolean algebra

Solution:
Start by supposing that B is a Boolean algebra and a is any 
element of B. The basis for the proof is the uniqueness of 
the complement law: that each element in B has a unique 
complement that satisfies certain equations with respect to 
it.

So if a can be shown to satisfy those equations with 
respect to  , then a must be the complement of   .
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Proof:

Suppose B is a Boolean algebra and a is any element of B. 
Then

and 

Example 1 – Solution
cont’d
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Example 1 – Solution
cont’d

Thus a satisfies the two equations with respect to    that are 
satisfied by the complement of   . From the fact that the 
complement of a is unique, we conclude that       = a. 
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Russell’s Paradox
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Russell’s Paradox

Russell’s Paradox: Most sets are not elements of 
themselves. For instance, the set of all integers is not an 
integer and the set of all horses is not a horse. 

However, we can imagine the possibility of a set’s being an 
element of itself. For instance, the set of all abstract ideas 
might be considered an abstract idea. 

If we are allowed to use any description of a property as 
the defining property of a set, we can let S be the set of all 
sets that are not elements of themselves:



20

Russell’s Paradox

Is S an element of itself? The answer is neither yes nor no. 

For if S ∈ S, then S satisfies the defining property for S, 
and hence S ∉ S. But if S ∉ S, then S is a set such that 
S ∉ S and so S satisfies the defining property for S, which 
implies that S ∈ S. 

Thus neither is S ∈ S nor is S ∉ S, which is a contradiction. 
To help explain his discovery to laypeople, Russell devised 
a puzzle, the barber puzzle, whose solution exhibits the 
same logic as his paradox.
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Example 3 – The Barber Puzzle

In a certain town there is a male barber who shaves all 
those men, and only those men, who do not shave 
themselves. 

Question: Does the barber shave himself?

Solution:
Neither yes nor no. If the barber shaves himself, he is a 
member of the class of men who shave themselves. 

But no member of this class is shaved by the barber, and 
so the barber does not shave himself. 
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Example 3 – Solution

On the other hand, if the barber does not shave himself, he 
belongs to the class of men who do not shave themselves. 

But the barber shaves every man in this class, so the 
barber does shave himself.

cont’d
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Russell’s Paradox

So let’s accept the fact that the paradox has no easy 
resolution and see where that thought leads. Since the 
barber neither shaves himself nor doesn’t shave himself, 
the sentence “The barber shaves himself” is neither true 
nor false. 

But the sentence arose in a natural way from a description 
of a situation. If the situation actually existed, then the 
sentence would have to be true or false. 

Thus we are forced to conclude that the situation described 
in the puzzle simply cannot exist in the world as we know it.
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Russell’s Paradox

In a similar way, the conclusion to be drawn from Russell’s 
paradox itself is that the object S is not a set. 

Because if it actually were a set, in the sense of satisfying 
the general properties of sets that we have been assuming, 
then it either would be an element of itself or not.

Let U be a universal set and suppose that all sets under 
discussion are subsets of U. Let
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Russell’s Paradox

In Russell’s paradox, both implications

are proved, and the contradictory conclusion

is therefore deduced. In the situation in which all sets under 
discussion are subsets of U, the implication 
S ∈ S → S ∉ S is proved in almost the same way as it is for 
Russell’s paradox: (Suppose S ∈ S. Then by definition of 
S, S ⊆ U and S ∉ S. In particular, S ∉ S.)
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Russell’s Paradox

On the other hand, from the supposition that S ∉ S we can 
only deduce that the statement “S ⊆ U and S ∉ S” is false. 

By one of De Morgan’s laws, this means that “S U or 
S ∈ S.” Since S ∈ S would contradict the supposition that 
S ∉ S, we eliminate it and conclude that S U. 

In other words, the only conclusion we can draw is that the 
seeming “definition” of S is faulty—that is, that S is not a set 
in U.
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The Halting Problem
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The Halting Problem

If you have some experience programming computers, you 
know how badly an infinite loop can tie up a computer 
system. 

It would be useful to be able to preprocess a program and 
its data set by running it through a checking program that 
determines whether execution of the given program with 
the given data set would result in an infinite loop. 

Can an algorithm for such a program be written?
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The Halting Problem

In other words, can an algorithm be written that will accept 
any algorithm X and any data set D as input and will then 
print “halts” or “loops forever” to indicate whether X
terminates in a finite number of steps or loops forever when 
run with data set D? 

In the 1930s, Turing proved that the answer to this question 
is no.
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The Halting Problem

In recent years, the axioms for set theory that guarantee 
that Russell’s paradox will not arise have been found 
inadequate to deal with the full range of recursively defined 
objects in computer science, and a new theory of 
“non-well-founded” sets has been developed. 

In addition, computer scientists and logicians working on 
programs to enable computers to process natural language 
have seen the importance of exploring further the kinds of 
semantic issues raised by the barber puzzle and are 
developing new theories of logic to deal with them.


